1
|
Lin SS, Liu SJ, Chan EC, Chong KY, Chan YS, Tsai TT, Niu CC, Yuan LJ, Yang CY, Hsiao HY, Hsueh YJ, Chen CA, Ueng SWN. Development of a Biodegradable PLGA Carrier to Provide Wnt Agonists and Antibiotics to Meet the Requirements for Patients with Bone Infections. Pharmaceuticals (Basel) 2024; 17:1038. [PMID: 39204143 PMCID: PMC11359555 DOI: 10.3390/ph17081038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Antibiotic beads can be used to treat surgical infections. In this study, polylactide-polyglycolide (PLGA) was mixed with vancomycin, the osteogenic enhancer lithium chloride (LiCl), and hot compression to form PLGA-vancomycin-LiCl delivery beads to treat bone infection. An elution method was used to characterize in vitro release characteristics of vancomycin and Li over a 42-day period. The release profiles lasted for more than 42 days for vancomycin and 28 days for Li. The concentration of vancomycin in each sample was well above the breakpoint sensitivity. Lithium cotreatment enhanced the bactericidal effect of vancomycin. Released Li and vancomycin increased the mRNA or protein expressions of osteogenic markers of mesenchymal stem cells (MSCs). In vivo, the PLGA delivery systems were implanted into the distal femoral cavities of rabbits, and the cavity fluid content was aspirated and analyzed at each time point. The released Li and vancomycin lasted more than 6 weeks, and the vancomycin concentrations were much greater than the breakpoint sensitivity. Four rabbits in each group were sacrificed at 8 weeks for histological observation. More mature bone tissue was observed in the Li treatment group. This study provides a PLGA drug delivery system to meet the requirements of patients with bone infections.
Collapse
Affiliation(s)
- Song-Shu Lin
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan (T.-T.T.)
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Hyperbaric Oxygen Research Lab, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 333, Taiwan;
| | - Err-Cheng Chan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 333, Taiwan
| | - Kowit-Yu Chong
- Hyperbaric Oxygen Research Lab, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 333, Taiwan
| | - Yi-Sheng Chan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan (T.-T.T.)
- Hyperbaric Oxygen Research Lab, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan (T.-T.T.)
- Hyperbaric Oxygen Research Lab, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chi-Chien Niu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan (T.-T.T.)
- Hyperbaric Oxygen Research Lab, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Li-Jen Yuan
- Department of Orthopaedic Surgery, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chuen-Yung Yang
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan (T.-T.T.)
- Hyperbaric Oxygen Research Lab, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Hui-Yi Hsiao
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Biomedical Science, Chang Gung University, Taoyuan 333, Taiwan
| | - Yi-Jen Hsueh
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chung-An Chen
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan (T.-T.T.)
- Hyperbaric Oxygen Research Lab, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Steve W. N. Ueng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan (T.-T.T.)
- Hyperbaric Oxygen Research Lab, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
2
|
Alegrete N, Sousa SR, Peleteiro B, Monteiro FJ, Gutierres M. Local Antibiotic Delivery Ceramic Bone Substitutes for the Treatment of Infected Bone Cavities and Bone Regeneration: A Systematic Review on What We Have Learned from Animal Models. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2387. [PMID: 36984267 PMCID: PMC10056339 DOI: 10.3390/ma16062387] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
AIMS the focus of this study is to evaluate if the combination of an antibiotic with a ceramic biomaterial is effective in treating osteomyelitis in an infected animal model and to define which model and protocol are best suited for in vivo experiments of local bone infection treatment. METHODS a systematic review was carried out based on PRISMA statement guidelines. A PubMed search was conducted to find original papers on animal models of bone infections using local antibiotic delivery systems with the characteristics of bone substitutes. Articles without a control group, differing from the experimental group only by the addition of antibiotics to the bone substitute, were excluded. RESULTS a total of 1185 records were retrieved, and after a three-step selection, 34 papers were included. Six manuscripts studied the effect of antibiotic-loaded biomaterials on bone infection prevention. Five articles studied infection in the presence of foreign bodies. In all but one, the combination of an antibiotic with bioceramic bone substitutes tended to prevent or cure bone infection while promoting biomaterial osteointegration. CONCLUSIONS this systematic review shows that the combination of antibiotics with bioceramic bone substitutes may be appropriate to treat bone infection when applied locally. The variability of the animal models, time to develop an infection, antibiotic used, way of carrying and releasing antibiotics, type of ceramic material, and endpoints limits the conclusions on the ideal therapy, enhancing the need for consistent models and guidelines to develop an adequate combination of material and antimicrobial agent leading to an effective human application.
Collapse
Affiliation(s)
- Nuno Alegrete
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- FMUP-Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Susana R. Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- ISEP-Instituto Superior de Engenharia do Porto, IPP - Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Bárbara Peleteiro
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal
- Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- ITR-Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Fernando J. Monteiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Gutierres
- FMUP-Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- CHUSJ-Centro Hospitalar Universitário S. João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
3
|
Meroni G, Tsikopoulos A, Tsikopoulos K, Allemanno F, Martino PA, Soares Filipe JF. A Journey into Animal Models of Human Osteomyelitis: A Review. Microorganisms 2022; 10:1135. [PMID: 35744653 PMCID: PMC9228829 DOI: 10.3390/microorganisms10061135] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Osteomyelitis is an infection of the bone characterized by progressive inflammatory destruction and apposition of new bone that can spread via the hematogenous route (hematogenous osteomyelitis (HO)), contiguous spread (contiguous osteomyelitis (CO)), and direct inoculation (osteomyelitis associated with peripheral vascular insufficiency (PVI)). Given the significant financial burden posed by osteomyelitis patient management, the development of new preventive and treatment methods is warranted. To achieve this objective, implementing animal models (AMs) of infection such as rats, mice, rabbits, avians, dogs, sheep, goats, and pigs might be of the essence. This review provides a literature analysis of the AMs developed and used to study osteomyelitis. Historical relevance and clinical applicability were taken into account to choose the best AMs, and some study methods are briefly described. Furthermore, the most significant strengths and limitations of each species as AM are discussed, as no single model incorporates all features of osteomyelitis. HO's clinical manifestation results in extreme variability between patients due to multiple variables (e.g., age, sex, route of infection, anatomical location, and concomitant diseases) that could alter clinical studies. However, these variables can be controlled and tested through different animal models.
Collapse
Affiliation(s)
- Gabriele Meroni
- One Health Unit, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (F.A.); (P.A.M.)
| | - Alexios Tsikopoulos
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Francesca Allemanno
- One Health Unit, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (F.A.); (P.A.M.)
| | - Piera Anna Martino
- One Health Unit, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (F.A.); (P.A.M.)
| | - Joel Fernando Soares Filipe
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy;
| |
Collapse
|
4
|
[Research progress of antibacterial modification of orthopaedic implants surface]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:511-516. [PMID: 35426294 PMCID: PMC9011072 DOI: 10.7507/1002-1892.202112109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To summarize the related research progress of antibacterial modification of orthopaedic implants surface in recent years. METHODS The domestic and foreign related literature in recent years was extensively consulted, the research progress on antibacterial modification of orthopaedic implants surface was discussed from two aspects of characteristics of infection in orthopedic implants and surface anti-infection modification. RESULTS The orthopaedic implants infections are mainly related to aspects of bacterial adhesion, decreased host immunity, and surface biofilm formation. At present, the main antimicrobial coating methods of orthopaedic implants are antibacterial adhesion coating, antibiotic coating, inorganic antimicrobial coating, composite antimicrobial coating, nitric oxide coating, immunomodulation, three-dimensional printing, polymer antimicrobial coating, and "smart" coating. CONCLUSION The above-mentioned antibacterial coating methods of orthopedic implants can not only inhibit bacterial adhesion, but also solve the problems of low immunity and biofilm formation. However, its mechanism of action and modification are still controversial and require further research.
Collapse
|
5
|
George LH, Arakkal A, Sreedharan P, Sailaja GS. Injectable polyelectrolyte complex-nascent HAP biodegradable antibiotic delivery system for the treatment of osteomyelitis. Biomed Mater 2021; 17. [PMID: 34753122 DOI: 10.1088/1748-605x/ac37c5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/11/2022]
Abstract
An injectable osteoconductive polyelectrolyte complex -hydroxyapatite formulation capable of controlled delivery of ciprofloxacin has been developed from a novel biodegradable polyelectrolyte complex and antibiotic loaded nascent hydroxyapatite (n-HAP) for the treatment of osteomyelitis. A single source (chitosan) derived polyelectrolytes were complexed in situ in the presence of n-HAP, pre-loaded with ciprofloxacin. The PEC- (n-HAP) nanoformulation (HPEC) was characterized by FT-IR, XRD, TGA and TEM analyses. HPEC combines functionalities of n-HAP (crystallinity and osteoconductivity) as well as PEC (biodegradable hydrophilic electrostatically bound macromolecular network) imparting better control over swelling and degradation kinetics favourable for drug release and transport of micronutrients. MTT assay and cytoskeleton staining (MG 63 cells) established cytocompatibility of HPEC. Early biomimetic mineralization of apatite was manifested under simulated physiological condition with a Ca/P of 1.23 (day 3) and 1.55 (day 6) complimented by in vitro biomineralization of MG-63 and Human Osteosarcoma (HOS) cells in a week (Alizarin Red S staining), which was further validated by calcium quantification. Antibacterial efficacy of HPEC has been evaluated by delivery kinetics of ciprofloxacin and by disc diffusion method against S. aureus and E. coli. The injectable system therefore possesses unique combination of functionalities: osteoconduction enriched with early biomineralization, antibacterial activity and is biodegradable; hence highly suitable for osteomyelitis treatment.
Collapse
Affiliation(s)
- Liz Hannah George
- Cochin University of Science and Technology, Department of Polymer Science and Rubber Technology, KOCHI, Kerala, 682022, INDIA
| | - Aswin Arakkal
- Cochin University of Science and Technology, Department of Polymer Science and Rubber Technology, CUSAT, KOCHI, Kerala, 682022, INDIA
| | - Prathapan Sreedharan
- Department of Applied Chemistry, Cochin University of Science and Technology, CUSAT, KOCHI, Kerala, 682022, INDIA
| | - G S Sailaja
- Department of Polymer Science and Technology, Cochin University of Science and Technology, Cochin 22, KOCHI, KOCHI, Kerala, 682022, INDIA
| |
Collapse
|
6
|
Roy S, Mukherjee P, Das PK, Ghosh PR, Datta P, Kundu B, Nandi SK. Local delivery systems of morphogens/biomolecules in orthopedic surgical challenges. MATERIALS TODAY COMMUNICATIONS 2021; 27:102424. [DOI: 10.1016/j.mtcomm.2021.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Karr JC. Improving Outcomes for Osteomyelitis After Partial Bone Resection: A Preliminary Report. J Am Podiatr Med Assoc 2021; 111:466707. [PMID: 34144585 DOI: 10.7547/19-157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Following partial bone resection for osteomyelitis, continued osteomyelitis in the remaining bone is common and problematic. Shortcomings in available surgical techniques to combat this also contribute to this problem. Presented are two case studies using a solution to this problem with a different type of bone void filler as a carrier vehicle for delivering antibiotics into the remaining infected bone to eradicate any residual bacteria in the remaining bone.
Collapse
|
8
|
Cobb LH, McCabe EM, Priddy LB. Therapeutics and delivery vehicles for local treatment of osteomyelitis. J Orthop Res 2020; 38:2091-2103. [PMID: 32285973 PMCID: PMC8117475 DOI: 10.1002/jor.24689] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 02/04/2023]
Abstract
Osteomyelitis, or the infection of the bone, presents a major complication in orthopedics and may lead to prolonged hospital visits, implant failure, and in more extreme cases, amputation of affected limbs. Typical treatment for this disease involves surgical debridement followed by long-term, systemic antibiotic administration, which contributes to the development of antibiotic-resistant bacteria and has limited ability to eradicate challenging biofilm-forming pathogens including Staphylococcus aureus-the most common cause of osteomyelitis. Local delivery of high doses of antibiotics via traditional bone cement can reduce systemic side effects of an antibiotic. Nonetheless, growing concerns over burst release (then subtherapeutic dose) of antibiotics, along with microbial colonization of the nondegradable cement biomaterial, further exacerbate antibiotic resistance and highlight the need to engineer alternative antimicrobial therapeutics and local delivery vehicles with increased efficacy against, in particular, biofilm-forming, antibiotic-resistant bacteria. Furthermore, limited guidance exists regarding both standardized formulation protocols and validated assays to predict efficacy of a therapeutic against multiple strains of bacteria. Ideally, antimicrobial strategies would be highly specific while exhibiting a broad spectrum of bactericidal activity. With a focus on S. aureus infection, this review addresses the efficacy of novel therapeutics and local delivery vehicles, as alternatives to the traditional antibiotic regimens. The aim of this review is to discuss these components with regards to long bone osteomyelitis and to encourage positive directions for future research efforts.
Collapse
Affiliation(s)
- Leah H. Cobb
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, USA
| | - Emily M. McCabe
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, USA,Department of Mechanical Engineering, Mississippi State University, Mississippi State, MS, USA
| | - Lauren B. Priddy
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, USA,corresponding author: Contact: , (662) 325-5988, Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, USA 39762
| |
Collapse
|
9
|
Singh VA, Wei CC, Haseeb A, Shanmugam R, Ju CS. JectOS® versus PMMA vancomycin-loaded cement: The biomechanical and antimicrobial properties. J Orthop Surg (Hong Kong) 2020; 27:2309499018822247. [PMID: 30798727 DOI: 10.1177/2309499018822247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Bone cement is commonly used as a void filler for bone defects. Antibiotics can be added to bone cement to increase local drug delivery in eradicating infection. After antibiotic elution, nonbiodegradable material becomes an undesirable agent. The purpose of this study was to evaluate effects of addition of vancomycin on the compressive strength of injectable synthetic bone substitute, JectOS®. JectOS, a partially biodegradable cement that over time dissolves and is replaced by bone, could be potentially used as a biodegradable antibiotic carrier. METHODS Vancomycin at various concentrations was added to JectOS and polymethyl methacrylate (PMMA). Then, the cement was molded into standardized dimensions for in vitro testing. Cylindrical vancomycin-JectOS samples were subjected to compressive strength. The results obtained were compared to PMMA-vancomycin compressive strength data attained from historical controls. The zone of inhibition was carried out using vancomycin-JectOS and vancomycin-PMMA disk on methicillin-resistant strain culture agar. RESULTS With the addition of 2.5%, 5%, and 10% vancomycin, the average compressive strengths reduced to 8.01 ± 0.95 MPa (24.6%), 7.52 ± 0.71 MPa (29.2%), and 7.23 ± 1.34 MPa (31.9%). Addition of vancomycin significantly weakened biomechanical properties of JectOS, but there was no significant difference in the compressive strength at increasing concentrations. The average diameters of zone of inhibition for JectOS-vancomycin were 24.7 ± 1.44 (2.5%) mm, 25.9 ± 0.85 mm (5%), and 26.8 ± 1.81 mm (10%), which outperformed PMMA. CONCLUSION JectOS has poor mechanical performance but superior elution property. JectOS-vancomycin cement is suitable as a void filler delivering high local concentration of vancomycin. We recommended using it for contained bone defects that do not require mechanical strength.
Collapse
Affiliation(s)
- Vivek Ajit Singh
- 1 Department of Orthopaedic Surgery, National Orthopaedic Center of Excellence for Research & Learning, University of Malaya, Kuala Lumpur, Malaysia
| | - Chang Chee Wei
- 1 Department of Orthopaedic Surgery, National Orthopaedic Center of Excellence for Research & Learning, University of Malaya, Kuala Lumpur, Malaysia
| | - Amber Haseeb
- 1 Department of Orthopaedic Surgery, National Orthopaedic Center of Excellence for Research & Learning, University of Malaya, Kuala Lumpur, Malaysia
| | - Rukmanikanthan Shanmugam
- 1 Department of Orthopaedic Surgery, National Orthopaedic Center of Excellence for Research & Learning, University of Malaya, Kuala Lumpur, Malaysia
| | - Cindy Shuan Ju
- 2 Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Jung SW, Oh SH, Lee IS, Byun JH, Lee JH. In Situ Gelling Hydrogel with Anti-Bacterial Activity and Bone Healing Property for Treatment of Osteomyelitis. Tissue Eng Regen Med 2019; 16:479-490. [PMID: 31624703 DOI: 10.1007/s13770-019-00206-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/27/2019] [Accepted: 07/16/2019] [Indexed: 01/07/2023] Open
Abstract
Background Despite the development of progressive surgical techniques and antibiotics, osteomyelitis is a big challenge for orthopedic surgeons. The main aim of this study is to fabricate an in situ gelling hydrogel that permits sustained release of antibiotic (for control of infection) and growth factor (for induction of new bone formation) for effective treatment of osteomyelitis. Methods An in situ gelling alginate (ALG)/hyaluronic acid (HA) hydrogel containing vancomycin (antibiotic) and bone morphogenetic protein-2 (BMP-2; growth factor) was prepared by simple mixing of ALG/HA/Na2HPO4 solution and CaSO4/vancomycin/BMP-2 solution. The release behaviors of vancomycin and BMP-2, anti-bacterial effect (in vitro); and therapeutic efficiency for osteomyelitis and bone regeneration (in vivo, osteomyelitis rat model) of the vancomycin and BMP-2-incorporated ALG/HA hydrogel were investigated. Results The gelation time of the ALG/HA hydrogel was controlled into approximately 4 min, which is sufficient time for handling and injection into osteomyelitis lesion. Both vancomycin and BMP-2 were continuously released from the hydrogel for 6 weeks. From the in vitro studies, the ALG/HA hydrogel showed an effective anti-bacterial activity without significant cytotoxicity for 6 weeks. From an in vivo animal study using Sprague-Dawley rats with osteomyelitis in femur as a model animal, it was demonstrated that the ALG/HA hydrogel was effective for suppressing bacteria (Staphylococcus aureus) proliferation at the osteomyelitis lesion and enhancing bone regeneration without additional bone grafts. Conclusions From the results, we suggest that the in situ gelling ALG/HA hydrogel containing vancomycin and BMP-2 can be a feasible therapeutic tool to treat osteomyelitis.
Collapse
Affiliation(s)
- Sun Woo Jung
- 1Department of Advanced Materials and Chemical Engineering, Hannam University, Daejeon, 34054 Republic of Korea
| | - Se Heang Oh
- 2Department of Nanobiomedical Science, Dankook University, Cheonan, 31116 Republic of Korea
- 3Department of Pharmaceutical Engineering, Dankook University, Cheonan, 31116 Republic of Korea
| | - In Soo Lee
- 4Department of Biological Science and Biotechnology, Hannam University, Daejeon, 34054 Republic of Korea
| | - June-Ho Byun
- 5Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, 52727 Republic of Korea
| | - Jin Ho Lee
- 1Department of Advanced Materials and Chemical Engineering, Hannam University, Daejeon, 34054 Republic of Korea
| |
Collapse
|
11
|
Greene E, Flees J, Dhamad A, Alrubaye A, Hennigan S, Pleimann J, Smeltzer M, Murray S, Kugel J, Goodrich J, Robertson A, Wideman R, Rhoads D, Dridi S. Double-Stranded RNA Is a Novel Molecular Target in Osteomyelitis Pathogenesis: A Translational Avian Model for Human Bacterial Chondronecrosis with Osteomyelitis. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2077-2089. [PMID: 31381888 DOI: 10.1016/j.ajpath.2019.06.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/17/2019] [Accepted: 06/19/2019] [Indexed: 01/22/2023]
Abstract
Osteomyelitis remains a serious inflammatory bone disease that affects millions of individuals worldwide and for which there is no effective treatment. Despite scientific evidence that Staphylococcus bacteria are the most common causative species for human bacterial chondronecrosis with osteomyelitis (BCO), much remains to be understood about the underlying virulence mechanisms. Herein, we show increased levels of double-stranded RNA (dsRNA) in infected bone in a Staphylococcus-induced chicken BCO model and in human osteomyelitis samples. Administration of synthetic [poly(I:C)] or genetic (Alu) dsRNA induces human osteoblast cell death. Similarly, infection with Staphylococcus isolated from chicken BCO induces dsRNA accumulation and cell death in human osteoblast cell cultures. Both dsRNA administration and Staphylococcus infection activate NACHT, LRR and PYD domains-containing protein (NLRP)3 inflammasome and increase IL18 and IL1B gene expression in human osteoblasts. Pharmacologic inhibition with Ac-YVAD-cmk of caspase 1, a critical component of the NLRP3 inflammasome, prevents DICER1 dysregulation- and dsRNA-induced osteoblast cell death. NLRP3 inflammasome and its components are also activated in bone from BCO chickens and humans with osteomyelitis, compared with their healthy counterparts. These findings provide a rationale for the use of chicken BCO as a human-relevant spontaneous animal model for osteomyelitis and identify dsRNA as a new treatment target for this debilitating bone pathogenesis.
Collapse
Affiliation(s)
- Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Joshua Flees
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Ahmed Dhamad
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Adnan Alrubaye
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas
| | | | - Jason Pleimann
- Washington Regional Medical Center, Fayetteville, Arkansas
| | - Mark Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sue Murray
- Antisense Drug Discovery, IONIS Pharmaceuticals, Carlsbad, California
| | - Jennifer Kugel
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - James Goodrich
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Avril Robertson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Robert Wideman
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Douglas Rhoads
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas.
| |
Collapse
|
12
|
Abstract
There are numerous reports in the literature using animal models of osteomyelitis for investigating pathogenesis, diagnosis, and treatment of bone infections. Rabbits, rats, and dogs are commonly used animals, and, less frequently, chickens, guinea pigs, miniature pigs, goats, and sheep. Commonly used bones for creating local osteomyelitis include tibia, femur, and radius, and, less frequently, mandible and spine. When designing a specific model, one should consider which animal and which bone will be used, which route for inoculation (either local injection or systemically through vascular injection), which bacterial species and how many bacteria should be applied, if and what sclerosing agent, foreign body or implant should be employed, and if local trauma is needed. Basic methods of evaluation include clinical observation, radiography, microbiology, and histology.
Collapse
Affiliation(s)
- Y H An
- Orthopaedic Research Laboratory, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | |
Collapse
|
13
|
A review of local antibiotic implants and applications to veterinary orthopaedic surgery. Vet Comp Orthop Traumatol 2017; 26:251-9. [DOI: 10.3415/vcot-12-05-0065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 01/27/2013] [Indexed: 11/17/2022]
Abstract
SummaryIn the face of increasing incidence of multidrug resistant implant infections, local antibiotic modalities are receiving increased attention for both infection prophylaxis and treatment. Local antibiotic therapy that achieves very high antibiotic drug concentrations at the site of the implant may represent an avenue for treatment of biofilmforming bacterial pathogens. Randomized controlled trials in human patients have demonstrated an infection risk reduction when antibiotic-impregnated cement is used for infection prophylaxis in implanted joint prostheses, and when a gentamicin-impregnated collagen sponge is used for infection prophylaxis in midline sternotomy. The other modalities discussed have for the most part yet to be evaluated in randomized controlled trials in veterinary or human patients. In general, the in vivo pharmacokinetics and appropriate dosing profiles for local antibiotic modalities have yet to be elucidated. Toxicity is possible, and attention to the dose applied is warranted.
Collapse
|
14
|
Ford CA, Cassat JE. Advances in the local and targeted delivery of anti-infective agents for management of osteomyelitis. Expert Rev Anti Infect Ther 2017; 15:851-860. [PMID: 28837368 DOI: 10.1080/14787210.2017.1372192] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Osteomyelitis, a common and debilitating invasive infection of bone, is a frequent complication following orthopedic surgery and causes pathologic destruction of skeletal tissues. Bone destruction during osteomyelitis results in necrotic tissue, which is poorly penetrated by antibiotics and can serve as a nidus for relapsing infection. Osteomyelitis therefore frequently necessitates surgical debridement procedures, which provide a unique opportunity for targeted delivery of antimicrobial and adjunctive therapies. Areas covered: Following surgical debridement, tissue voids require implanted materials to facilitate the healing process. Antibiotic-loaded, non-biodegradable implants have been the standard of care. However, a new generation of biodegradable, osteoconductive materials are being developed. Additionally, in the face of widespread antimicrobial resistance, alternative therapies to traditional antibiotic regimens are being investigated, including bone targeting compounds, antimicrobial surface modifications of orthopedic implants, and anti-virulence strategies. Expert commentary: Recent advances in biodegradable drug delivery scaffolds make this technology an attractive alternative to traditional techniques for orthopedic infection that require secondary operations for removal. Advances in novel treatment methods are expanding the arsenal of viable antimicrobial treatment strategies in the face of widespread drug resistance. Despite a need for large scale clinical investigations, these strategies offer hope for future treatment of this difficult invasive disease.
Collapse
Affiliation(s)
- Caleb A Ford
- a Department of Biomedical Engineering , Vanderbilt University School of Engineering, Vanderbilt University School of Medicine , Nashville , TN , USA
| | - James E Cassat
- b Departments of Pediatrics, Pathology, Microbiology, and Immunology, and Biomedical Engineering , Vanderbilt University Medical Center , Nashville , TN , USA
| |
Collapse
|
15
|
Liu D, He C, Liu Z, Xu W. Gentamicin coating of nanotubular anodized titanium implant reduces implant-related osteomyelitis and enhances bone biocompatibility in rabbits. Int J Nanomedicine 2017; 12:5461-5471. [PMID: 28814863 PMCID: PMC5546782 DOI: 10.2147/ijn.s137137] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Titanium and titanium alloy are widely used as orthopedic implants for their favorable mechanical properties and satisfactory biocompatibility. The aim of the present study was to investigate the antibacterial effect and bone cell biocompatibility of a novel implant made with nanotubular anodized titanium coated with gentamicin (NTATi-G) through in vivo study in rabbits. The animals were divided into four groups, each receiving different kinds of implants, that is, NTATi-G, titanium coated with gentamicin (Ti-G), nanotubular anodized titanium uncoated with gentamicin (NTATi) and titanium uncoated with gentamicin (Ti). The results showed that NTATi-G implant prevented implant-related osteomyelitis and enhanced bone biocompatibility in vivo. Moreover, the body temperature of rabbits in NTATi-G and Ti-G groups was lower than those in Ti groups, while the weight of rabbits in NTATi-G and Ti-G groups was heavier than those in NTATi and Ti groups, respectively. White blood cell counts in NTATi-G group were lower than NTATi and Ti groups. Features of myelitis were observed by X-ray films in the NTATi and Ti groups, but not in the NTATi-G and Ti-G groups. The radiographic scores, which assessed pathology and histopathology in bone tissues, were significantly lower in the NTATi-G and Ti-G groups than those in the NTATi and Ti groups, respectively (P<0.05). Meanwhile, explants and bone tissue culture demonstrated significantly less bacterial growth in the NTATi-G and Ti-G groups than in the NTATi and Ti groups, respectively (P<0.01). The bone volume in NTATi-G group was greater than Ti-G group, and little bone formation was seen in NTATi and Ti groups.
Collapse
Affiliation(s)
- Denghui Liu
- Department of Orthopedics, the 113 Military Hospital, Ningbo
| | - Chongru He
- Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People's Republic of China
| | - Zhongtang Liu
- Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People's Republic of China
| | - Weidong Xu
- Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Nandi SK, Bandyopadhyay S, Das P, Samanta I, Mukherjee P, Roy S, Kundu B. Understanding osteomyelitis and its treatment through local drug delivery system. Biotechnol Adv 2016; 34:1305-1317. [DOI: 10.1016/j.biotechadv.2016.09.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/12/2016] [Accepted: 09/27/2016] [Indexed: 02/08/2023]
|
17
|
Ueng SWN, Lin SS, Wang IC, Yang CY, Cheng RC, Liu SJ, Chan EC, Lai CF, Yuan LJ, Chan SC. Efficacy of vancomycin-releasing biodegradable poly(lactide-co-glycolide) antibiotics beads for treatment of experimental bone infection due to Staphylococcus aureus. J Orthop Surg Res 2016; 11:52. [PMID: 27121956 PMCID: PMC4848784 DOI: 10.1186/s13018-016-0386-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clinical experience and animal studies have suggested that positron emission tomography (PET) using fluorine-18-labeled fluorodeoxyglucose ((18)F-FDG) may be promising for imaging of bone infections. In this study, we aimed to establish the accuracy of (18)F-FDG PET scanning for monitoring the response to poly(lactide-co-glycolide) (PLGA) vancomycin beads for treatment of bone infection. METHODS PLGA was mixed with vancomycin and hot-compress molded to form antibiotic beads. In vitro, elution assays and bacterial inhibition tests were employed to characterize the released antibiotics. In vivo, cylindrical cavities were made in six adult male New Zealand white rabbits, and Staphylococcus aureus or saline was injected into the cavity to create a bone infection. After 2 weeks, the infection was confirmed by bacterial cultures, and the defect was filled with PLGA vancomycin beads. The treatment response was monitored by (18)F-FDG PET. RESULTS The biodegradable beads released high concentrations of vancomycin (well above the breakpoint sensitivity concentration) for treatment of bone infection. In bacterial inhibition tests, the diameter of the sample inhibition zone ranged from 6.5 to 10 mm, which was equivalent to 12.5-100 % relative activity. (18)F-FDG PET results showed that uncomplicated bone healing was associated with a temporary increase in (18)F-FDG uptake at 2 weeks, with return to near baseline at 6 weeks. In the infected animals, localized infection resulted in intense continuous uptake of (18)F-FDG, which was higher than that in uncomplicated healing bones. Bone infection was confirmed with positive bacterial cultures. In vancomycin-treated animals, data showed rapidly decreasing amounts of (18)F-FDG uptake after treatment. CONCLUSIONS In vitro and in vivo analyses showed that the use of biodegradable PLGA vancomycin beads successfully eradicated S. aureus infection in damaged bone.
Collapse
Affiliation(s)
- Steve W. N. Ueng
- />Department of Orthopaedic, Chang Gung Memorial Hospital, Linkou, Taiwan
- />Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- />Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street 333, Kweishan, Taoyuan Taiwan
| | - Song-Shu Lin
- />Department of Orthopaedic, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - I-Chun Wang
- />Department of Orthopaedic, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chuen-Yung Yang
- />Department of Orthopaedic, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ru-Chin Cheng
- />Department of Nuclear Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shih-Jung Liu
- />Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Err-Cheng Chan
- />Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Fen Lai
- />Laboratory Animal Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Li-Jen Yuan
- />Department of Orthopaedic, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Sheng-Chieh Chan
- />Department of Nuclear Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| |
Collapse
|
18
|
Shadjou N, Hasanzadeh M. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances. J Biomed Mater Res A 2016; 104:1250-75. [DOI: 10.1002/jbm.a.35645] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/06/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Nasrin Shadjou
- Department of Nanochemistry; Nano Technology Research Center and Faculty of Chemistry, Urmia University; Urmia Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences; Tabriz 51664 Iran
| |
Collapse
|
19
|
Oh SH, Nam BR, Lee IS, Lee JH. Prolonged anti-bacterial activity of ion-complexed doxycycline for the treatment of osteomyelitis. Eur J Pharm Biopharm 2016; 98:67-75. [DOI: 10.1016/j.ejpb.2015.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 11/26/2022]
|
20
|
Inzana JA, Schwarz EM, Kates SL, Awad HA. Biomaterials approaches to treating implant-associated osteomyelitis. Biomaterials 2015; 81:58-71. [PMID: 26724454 DOI: 10.1016/j.biomaterials.2015.12.012] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/06/2015] [Accepted: 12/13/2015] [Indexed: 12/13/2022]
Abstract
Orthopaedic devices are the most common surgical devices associated with implant-related infections and Staphylococcus aureus (S. aureus) is the most common causative pathogen in chronic bone infections (osteomyelitis). Treatment of these chronic bone infections often involves combinations of antibiotics given systemically and locally to the affected site via a biomaterial spacer. The gold standard biomaterial for local antibiotic delivery against osteomyelitis, poly(methyl methacrylate) (PMMA) bone cement, bears many limitations. Such shortcomings include limited antibiotic release, incompatibility with many antimicrobial agents, and the need for follow-up surgeries to remove the non-biodegradable cement before surgical reconstruction of the lost bone. Therefore, extensive research pursuits are targeting alternative, biodegradable materials to replace PMMA in osteomyelitis applications. Herein, we provide an overview of the primary clinical treatment strategies and emerging biodegradable materials that may be employed for management of implant-related osteomyelitis. We performed a systematic review of experimental biomaterials systems that have been evaluated for treating established S. aureus osteomyelitis in an animal model. Many experimental biomaterials were not decisively more efficacious for infection management than PMMA when delivering the same antibiotic. However, alternative biomaterials have reduced the number of follow-up surgeries, enhanced the antimicrobial efficacy by delivering agents that are incompatible with PMMA, and regenerated bone in an infected defect. Understanding the advantages, limitations, and potential for clinical translation of each biomaterial, along with the conditions under which it was evaluated (e.g. animal model), is critical for surgeons and researchers to navigate the plethora of options for local antibiotic delivery.
Collapse
Affiliation(s)
- Jason A Inzana
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland; Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, United States; Department of Biomedical Engineering, University of Rochester, 207 Robert B. Goergen Hall, Rochester, NY 14642, United States.
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, United States; Department of Biomedical Engineering, University of Rochester, 207 Robert B. Goergen Hall, Rochester, NY 14642, United States; Department of Orthopedics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Stephen L Kates
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, United States; Department of Orthopedics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Hani A Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, United States; Department of Biomedical Engineering, University of Rochester, 207 Robert B. Goergen Hall, Rochester, NY 14642, United States; Department of Orthopedics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, United States
| |
Collapse
|
21
|
ter Boo GJA, Grijpma DW, Moriarty TF, Richards RG, Eglin D. Antimicrobial delivery systems for local infection prophylaxis in orthopedic- and trauma surgery. Biomaterials 2015; 52:113-25. [PMID: 25818418 DOI: 10.1016/j.biomaterials.2015.02.020] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/26/2015] [Accepted: 02/01/2015] [Indexed: 02/08/2023]
Abstract
Infectious complications occur in a minor but significant portion of the patients undergoing joint replacement surgery or fracture fixation, particularly those with severe open fractures, those undergoing revision arthroplasty or those at elevated risk because of poor health status. Once established, infections are difficult to eradicate, especially in the case of bacterial biofilm formation on implanted hardware. Local antibiotic carriers offer the prospect of controlled delivery of antibiotics directly in target tissues and implant, without inducing toxicity in non-target organs. Polymeric carriers have been developed to optimize the release and targeting of antibiotics. Passive polymeric carriers release antibiotics by diffusion and/or upon degradation, while active polymeric carriers release their antibiotics upon stimuli provided by bacterial pathogens. Additionally, some polymeric carriers gelate in-situ in response to physiological stimuli to form a depot for antibiotic release. As antibiotic resistance has become a major issue, also other anti-infectives such as silver and antimicrobial peptides have been incorporated in research. Currently, several antibiotic loaded biomaterials for local infection prophylaxis are available for use in the clinic. Here we review their advantages and limitations and provide an overview of new materials emerging that may overcome these limitations.
Collapse
Affiliation(s)
- Gert-Jan A ter Boo
- AO Research Institute Davos, Clavadelerstrasse 8, CH7270 Davos, Switzerland; Department of Biomaterials Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Dirk W Grijpma
- Department of Biomaterials Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; Department of Biomedical Engineering, W.J. Kolff Institute, University Medical Center Groningen, University of Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands
| | - Thomas F Moriarty
- AO Research Institute Davos, Clavadelerstrasse 8, CH7270 Davos, Switzerland
| | - Robert G Richards
- AO Research Institute Davos, Clavadelerstrasse 8, CH7270 Davos, Switzerland
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, CH7270 Davos, Switzerland.
| |
Collapse
|
22
|
Zhao C, Lu X, Zanden C, Liu J. The promising application of graphene oxide as coating materials in orthopedic implants: preparation, characterization and cell behavior. Biomed Mater 2015; 10:015019. [DOI: 10.1088/1748-6041/10/1/015019] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Shunmugaperumal T, Kaur V, Thenrajan RS. Lipid- and Polymer-Based Drug Delivery Carriers for Eradicating Microbial Biofilms Causing Medical Device-Related Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 831:147-89. [DOI: 10.1007/978-3-319-09782-4_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Ahola N, Veiranto M, Männistö N, Karp M, Rich J, Efimov A, Seppälä J, Kellomäki M. Processing and sustained in vitro release of rifampicin containing composites to enhance the treatment of osteomyelitis. BIOMATTER 2014; 2:213-25. [PMID: 23507887 PMCID: PMC3568107 DOI: 10.4161/biom.22793] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The objective in this study was to develop an osteoconductive, biodegradable and rifampicin releasing bone filling composite material for the treatment of osteomyelitis, a bacterial infection of bone that is very difficult and expensive to treat. The composite material will be used together with a ciprofloxacin releasing composite, because of the rapid development of resistant bacteria when rifampicin is used alone. Three composites were manufactured by twin-screw extrusion. The polymer matrix for the composites was poly(L-lactide-co-ε-caprolactone) 70/30 and all the composites contained 8 wt% (weight percent) of rifampicin antibiotic. The β-TCP contents of the composites were 0 wt%, 50 wt% and 60 wt%. The composites were sterilized by gamma irradiation before in vitro degradation and drug release tests. The hydrolytical degradation of the studied composites proceeded quickly and the molecular weight of the polymer component of the composites decreased rapidly. Rifampicin release occurred in four phases in which the high β-TCP content of the samples, polymer degradation and mass loss all played a role in determining the phases. The ceramic component was seen to have a positive effect on the drug release. The composite with 50 wt% of β-TCP showed the most promising rifampicin release profile and it also showed activity against a common osteomyelitis causing bacteria Pseudomonas aeruginosa. A clear inhibition zone was formed in 16 h incubation. Overall, the tested materials showed great potential to be developed into a bone filler material for the treatment of osteomyelitis or other bone related infections in combination with the ciprofloxacin releasing materials.
Collapse
Affiliation(s)
- Niina Ahola
- Department of Biomedical Engineering, Tampere University of Technology, Tampere, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Roberts R, McConoughey SJ, Calhoun JH. Size and composition of synthetic calcium sulfate beads influence dissolution and elution rates in vitro. J Biomed Mater Res B Appl Biomater 2013; 102:667-73. [PMID: 24155136 DOI: 10.1002/jbm.b.33045] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/15/2013] [Accepted: 09/10/2013] [Indexed: 11/06/2022]
Abstract
Treatments of osteomyelitis lag behind bacterial resistance to antibiotics. We tested different-sized calcium sulfate beads and their ability to elute multiple antibiotics in vitro as a possible method to improve the therapeutic delivery in patients. Two sizes of calcium sulfate beads (4.8 and 3.0 mm diameter) that contained vancomycin, tobramycin, or both were dissolved in phosphate-buffered saline, and the rate of dissolution by weight and antibiotic elution by the disc diffusion assay and high-pressure liquid chromatography were measured. The 4.8 mm beads showed significantly higher dissolution rates relative to the 3.0 mm beads (2.3 mg/day vs. 1.3 mg/day). While the vancomycin-loaded 4.8 mm beads eluted for a longer time relative to the 3.0 mm beads (20 days vs. 10 days), the smaller beads had threefold higher elution for the first 2 days, before dropping to near zero elution by day 4. The presence of tobramycin extended the elution of the vancomycin to day 40, which closely matches the recommended 6 weeks to treat orthopedic staphylococcus infections. These data suggest that size and content of the bead are variables that could affect their clinical success, and both could be exploited to tailor treatments of specific infections and injuries.
Collapse
Affiliation(s)
- Randy Roberts
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, Ohio, 43210
| | | | | |
Collapse
|
26
|
Bermudez JM, Cid AG, Ramírez-Rigo MV, Quinteros D, Simonazzi A, Sánchez Bruni S, Palma S. Challenges and opportunities in polymer technology applied to veterinary medicine. J Vet Pharmacol Ther 2013; 37:105-24. [DOI: 10.1111/jvp.12079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 07/28/2013] [Indexed: 12/11/2022]
Affiliation(s)
- J. M. Bermudez
- Instituto de Investigaciones para la Industria Química (INIQUI); Universidad Nacional de Salta; CONICET; Salta Argentina
| | - A. G. Cid
- Instituto de Investigaciones para la Industria Química (INIQUI); Universidad Nacional de Salta; CONICET; Salta Argentina
| | - M. V. Ramírez-Rigo
- Planta Piloto de Ingeniería Química (PLAPIQUI); Universidad Nacional del Sur; CONICET; Bahía Blanca Argentina
| | - D. Quinteros
- Facultad de Ciencias Químicas; Departamento de Farmacia; Unidad de investigación y desarrollo en tecnología farmacéutica (UNITEFA); CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - A. Simonazzi
- Instituto de Investigaciones para la Industria Química (INIQUI); Universidad Nacional de Salta; CONICET; Salta Argentina
| | - S. Sánchez Bruni
- Centro de Investigación Veterinaria de Tandil (CIVETAN); Universidad Nacional del Centro de la Pcia. de Buenos Aires; CONICET; Tandil Argentina
| | - S. Palma
- Facultad de Ciencias Químicas; Departamento de Farmacia; Unidad de investigación y desarrollo en tecnología farmacéutica (UNITEFA); CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| |
Collapse
|
27
|
Gimeno M, Pinczowski P, Vázquez FJ, Pérez M, Santamaría J, Arruebo M, Luján L. Porous orthopedic steel implant as an antibiotic eluting device: prevention of post-surgical infection on an ovine model. Int J Pharm 2013; 452:166-72. [PMID: 23651643 DOI: 10.1016/j.ijpharm.2013.04.076] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 04/26/2013] [Accepted: 04/28/2013] [Indexed: 12/14/2022]
Abstract
Traumatology and orthopedic surgery can benefit from the use of efficient local antibiotic-eluting systems to avoid bacterial contamination of implanted materials. In this work a new percutaneous porous-wall hollow implant was successfully used as a local antibiotic-eluting device both in vitro and in vivo. The implant is a macroporous 316 L stainless steel filter tube with a nominal filtration cut-off size of 200 nm with one open end which was used to load the synthetic antibiotic linezolid and an opposite blind end. The antibiotic release kinetics from the device on a simulated biological fluid under in vitro conditions demonstrated an increased concentration during the first five days that subsequently was sustained for at least seven days, showing a kinetic close to a zero order release. Antibiotic-loaded implants were placed in the tibia of four sheep which were trans-surgically experimentally infected with a biofilm forming strain of Staphylococcus aureus. After 7 and 9 days post infection, sheep did not show any evidence of infection as demonstrated by clinical, pathological and microbiological findings. These results demonstrate the capability of such an antibiotic-loaded implant to prevent infection in orthopedic devices in vivo. Further research is needed to assess its possible use in traumatology and orthopedic surgery.
Collapse
Affiliation(s)
- Marina Gimeno
- Department of Animal Pathology, University of Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Osteomyelitis is an inflammatory bone disorder caused by infection, leading to necrosis and destruction of bone. It can affect all ages, involve any bone, become a chronic disease and cause persistent morbidity. Treatment of osteomyelitis is challenging particularly when complex multiresistant bacterial biofilm has already been established. Bacteria in biofilm persist in a low metabolic phase, causing persistent infection due to increased resistance to antibiotics. Staphylococcus aureus and Staphylococcus epidermidis are the most common causative organism responsible for more than 50% of osteomyelitis cases. Osteomyelitis treatment implies the administration of high doses of antibiotics (AB) by means of endovenous and oral routes and should take a period of at least 6 weeks. Local drug delivery systems, using non-biodegradable (polymethylmethacrylate) or biodegradable and osteoactive materials such as calcium orthophosphates bone cements, have been shown to be promising alternatives for the treatment of osteomyelitis. These systems allow the local delivery of AB in situ with bactericidal concentrations for long periods of time and without the toxicity associated with other means of administration. This review examines the most recent literature evidence on the causes, pathogeneses and pharmacological treatment of osteomyelitis. The study methodology consisted of a literature review in Google Scholar, Science Direct, Pubmed, Springer link, B-on. Papers from 1979 till present were reviewed and evaluated.
Collapse
|
29
|
Kluin OS, van der Mei HC, Busscher HJ, Neut D. Biodegradable vs non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis. Expert Opin Drug Deliv 2013; 10:341-51. [PMID: 23289645 DOI: 10.1517/17425247.2013.751371] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Chronic osteomyelitis, or bone infection, is a major worldwide cause of morbidity and mortality, as it is exceptionally hard to treat due to patient and pathogen-associated factors. Successful treatment requires surgical debridement together with long-term, high antibiotic concentrations that are best achieved by local delivery devices, either made of degradable or non-degradable materials. AREAS COVERED Non-degradable delivery devices are frequently constituted by polymethylmethacrylate-based carriers. Drawbacks are the need to remove the carrier (as the carrier itself may provide a substratum for bacterial colonization), inefficient release kinetics and incompatibility with certain antibiotics. These drawbacks have led to the quest for degradable alternatives, but also devices made of biodegradable calcium sulphate, collagen sponges, calcium phosphate or polylactic acids have their specific disadvantages. EXPERT OPINION Antibiotic treatment of osteomyelitis with the current degradable and non-degradable delivery devices is effective in the majority of cases. Degradable carriers have an advantage over non-degradable carriers that they do not require surgical removal. Synthetic poly(trimethylene carbonate) may be preferred in the future over currently approved lactic/glycolic acids, because it does not yield acidic degradation products. Moreover, degradable poly(trimethylene carbonate) yields a zero-order release kinetics that may not stimulate development of antibiotic-resistant bacterial strains due to the absence of long-term, low-concentration tail-release.
Collapse
Affiliation(s)
- Otto S Kluin
- Department of Biomedical Engineering, W. J. Kolff Institute, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen , The Netherlands
| | | | | | | |
Collapse
|
30
|
Ahola N, Männistö N, Veiranto M, Karp M, Rich J, Efimov A, Seppälä J, Kellomäki M. An in vitro study of composites of poly(L-lactide-co-ε-caprolactone), β-tricalcium phosphate and ciprofloxacin intended for local treatment of osteomyelitis. BIOMATTER 2013; 3:23162. [PMID: 23507926 PMCID: PMC3749801 DOI: 10.4161/biom.23162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteomyelitis is a bacterial disease that can become chronic, and treatment often includes a surgical operation to remove infected bone. The aim of this study was to develop and investigate in vitro bone filling composite materials that release ciprofloxacin to kill any remaining bacteria and contain bioceramic to help the bone to heal. Three composites of poly(L-lactide-co-ε-caprolactone), β-tricalcium phosphate and ciprofloxacin were compounded using twin-screw extrusion and sterilized by gamma irradiation. Drug release and degradation of the composites were investigated in vitro for 52 weeks. The composite with 50 wt% of β-TCP had the most promising ciprofloxacin release profile. The ceramic component accelerated the drug release that occurred in three phases obeying first-order kinetics. Inhibition zone testing using bioluminescence showed that the released ciprofloxacin had effect in eradicating a common osteomyelitis causing bacteria Pseudomonas aeruginosa. During the in vitro degradation test series, molar weight of the polymer matrix of the composites decreased rapidly. Additionally, 1H-NMR analysis showed that the polymer had blocky structure and the comonomer ratio changed during hydrolysis. The tested composites showed great potential to be developed into bone filler materials for the treatment of osteomyelitis or other bone related infections.
Collapse
Affiliation(s)
- Niina Ahola
- Department of Biomedical Engineering; Tampere University of Technology; Tampere, Finland; BioMediTech; Tampere, Finland
| | - Noora Männistö
- Department of Biomedical Engineering; Tampere University of Technology; Tampere, Finland
| | - Minna Veiranto
- Department of Biomedical Engineering; Tampere University of Technology; Tampere, Finland; Bioretec Ltd.; Tampere, Finland
| | - Matti Karp
- Department of Chemistry and Bioengineering Tampere; University of Technology; Tampere, Finland
| | - Jaana Rich
- Department of Biotechnology and Chemical Technology; School of Chemical Technology; Aalto University; Espoo, Finland
| | - Alexander Efimov
- Department of Chemistry and Bioengineering Tampere; University of Technology; Tampere, Finland
| | - Jukka Seppälä
- Department of Biotechnology and Chemical Technology; School of Chemical Technology; Aalto University; Espoo, Finland
| | - Minna Kellomäki
- Department of Biomedical Engineering; Tampere University of Technology; Tampere, Finland; BioMediTech; Tampere, Finland
| |
Collapse
|
31
|
Abstract
Bacteria have been found to grow predominantly in biofilms. The initial stage includes the attachment of bacteria to the substratum. Bacterial growth and division then leads to the colonization of the surrounding area and the formation of the biofilm. The environment in a biofilm is not homogeneous; the bacteria in a multispecies biofilm are not randomly distributed, but rather are organized to best meet their needs. Although there is an initial understanding on the mechanisms of biofilm-associated antimicrobial resistance, this topic is still under investigation. A variety of approaches are being explored to overcome biofilm-associated antimicrobial resistance. A greater understanding of biofilm processes should lead to novel, effective control strategies for biofilm control and a resulting improvement in patient management.
Collapse
Affiliation(s)
- Aristides B Zoubos
- 1st Orthopaedic Department, University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece
| | | | | |
Collapse
|
32
|
Tofuku K, Koga H, Yanase M, Komiya S. The use of antibiotic-impregnated fibrin sealant for the prevention of surgical site infection associated with spinal instrumentation. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2012; 21:2027-33. [PMID: 22820952 DOI: 10.1007/s00586-012-2435-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/06/2012] [Accepted: 07/05/2012] [Indexed: 11/25/2022]
Abstract
PURPOSE The purpose of this study was to determine if the use of antibiotic-impregnated fibrin sealant (AFS) was effective in preventing surgical site infections (SSI) associated with spinal instrumentation. METHODS In a preliminary study, five pieces of vancomycin-impregnated fibrin sealant, five nuts that were not treated with the sealant, and five nuts that were treated with the sealant were subjected to agar diffusion testing. In a clinical study, the rates of deep SSI were compared between 188 patients who underwent procedures involving spinal instrumentation without AFS (group 1) and 196 patients who underwent procedures involving spinal instrumentation with AFS (group 2). RESULTS All five pieces of vancomycin-impregnated fibrin sealant and the five nuts treated with the sealant exhibited antimicrobial efficacy, while the five untreated nuts did not exhibit antimicrobial efficacy in the agar diffusion test. In the clinical study, 11 (5.8 %) of the 188 patients in group 1 acquired a deep SSI, while none (0 %) of the 196 patients in group 2 acquired a deep SSI. CONCLUSION The present study demonstrated that the application of AFS to spinal instrumentation yielded good clinical outcomes in terms of the prevention of postoperative spinal infections. It is hoped that limiting AFS use to patients requiring spinal instrumentation and those with risk factors for SSI will reduce the overall costs while preventing SSIs.
Collapse
Affiliation(s)
- Katsuhiro Tofuku
- Department of Orthopaedic Surgery, Imakiire General Hospital, 4-16 Shimotatsuo, Kagoshima, Japan.
| | | | | | | |
Collapse
|
33
|
Kaya M, Şimşek-Kaya G, Gürsan N, Kireççi E, Dayı E, Gündoğdu B. Local treatment of chronic osteomyelitis with surgical debridement and tigecycline-impregnated calcium hydroxyapatite: an experimental study. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113:340-7. [DOI: 10.1016/j.tripleo.2011.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
|
34
|
Kallala R, Graham SM, Nikkhah D, Kyrkos M, Heliotis M, Mantalaris A, Tsiridis E. In vitroandin vivoeffects of antibiotics on bone cell metabolism and fracture healing. Expert Opin Drug Saf 2011; 11:15-32. [DOI: 10.1517/14740338.2012.643867] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Nair MB, Kretlow JD, Mikos AG, Kasper FK. Infection and tissue engineering in segmental bone defects--a mini review. Curr Opin Biotechnol 2011; 22:721-5. [PMID: 21354782 PMCID: PMC3138803 DOI: 10.1016/j.copbio.2011.02.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 02/06/2011] [Indexed: 10/18/2022]
Abstract
As tissue engineering becomes more of a clinical reality through the ongoing bench to bedside transition, research in this field must focus on addressing relevant clinical situations. Although most in vivo work in the area of bone tissue engineering focuses on bone regeneration within sterile, surgically created defects, there is a growing need for the investigation of bone tissue engineering approaches within contaminated or scarred wound beds, such as those that may be encountered following traumatic injury or during delayed reconstruction/regeneration. Significant work has been performed in the area of local drug delivery via biomaterial carriers, but there is little intersection in the available literature between antibiotic delivery and tissue regeneration. In this review, we examine recent advances in segmental bone defect animal models, bone tissue engineering, and drug delivery with the goal of identifying promising approaches and areas needing further investigation towards developing both a better understanding of and new tissue engineering approaches for addressing infection control while simultaneously initiating bone regeneration.
Collapse
Affiliation(s)
- Manitha B. Nair
- Department of Bioengineering, Rice University, Houston, TX USA
| | | | | | | |
Collapse
|
36
|
Patel M, Rojavin Y, Jamali AA, Wasielewski SJ, Salgado CJ. Animal models for the study of osteomyelitis. Semin Plast Surg 2011; 23:148-54. [PMID: 20567737 DOI: 10.1055/s-0029-1214167] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Osteomyelitis is an acute or chronic inflammatory process of the bone and its related structures secondary to an infection with pyogenic organisms. Because of the variety in disease presentations and pathophysiology of osteomyelitis, it is very difficult to evaluate in clinical studies. Therefore, animal models have been created for in vivo experimentation. A PubMed and OVID search was performed on March 31, 2008, using keywords osteomyelitis, animal model (rabbit, rat, mouse, avian, dog, sheep, and goat), and experimental osteomyelitis. The objective of this review was to provide a literature review of the animal models created to study osteomyelitis. The models were chosen based on historical relevance and clinical applicability. Numerous animal models exist to study both acute and chronic osteomyelitis. Many models have been created that allow investigators to study various aspects in the treatment and diagnosis of osteomyelitis. Based on the needs of investigators, an animal model must be carefully selected for ideal research, as no single model encompasses all aspects of osteomyelitis.
Collapse
Affiliation(s)
- Mitul Patel
- Department of Surgery, Cooper University Hospital, Robert Wood Johnson Medical School, Camden, New Jersey
| | | | | | | | | |
Collapse
|
37
|
Abstract
BACKGROUND Osteomyelitis is an inflammatory disorder of bone caused by infection leading to necrosis and destruction. It can affect all ages and involve any bone. Osteomyelitis may become chronic and cause persistent morbidity. Despite new imaging techniques, diagnosis can be difficult and often delayed. Because infection can recur years after apparent "cure," "remission" is a more appropriate term. METHODS The study is a nonsystematic review of literature. RESULTS Osteomyelitis usually requires some antibiotic treatment, usually administered systemically but sometimes supplemented by antibiotic-containing beads or cement. Acute hematogenous osteomyelitis can be treated with antibiotics alone. Chronic osteomyelitis, often accompanied by necrotic bone, usually requires surgical therapy. Unfortunately, evidence for optimal treatment regimens or therapy durations largely based upon expert opinion, case series, and animal models. Antimicrobial therapy is now complicated by the increasing prevalence of antibiotic-resistant organisms, especially methicillin-resistant Staphylococcus aureus. Without surgical resection of infected bone, antibiotic treatment must be prolonged (≥4 to 6 weeks). Advances in surgical technique have increased the potential for bone (and often limb) salvage and infection remission. CONCLUSIONS Osteomyelitis is best managed by a multidisciplinary team. It requires accurate diagnosis and optimization of host defenses, appropriate anti-infective therapy, and often bone débridement and reconstructive surgery. The antibiotic regimen must target the likely (or optimally proven) causative pathogen, with few adverse effects and reasonable costs. The authors offer practical guidance to the medical and surgical aspects of treating osteomyelitis.
Collapse
|
38
|
El-Husseiny M, Patel S, MacFarlane RJ, Haddad FS. Biodegradable antibiotic delivery systems. ACTA ACUST UNITED AC 2011; 93:151-7. [DOI: 10.1302/0301-620x.93b2.24933] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Bacterial infection in orthopaedic surgery can be devastating, and is associated with significant morbidity and poor functional outcomes, which may be improved if high concentrations of antibiotics can be delivered locally over a prolonged period of time. The two most widely used methods of doing this involve antibiotic-loaded polymethylmethacrylate or collagen fleece. The former is not biodegradable and is a surface upon which secondary bacterial infection may occur. Consequently, it has to be removed once treatment has finished. The latter has been used successfully as an adjunct to systemic antibiotics, but cannot effect a sustained release that would allow it to be used on its own, thereby avoiding systemic toxicity. This review explores the newer biodegradable carrier systems which are currently in the experimental phase of development and which may prove to be more effective in the treatment of osteomyelitis.
Collapse
Affiliation(s)
- M. El-Husseiny
- Department of Orthopaedics and Trauma, University College Hospital, 235 Euston Road, London NW12BU, UK
| | - S. Patel
- Department of Orthopaedics and Trauma, University College Hospital, 235 Euston Road, London NW12BU, UK
| | - R. J. MacFarlane
- Whiston Hospital, Warrington Road, Prescot, Merseyside L355DR, UK
| | - F. S. Haddad
- Department of Orthopaedics and Trauma, University College Hospital, 235 Euston Road, London NW12BU, UK
| |
Collapse
|
39
|
Wang F, Ni B, Zhu Z, Liu F, Zhu YZ, Liu J. Intra-discal vancomycin-loaded PLGA microsphere injection for MRSA discitis: an experimental study. Arch Orthop Trauma Surg 2011; 131:111-9. [PMID: 20661743 DOI: 10.1007/s00402-010-1154-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To prepare the vancomycin hydrochloride (VA)-loaded poly lactic acid-glycolic acid (PLGA) copolymer microsphere by the multiple emulsion method and evaluate its therapeutic effects on infective discitis. METHODS Firstly, the particle diameter distribution, shape, encapsulation efficiency, drug-loaded dosage and release curve of VA-PLGA microspheres were evaluated in vitro. Rabbits with methicillin-resistant Staphylococcus aureus infective discitis were treated with VA-PLGA intra-discal injection. Meanwhile, VA intravenous injection, blank PLGA microspheres intra-discal injection served as controls. Thirty days later, therapeutic effects were evaluated through X-ray radiophotography, histopathological and bacteriological examination. RESULTS Mean particle diameter was between 61.57 ± 4.37 and 67.45 ± 8.13 μm, and mean encapsulation efficiency was between 60.20 ± 1.61 and 75.27 ± 1.60 %m/m. In vitro release experiment showed that the release time was over 30 days. The result of in vivo experiment showed that inflammatory reaction in the VA-PLGA intra-discal injection group was milder than the intravenous injection group (P < 0.05), also with less inflammation. The bacterial count was also significantly lower (1.02 × 10(3) ± 1.22 × 10(3) CFU/g) than the intravenous injection group (7.51 × 10(4) ± 7.16 × 10(4) CFU/g) (P < 0.05). Besides these data, the amount used in VA-PLGA intra-discal injection group is about 20 mg, and that used in the intravenous injection group is about 2.4 g. So, we just use 1/120 of VA i.v. to obtain the better results with our microparticles. CONCLUSION Intra-discal injection with VA-PLGA sustained-release microspheres can use much less dosage, and effectively control and reduce infective discitis, and the therapeutic effect is superior to that of intravenous injection. A need for the clinical trials will be carried out in the near future.
Collapse
Affiliation(s)
- Fei Wang
- Department of Orthopedics, Changzheng Hospital, The Second Military Medical University, 415 Fengyang Road, Huangpu District, Shanghai 200003, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
40
|
Arruebo M, Vilaboa N, Santamaria J. Drug delivery from internally implanted biomedical devices used in traumatology and in orthopedic surgery. Expert Opin Drug Deliv 2010; 7:589-603. [DOI: 10.1517/17425241003671544] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Mouriño V, Boccaccini AR. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 2009; 7:209-27. [PMID: 19864265 DOI: 10.1098/rsif.2009.0379] [Citation(s) in RCA: 308] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This paper provides an extensive overview of published studies on the development and applications of three-dimensional bone tissue engineering (TE) scaffolds with potential capability for the controlled delivery of therapeutic drugs. Typical drugs considered include gentamicin and other antibiotics generally used to combat osteomyelitis, as well as anti-inflammatory drugs and bisphosphonates, but delivery of growth factors is not covered in this review. In each case reviewed, special attention has been given to the technology used for controlling the release of the loaded drugs. The possibility of designing multifunctional three-dimensional bone TE scaffolds for the emerging field of bone TE therapeutics is discussed. A detailed summary of drugs included in three-dimensional scaffolds and the several approaches developed to combine bioceramics with various polymeric biomaterials in composites for drug-delivery systems is included. The main results presented in the literature are discussed and the remaining challenges in the field are summarized with suggestions for future research directions.
Collapse
Affiliation(s)
- Viviana Mouriño
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2BP, UK
| | | |
Collapse
|
42
|
Nandi SK, Mukherjee P, Roy S, Kundu B, De DK, Basu D. Local antibiotic delivery systems for the treatment of osteomyelitis – A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2009.07.014] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Brin YS, Nyska A, Domb AJ, Golenser J, Mizrahi B, Nyska M. Biocompatibility of a polymeric implant for the treatment of osteomyelitis. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2009; 20:1081-90. [PMID: 19454170 DOI: 10.1163/156856209x444439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We evaluated the biocompatibility of an injectable gelling polymeric device for the controlled release of gentamicin sulfate in the treatment of invasive bacterial infections in bone of male Wister rats. The biodegradable delivery carrier, poly(sebacic-co-ricinoleic-ester-anhydride), designated as p(SA:RA), was injected, with and without gentamicin, into the tibial canal. Rats were killed 3 weeks later. The tibiae were processed histologically, leaving the injectable polymer in situ. The local tissue reaction to the polymer with or without antibiotic consisted mainly of mild reactive fibroplasia/fibrosis and mild to moderate increased reactive bone formation. At this stage, no evidence for any active inflammatory response to the polymer was seen. Thus, the injection of p(SA:RA) was well tolerated and did not induce any signs of a progressive inflammatory reaction.
Collapse
Affiliation(s)
- Y S Brin
- Department of Orthopaedic Surgery, Meir Medical Center, 48 Tchernichovsky Str., Kfar-Saba 44281, Israel.
| | | | | | | | | | | |
Collapse
|
44
|
Adams SB, Shamji MF, Nettles DL, Hwang P, Setton LA. Sustained release of antibiotics from injectable and thermally responsive polypeptide depots. J Biomed Mater Res B Appl Biomater 2009; 90:67-74. [PMID: 18988275 PMCID: PMC2694231 DOI: 10.1002/jbm.b.31254] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Biodegradable polymeric scaffolds are of interest for delivering antibiotics to local sites of infection in orthopaedic applications, such as bone and diarthrodial joints. The objective of this study was to develop a biodegradable scaffold with ease of drug loading in aqueous solution, while providing for drug depot delivery via syringe injection. Elastin-like polypeptides (ELPs) were used for this application, biopolymers of repeating pentapeptide sequences that were thermally triggered to undergo in situ depot formation at body temperature. ELPs were modified to enable loading with the antibiotics, cefazolin, and vancomycin, followed by induction of the phase transition in vitro. Cefazolin and vancomycin concentrations were monitored, as well as bioactivity of the released antibiotics, to test an ability of the ELP depot to provide for prolonged release of bioactive drugs. Further tests of formulation viscosity were conducted to test suitability as an injectable drug carrier. Results demonstrate sustained release of therapeutic concentrations of bioactive antibiotics by the ELP, with first-order time constants for drug release of approximately 25 h for cefazolin and approximately 500 h for vancomycin. These findings illustrate that an injectable, in situ forming ELP depot can provide for sustained release of antibiotics with an effect that varies across antibiotic formulation. ELPs have important advantages for drug delivery, as they are known to be biocompatible, biodegradable, and elicit no known immune response. These benefits suggest distinct advantages over currently used carriers for antibiotic drug delivery in orthopedic applications.
Collapse
Affiliation(s)
- Samuel B. Adams
- Division of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Mohammed F. Shamji
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Division of Neurosurgery, The Ottawa Hospital, Ottawa, Canada
| | - Dana L. Nettles
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Lori A. Setton
- Division of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
45
|
Efstathopoulos N, Giamarellos-Bourboulis E, Kanellakopoulou K, Lazarettos I, Giannoudis P, Frangia K, Magnissalis E, Papadaki M, Nikolaou VS. Treatment of experimental osteomyelitis by methicillin resistant Staphylococcus aureus with bone cement system releasing grepafloxacin. Injury 2008; 39:1384-1390. [PMID: 18656187 DOI: 10.1016/j.injury.2008.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 03/28/2008] [Accepted: 04/02/2008] [Indexed: 02/02/2023]
Abstract
The authors examined the effectiveness of the local anti-microbial treatment on methicillin resistant Staphylococcus aureus (MRSA) experimental osteomyelitis. Thirty-six rabbits with chronic MRSA osteomyelitis of the right femur were treated with local grepafloxacin delivery system prepared by a mixture of acrylic bone cement (polymethyl methacrylate, PMMA) plus 4% grepafloxacin. Osteomyelitis was induced by inoculating MRSA (100 microl of cultured bacteria; 10(7)) and the local insertion of a needle, serving as a foreign body, at the upper third of the femur. The course of the infection was followed by clinical, radiographic and microbiological examination. In the third week, all animals were re-operated, needles were removed, and antibiotic containing acrylic cement was implanted. Thereafter, one control and five treated animals were sacrificed per week, within 6 weeks. Osteomyelitis was found in all rabbits. In vitro grepafloxacin levels remained high throughout the 6 weeks of the experiment. Histologically tissue reaction against the cement was not observed. Osteomyelitis lesions and bone structure were progressively repaired after cement implantation. Biomechanical analysis showed no significant influence on the mechanical properties of acrylic cement due to grepafloxacin. The above mixture could prove to be an important supplementary method for the treatment of bone infections. Such a system could replace the use of gentamycin PMMA beads in the treatment of patients with chronic osteomyelitis due to MRSA. Furthermore, the proposed method could be used as a spacer after removal septic loosened prostheses in combination with systemic administration of antibiotics.
Collapse
|
46
|
Rudelli S, Uip D, Honda E, Lima ALLM. One-stage revision of infected total hip arthroplasty with bone graft. J Arthroplasty 2008; 23:1165-77. [PMID: 18534510 DOI: 10.1016/j.arth.2007.08.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 08/08/2007] [Indexed: 02/01/2023] Open
Abstract
There are many different opinions in the literature regarding the best procedure for revision of infected hip arthroplasty and hence in achieving long-term stabilization of a new implant. Thirty-two patients with 32 loose and infected total hip arthroplasties underwent revision with a bone graft in a 1-stage procedure. The bone graft was used in the acetabulum and femur in 25 patients, in the acetabulum alone in 4 patients and in the femur alone in 3 patients. A metal mesh was necessary in 15 patients to contain the morselized bone graft. At the time of surgical revision, 9 patients had a draining sinus, 6 had a closed sinus, and 17 had never had sinuses in the surgical wound. Antibiotic therapy was administered intravenously and orally for 6 months. Mean follow-up was 103 months (range, 63-183 months), and infection recurred in 2 (6.2%) cases. Further studies are necessary, and continuation of this method is justified.
Collapse
Affiliation(s)
- Sergio Rudelli
- Department of Orthopaedic Surgery, Santa Casa Medical School, São Paulo, Brazil
| | | | | | | |
Collapse
|
47
|
Brin YS, Golenser J, Mizrahi B, Maoz G, Domb AJ, Peddada S, Tuvia S, Nyska A, Nyska M. Treatment of osteomyelitis in rats by injection of degradable polymer releasing gentamicin. J Control Release 2008; 131:121-7. [PMID: 18692531 PMCID: PMC2755290 DOI: 10.1016/j.jconrel.2008.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/26/2008] [Accepted: 07/11/2008] [Indexed: 10/21/2022]
Abstract
We evaluated the potential of an injectable degradable polymer-poly(sebacic-co-ricinoleic-ester-anhydride) containing gentamicin for the treatment of osteomyelitis. Osteomyelitis of both tibiae was induced in 13 female Fischer rats by injecting a suspension containing approximately 105 (CFU)/ml of S. aureus into the tibial medullar canal. Three weeks later both tibiae were X-rayed, drilled down the medullar canal, washed with 50 microl gentamicin solution (80 mg/2 ml) and then injected with 50 microl P(SA-RA)+gentamycin 20% w/v to the right tibia and 50 microl P(SA-RA) without gentamicin to the left tibia. After an additional 3 weeks, the rats were sacrificed, and radiographs of the tibiae were taken. Histopathological evaluation of the tibiae was done in a blinded manner. X-ray radiographs showed that all tibiae developed changes compatible with osteomyelitis in 3 weeks. Histological evaluation revealed significant differences between right and left tibiae in 10 rats. In the left tibia moderate intramedullary abscess formation occurred. In most treated tibiae typical changes included the absence (or minimal grade only) of abscesses. The treated group developed significantly less intramedullary abscesses; the p value was 0.028. Locally injected degradable polymer releasing gentamicin proved to be efficient histologically in the treatment of osteomyelitis.
Collapse
Affiliation(s)
- Yaron S Brin
- Department of Orthopaedic Surgery, Meir Medical Center, 48 Tchernichovsky Str., Kfar-Saba 44281, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cevher E, Orhan Z, Sensoy D, Ahiskali R, Kan PL, Sağirli O, Mülazimoğlu L. Sodium fusidate-poly(D,L-lactide-co-glycolide) microspheres: Preparation, characterisation andin vivoevaluation of their effectiveness in the treatment of chronic osteomyelitis. J Microencapsul 2008; 24:577-95. [PMID: 17654177 DOI: 10.1080/02652040701472584] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE The aim of this study was to prepare poly(D,L-lactide-co-glycolide) (PLGA) microspheres containing sodium fusidate (SF) using a double emulsion solvent evaporation method with varying polymer:drug ratios (1:1, 2.5:1, 5:1) and to evaluate its efficiency for the local treatment of chronic osteomyelitis. METHODS The particle size and distribution, morphological characteristics, thermal behaviour, drug content, encapsulation efficiency and in vitro release assessments of the formulations had been carried out. Sterilized SF-PLGA microspheres were implanted in the proximal tibia of rats with methicillin-resistant Staphylococcus aureus (MRSA) osteomyelitis. After 3 weeks of treatment, bone samples were analysed with a microbiological assay. RESULTS PLGA microspheres between the size ranges of 2.16-4.12 microm were obtained. Production yield of all formulations was found to be higher than 79% and encapsulation efficiencies of 19.8-34.3% were obtained. DSC thermogram showed that the SF was in an amorphous state in the microspheres and the glass transition temperature (T(g)) of PLGA was not influenced by the preparation procedure. In vitro drug release studies had indicated that these microspheres had significant burst release and their drug release rates were decreased upon increasing the polymer:drug ratio (p < 0.05). Based on the in vivo data, rats implanted with SF-PLGA microspheres and empty microspheres showed 1987 +/- 1196 and 55526 +/- 49086 colony forming unit of MRSA in 1 g bone samples (CFU/g), respectively (p < 0.01). CONCLUSION The in vitro and in vivo studies had shown that the implanted SF loaded microspheres were found to be effective for the treatment of chronic osteomyelitis in an animal experimental model. Hence, these microspheres may be potentially useful in the clinical setting.
Collapse
Affiliation(s)
- Erdal Cevher
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| | | | | | | | | | | | | |
Collapse
|
49
|
Hou T, Xu J, Li Q, Feng J, Zen L. In vitro evaluation of a fibrin gel antibiotic delivery system containing mesenchymal stem cells and vancomycin alginate beads for treating bone infections and facilitating bone formation. Tissue Eng Part A 2008; 14:1173-82. [PMID: 18593356 DOI: 10.1089/ten.tea.2007.0159] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bone infection and defects are two major problems that occur in the course of treating posttraumatic open bone fractures and osteomyelitis for which local antibiotic delivery is efficacious. Further, hemostasis is an essential treatment after removal of infected bones. Herein we report a new antibiotics delivery system made of vancomycin alginate beads embedded in a fibrin gel (Vanco-AB-FG) to treat bone infections, with the addition of bone marrow-derived mesenchymal stem cells (BMMSCs) seeded in the fibrin gel to promote bone formation. The proliferation of BMMSCs was measured under different conditions of three-dimensional (3D) gel or monolayer, with or without Vanco-AB; cells were labeled by enhanced green fluorescence protein, and their morphology and distribution were observed. The alkaline phosphatase (ALP) activity, real-time RT-PCR, and von Kossa staining were used for determining the osteogenic differentiation of BMMSCs. The concentrations of vancomycin resulting from the antibiotic delivery were determined; the antibiotic activity was evaluated by an assay with standard Staphylococcus aureus (ATCC 25923) as a biological target. The results showed that for Vanco-AB-FG, vancomycin concentrations remained above the breakpoint sensitivity for 22 days. The 3D culture within the gel and the addition of Vanco-AB affected the cell behavior. The morphology of BMMSCs within the 3D gel was different from that in monolayer. The proliferation of the cells within the 3D gel was lower than that in monolayer in early stage, but in later stage the number of BMMSCs in Vanco-AB-FG was similar to that in monolayer. The ALP activity was higher in the 3D gel, and the addition of Vanco-AB slightly increased ALP activity. The osteogenic gene expression levels of ALP, osteopontin, and alpha1 chain of collagen I were higher in the 3D gel than those in monolayer, and additional Vanco-AB could also increase their expression. The von Kossa staining showed that the deposition of mineralization was observed in both the 3D gel and monolayer cultures, but the mineralization nodule size in monolayer was bigger and the number of them in 3D gel was greater. In conclusion, this system could be an alternative treatment for bone infections and defects.
Collapse
Affiliation(s)
- Tianyong Hou
- Department of Orthopaedics, Southwest Hospital, Chongqing, China
| | | | | | | | | |
Collapse
|
50
|
Schmidmaier G, Schwabe P, Strobel C, Wildemann B. Carrier systems and application of growth factors in orthopaedics. Injury 2008; 39 Suppl 2:S37-43. [PMID: 18804572 DOI: 10.1016/s0020-1383(08)70014-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
With optimal surgical treatment within an appropriate time frame, bony tissue has the potential to regenerate defects without the formation of scar tissue. However, even under optimal mechanical circumstances and appropriate operative treatment, healing can fail and delayed or non-union occur. In Europe delayed bone healing leads to socio-economic costs of up to 14.7 billion euros per year. In addition to the optimal clinical treatment, the success of bone regeneration depends on the following main aspects: (1) adequate mechanical stabilization and biological competence of the organism, (2) osteogenic cells, (3) osteoconductive structures or scaffolds, and (4) growth factors (Diamond Concept)(1). Further, (5) a sufficient vascularisation is essential for the nutritive supply. Within the last years two growth factors, BMP-2 and BMP-7, were approved for clinical use in orthopaedic and trauma surgery for different indications.(2,3) The establishment of carrier systems and application techniques for growths factors is the focus of current research. The combination of a well established stabilization system and local drug delivery system for bioactive factors could be a therapeutical strategy to optimize bone healing and reduce the complication rate, in the future.
Collapse
Affiliation(s)
- Gerhard Schmidmaier
- Julius Wolff Institut, Center for Musculoskeletal Surgery, Charité-Universitätsmedizin, Berlin, Germany.
| | | | | | | |
Collapse
|