1
|
Cardoso GC, Correa DRN, Fosca M, Pometun EV, Antoniac IV, Grandini CR, Rau JV. Current Strategies in Developing Antibacterial Surfaces for Joint Arthroplasty Implant Applications. MATERIALS (BASEL, SWITZERLAND) 2025; 18:173. [PMID: 39795818 PMCID: PMC11722469 DOI: 10.3390/ma18010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Prosthetic joint infections (PJIs) remain a significant challenge, occurring in 1% to 2% of joint arthroplasties and potentially leading to a 20% to 30% mortality rate within 5 years. The primary pathogens responsible for PJIs include Staphylococcus aureus, coagulase-negative staphylococci, and Gram-negative bacteria, typically treated with intravenous antibiotic drugs. However, this conventional approach fails to effectively eradicate biofilms or the microbial burden in affected tissues. As a result, innovative strategies are being explored to enhance the efficacy of infection prevention through the development of antibacterial-coated implants. These coatings are required to demonstrate broad-spectrum antimicrobial activity, minimal local and systemic toxicity, favorable cost-effectiveness, and support for bone healing. In the present review, the analysis of various methodologies for developing antibacterial coatings was performed, emphasizing studies that conducted in vivo tests to advance potential clinical applications. A diversity of techniques employed for the development of coatings incorporating antimicrobial agents highlights promising avenues for reducing infection-related surgical failures.
Collapse
Affiliation(s)
- Giovana Collombaro Cardoso
- Laboratório de Anelasticidade e Biomateriais, UNESP—Universidade Estadual Paulista, Bauru 17.033-360, SP, Brazil; (D.R.N.C.); (C.R.G.)
| | - Diego Rafael Nespeque Correa
- Laboratório de Anelasticidade e Biomateriais, UNESP—Universidade Estadual Paulista, Bauru 17.033-360, SP, Brazil; (D.R.N.C.); (C.R.G.)
| | - Marco Fosca
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
| | - Evgenii V. Pometun
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, Moscow 119048, Russia;
| | - Iulian V. Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania;
- Academy of Romanian Scientists, 54 Splaiul Independentei, RO-050094 Bucharest, Romania
| | - Carlos Roberto Grandini
- Laboratório de Anelasticidade e Biomateriais, UNESP—Universidade Estadual Paulista, Bauru 17.033-360, SP, Brazil; (D.R.N.C.); (C.R.G.)
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, Moscow 119048, Russia;
| |
Collapse
|
2
|
Kii S, Miyamoto H, Ueno M, Noda I, Hashimoto A, Nakashima T, Shobuike T, Kawano S, Sonohata M, Mawatari M. Long-term antibacterial activity of silver-containing hydroxyapatite coatings against Staphylococcus aureus in vitro and invivo. J Orthop Sci 2024; 29:1503-1512. [PMID: 37925294 DOI: 10.1016/j.jos.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND The potential of silver-containing hydroxyapatite (Ag-HA) coatings to prevent orthopaedic implant-associated infection was explored previously; however, the resistance of Ag-HA coatings to late-onset orthopaedic infections is unknown. This study aimed to evaluate the long-term Ag+ elution and antibacterial properties of the Ag-HA coatings through in vitro and in vivo experiments. METHODS Ag-HA-coated disc specimens were immersed in fetal bovine serum (FBS) for six months. Ag concentration was measured over time using inductively coupled plasma-mass spectrometry to evaluate Ag release. The hydroxyapatite (HA)- or Ag-HA-coated disc specimens were immersed in FBS for 3 months to elute Ag+ for in vitro experiments. Methicillin-resistant Staphylococcus aureus (MRSA) suspensions were inoculated onto each disc; after 48 h, the number of colonies and the biofilm volume were measured. HA- or Ag-HA-coated disc specimens were inserted under the skin of Sprague-Dawley rats for three months for in vivo experiments. In in vivo experiment 1, specimens were inoculated with MRSA and the number of colonies was counted after 48 h. In in vivo experiment 2, the specimens were inoculated with bioluminescent S. aureus Xen36 cells, and bioluminescence was measured using an in vivo imaging system. RESULTS The Ag-HA-coated disc specimens continued to elute Ag+ after six months. The biofilm volume in the Ag-HA group was lower than in the HA group. In in vitro and in vivo experiment 1, the bacterial counts in the Ag-HA group were lower than those in the HA group. In in vivo experiment 2, the bioluminescence in the Ag-HA group was lower than that in the HA group on days 1-7 after inoculation. CONCLUSIONS The Ag-HA-coated discs continued to elute Ag+ for a long period and exhibited antibacterial activity and inhibition of biofilm formation against S. aureus. The Ag-HA coatings have the potential to reduce late-onset orthopaedic implant-associated infections.
Collapse
Affiliation(s)
- Sakumo Kii
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | - Hiroshi Miyamoto
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Masaya Ueno
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Iwao Noda
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan; Research Section, Medical Division, KYOCERA Corporation, 800 Ichimiyake, Yasu City, Shiga 530-2362, Japan
| | - Akira Hashimoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Takema Nakashima
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Takeo Shobuike
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Shunsuke Kawano
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Motoki Sonohata
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
3
|
van Hengel IAJ, van Dijk B, Modaresifar K, Hooning van Duyvenbode JFF, Nurmohamed FRHA, Leeflang MA, Fluit AC, Fratila-Apachitei LE, Apachitei I, Weinans H, Zadpoor AA. In Vivo Prevention of Implant-Associated Infections Caused by Antibiotic-Resistant Bacteria through Biofunctionalization of Additively Manufactured Porous Titanium. J Funct Biomater 2023; 14:520. [PMID: 37888185 PMCID: PMC10607138 DOI: 10.3390/jfb14100520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Additively manufactured (AM) porous titanium implants may have an increased risk of implant-associated infection (IAI) due to their huge internal surfaces. However, the same surface, when biofunctionalized, can be used to prevent IAI. Here, we used a rat implant infection model to evaluate the biocompatibility and infection prevention performance of AM porous titanium against bioluminescent methicillin-resistant Staphylococcus aureus (MRSA). The specimens were biofunctionalized with Ag nanoparticles (NPs) using plasma electrolytic oxidation (PEO). Infection was initiated using either intramedullary injection in vivo or with in vitro inoculation of the implant prior to implantation. Nontreated (NT) implants were compared with PEO-treated implants with Ag NPs (PT-Ag), without Ag NPs (PT) and infection without an implant. After 7 days, the bacterial load and bone morphological changes were evaluated. When infection was initiated through in vivo injection, the presence of the implant did not enhance the infection, indicating that this technique may not assess the prevention but rather the treatment of IAIs. Following in vitro inoculation, the bacterial load on the implant and in the peri-implant bony tissue was reduced by over 90% for the PT-Ag implants compared to the PT and NT implants. All infected groups had enhanced osteomyelitis scores compared to the noninfected controls.
Collapse
Affiliation(s)
- Ingmar Aeneas Jan van Hengel
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (I.A.); (H.W.); (A.A.Z.)
| | - Bruce van Dijk
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Khashayar Modaresifar
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (I.A.); (H.W.); (A.A.Z.)
| | | | | | - Marius Alexander Leeflang
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (I.A.); (H.W.); (A.A.Z.)
| | - Adriaan Camille Fluit
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Lidy Elena Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (I.A.); (H.W.); (A.A.Z.)
| | - Iulian Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (I.A.); (H.W.); (A.A.Z.)
| | - Harrie Weinans
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (I.A.); (H.W.); (A.A.Z.)
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Amir Abbas Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (I.A.); (H.W.); (A.A.Z.)
| |
Collapse
|
4
|
Toirac B, Aguilera-Correa JJ, Mediero A, Esteban J, Jiménez-Morales A. The Antimicrobial Activity of Micron-Thin Sol-Gel Films Loaded with Linezolid and Cefoxitin for Local Prevention of Orthopedic Prosthesis-Related Infections. Gels 2023; 9:gels9030176. [PMID: 36975625 PMCID: PMC10048042 DOI: 10.3390/gels9030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Orthopedic prosthesis-related infections (OPRI) are an essential health concern. OPRI prevention is a priority and a preferred option over dealing with poor prognosis and high-cost treatments. Micron-thin sol-gel films have been noted for a continuous and effective local delivery system. This study aimed to perform a comprehensive in vitro evaluation of a novel hybrid organic-inorganic sol-gel coating developed from a mixture of organopolysiloxanes and organophosphite and loaded with different concentrations of linezolid and/or cefoxitin. The kinetics of degradation and antibiotics release from the coatings were measured. The inhibition of biofilm formation of the coatings against Staphylococcus aureus, S. epidermidis, and Escherichia coli strains was studied, as well as the cell viability and proliferation of MC3T3-E1 osteoblasts. The microbiological assays demonstrated that sol-gel coatings inhibited the biofilm formation of the evaluated Staphylococcus species; however, no inhibition of the E. coli strain was achieved. A synergistic effect of the coating loaded with both antibiotics was observed against S. aureus. The cell studies showed that the sol-gels did not compromise cell viability and proliferation. In conclusion, these coatings represent an innovative therapeutic strategy with potential clinical use to prevent staphylococcal OPRI.
Collapse
Affiliation(s)
- Beatriz Toirac
- Materials Science and Engineering and Chemical Engineering Department, Carlos III University of Madrid, 28911 Madrid, Spain
| | - John Jairo Aguilera-Correa
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Aranzazu Mediero
- Bone and Joint Unit, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Antonia Jiménez-Morales
- Materials Science and Engineering and Chemical Engineering Department, Carlos III University of Madrid, 28911 Madrid, Spain
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
- Alvaro Alonso Barba Technological Institute of Chemistry and Materials, Carlos III University of Madrid, 28911 Madrid, Spain
| |
Collapse
|
5
|
Wei J, Zhou S, Gu H, Tong K. Meropenem-loaded Cement Is Effective in Preventing Gram-negative Osteomyelitis in an Animal Model. Clin Orthop Relat Res 2023; 481:177-189. [PMID: 36135966 PMCID: PMC9750670 DOI: 10.1097/corr.0000000000002364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/27/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Low-dose antibiotic-loaded acrylic cement is routinely used for preventing skeletal infection or reimplantation in patients with periprosthetic joint infections. However, few reports about the selection of antibiotics in acrylic cement for antigram-negative bacteria have been proposed. QUESTIONS/PURPOSES (1) Does the addition of antibiotics (tobramycin, meropenem, piperacillin, ceftazidime, ciprofloxacin, and aztreonam) to acrylic cement adversely affect compressive strength before and after elution? (2) Which antibiotics have the highest cumulative release within 28 days? (3) Which antibiotics showed antimicrobial activity within 28 days? (4) Does meropenem-loaded cement improve body weight, temperature, and other inflammatory markers compared with control unloaded cement? METHODS This is an in vitro study that assessed the mechanical strength, antibiotic elution, and antibacterial properties of antibiotic-loaded cement, combined with an animal study in a rat model that evaluated key endpoints from the animal study. In the in vitro study, we added 2 g of tobramycin (TOB), meropenem (MEM), piperacillin (PIP), ceftazidime (CAZ), ciprofloxacin (CIP), and aztreonam (ATM) to 40 g of acrylic cement. The compressive strength, elution, and in vitro antibacterial properties of the antibiotic-loaded cement were detected. Thirty male rats were randomly divided into two groups: CON (antibiotic-unloaded cement) and MEM (meropenem-loaded cement, which had the most stable antibacterial properties of the six tested antibiotic-loaded cements in vitro within 28 days). The right tibia of all rats underwent arthroplasty and was implanted with the cement, followed by inoculation with Pseudomonas aeruginosa in the knee. General status, serum biomarkers, radiology, microbiological assay, and histopathological tests were assessed over 14 days postoperatively. RESULTS The compressive strength of all tested antibiotic cement combinations exceeded the 70 MPa threshold (the requirement established in ISO 5833). The cumulative release proportions of the raw antibiotic in cement were 1182.8 ± 37.9 µg (TOB), 355.6 ± 16.2 µg (MEM), 721.2 ± 40.3 µg (PIP), 477.4 ± 37.1 µg (CAZ), 146.5 ± 11.3 µg (CIP), and 372.1 ± 14.5 µg (ATM) within 28 days. Over a 28-day period, meropenem cement demonstrated antimicrobial activities against the four tested gram-negative bacteria ( Escherichia coli , P. aeruginosa , Klebsiella pneumoniae , and Proteus vulgaris ). Ciprofloxacin cement inhibited E. coli growth, ceftazidime and aztreonam cement inhibited K. pneumonia growth, and tobramycin cement inhibited P. aeruginosa . Only meropenem demonstrated antimicrobial activity against all gram-negative bacteria on agar diffusion bioassay. Rats treated with meropenem cement showed improved body weight (control: 280.1 ± 4.2 g, MEM: 288.5 ± 6.6 g, mean difference 8.4 [95% CI 4.3 to 12.6]; p < 0.001), improved knee width (control: 13.5 ± 0.3 mm, MEM: 11.8± 0.4 mm, mean difference 1.7 [95% CI 1.4 to 2.0]; p < 0.001), decreased inflammatory marker (control: 316.7 ± 45.0 mm, MEM: 116.5 ± 21.8 mm, mean difference 200.2 [95% CI 162.3 to 238.2]; p < 0.001), decreased radiographic scores (control: 17.7 ± 2.0 mm, MEM: 10.7± 1.3 mm, mean difference 7.0 [95% CI 5.4 to 8.6]; p < 0.001), improved bone volume/total volume (control: 8.7 ± 3.0 mm, MEM: 28.5 ± 5 .5 mm, mean difference 19.8 [95% CI 13.3 to 26.2]; p < 0.001), decreased Rissing scale scores of the knee gross pathology (control: 3.3 ± 0.5, MEM: 1.1 ± 0.7, mean difference 2.2 [95% CI 1.7 to 2.7]; p < 0.001), decreased Petty scale scores of knee synovium (control: 2.9 ± 0.4 mm, MEM: 0.7 ± 0.7 mm, mean difference 2.1 [95% CI 1.7 to 2.5]; p < 0.001), and decreased bacterial counts of the bone and soft tissues and negative bacterial cultures of cement (p < 0.001, p < 0.001, p < 0.001, p < 0.001, respectively). CONCLUSION In this current study, MEM cement had the most stable in vitro antimicrobial activities, effective in vivo activity while having acceptable mechanical and elution characteristics, and it may be an effective prophylaxis against skeletal infection caused by gram-negative bacteria. CLINICAL RELEVANCE Meropenem-loaded acrylic cement is a potentially effective prevention measure for skeletal infection caused by gram-negative bacteria; however, more related clinical research is needed to further evaluate the safety and efficacy.
Collapse
Affiliation(s)
- Jian Wei
- Department of Joint Orthopedics, Liuzhou People's Hospital, Liuzhou, China
| | - Siqi Zhou
- Department of Joint Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hanwen Gu
- Department of Joint Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kai Tong
- Department of Joint Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Lopes Gama e Silva G, Sato de Souza de Bustamante Monteiro M, Lopes Dias M, Machado Costa A, Malta Rossi A, Paula dos Santos Matos A, Santos-Oliveira R, Ricci-Júnior E. Antibiotics-loaded nanofibers fabricated by electrospinning for the treatment of bone infections: An integrative review of in vitro and in vivo studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
7
|
Masters EA, Ricciardi BF, Bentley KLDM, Moriarty TF, Schwarz EM, Muthukrishnan G. Skeletal infections: microbial pathogenesis, immunity and clinical management. Nat Rev Microbiol 2022; 20:385-400. [PMID: 35169289 PMCID: PMC8852989 DOI: 10.1038/s41579-022-00686-0] [Citation(s) in RCA: 252] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Osteomyelitis remains one of the greatest risks in orthopaedic surgery. Although many organisms are linked to skeletal infections, Staphylococcus aureus remains the most prevalent and devastating causative pathogen. Important discoveries have uncovered novel mechanisms of S. aureus pathogenesis and persistence within bone tissue, including implant-associated biofilms, abscesses and invasion of the osteocyte lacuno-canalicular network. However, little clinical progress has been made in the prevention and eradication of skeletal infection as treatment algorithms and outcomes have only incrementally changed over the past half century. In this Review, we discuss the mechanisms of persistence and immune evasion in S. aureus infection of the skeletal system as well as features of other osteomyelitis-causing pathogens in implant-associated and native bone infections. We also describe how the host fails to eradicate bacterial bone infections, and how this new information may lead to the development of novel interventions. Finally, we discuss the clinical management of skeletal infection, including osteomyelitis classification and strategies to treat skeletal infections with emerging technologies that could translate to the clinic in the future.
Collapse
Affiliation(s)
- Elysia A Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - Benjamin F Ricciardi
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA.
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
8
|
Ordonez AA, Parker MF, Miller RJ, Plyku D, Ruiz-Bedoya CA, Tucker EW, Luu JM, Dikeman DA, Lesniak WG, Holt DP, Dannals RF, Miller LS, Rowe SP, Wilson DM, Jain SK. 11C-Para-aminobenzoic acid PET imaging of S. aureus and MRSA infection in preclinical models and humans. JCI Insight 2022; 7:154117. [PMID: 35014627 PMCID: PMC8765043 DOI: 10.1172/jci.insight.154117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tools for noninvasive detection of bacterial pathogens are needed but are not currently available for clinical use. We have previously shown that para-aminobenzoic acid (PABA) rapidly accumulates in a wide range of pathogenic bacteria, motivating the development of related PET radiotracers. In this study, 11C-PABA PET imaging was used to accurately detect and monitor infections due to pyogenic bacteria in multiple clinically relevant animal models. 11C-PABA PET imaging selectively detected infections in muscle, intervertebral discs, and methicillin-resistant Staphylococcus aureus–infected orthopedic implants. In what we believe to be first-in-human studies in healthy participants, 11C-PABA was safe, well-tolerated, and had a favorable biodistribution, with low background activity in the lungs, muscles, and brain. 11C-PABA has the potential for clinical translation to detect and localize a broad range of bacteria.
Collapse
Affiliation(s)
- Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research and.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew Fl Parker
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | | | - Donika Plyku
- Russell H. Morgan Department of Radiology and Radiological Sciences, and
| | - Camilo A Ruiz-Bedoya
- Center for Infection and Inflammation Imaging Research and.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth W Tucker
- Center for Infection and Inflammation Imaging Research and.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Justin M Luu
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | | | - Wojciech G Lesniak
- Russell H. Morgan Department of Radiology and Radiological Sciences, and
| | - Daniel P Holt
- Russell H. Morgan Department of Radiology and Radiological Sciences, and
| | - Robert F Dannals
- Russell H. Morgan Department of Radiology and Radiological Sciences, and
| | | | - Steven P Rowe
- Russell H. Morgan Department of Radiology and Radiological Sciences, and
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research and.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Sciences, and
| |
Collapse
|
9
|
Cyphert EL, Zhang N, Learn GD, Hernandez CJ, von Recum HA. Recent Advances in the Evaluation of Antimicrobial Materials for Resolution of Orthopedic Implant-Associated Infections In Vivo. ACS Infect Dis 2021; 7:3125-3160. [PMID: 34761915 DOI: 10.1021/acsinfecdis.1c00465] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While orthopedic implant-associated infections are rare, revision surgeries resulting from infections incur considerable healthcare costs and represent a substantial research area clinically, in academia, and in industry. In recent years, there have been numerous advances in the development of antimicrobial strategies for the prevention and treatment of orthopedic implant-associated infections which offer promise to improve the limitations of existing delivery systems through local and controlled release of antimicrobial agents. Prior to translation to in vivo orthopedic implant-associated infection models, the properties (e.g., degradation, antimicrobial activity, biocompatibility) of the antimicrobial materials can be evaluated in subcutaneous implant in vivo models. The antimicrobial materials are then incorporated into in vivo implant models to evaluate the efficacy of using the material to prevent or treat implant-associated infections. Recent technological advances such as 3D-printing, bacterial genomic sequencing, and real-time in vivo imaging of infection and inflammation have contributed to the development of preclinical implant-associated infection models that more effectively recapitulate the clinical presentation of infections and improve the evaluation of antimicrobial materials. This Review highlights the advantages and limitations of antimicrobial materials used in conjunction with orthopedic implants for the prevention and treatment of orthopedic implant-associated infections and discusses how these materials are evaluated in preclinical in vivo models. This analysis serves as a resource for biomaterial researchers in the selection of an appropriate orthopedic implant-associated infection preclinical model to evaluate novel antimicrobial materials.
Collapse
Affiliation(s)
- Erika L. Cyphert
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Ningjing Zhang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Greg D. Learn
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Christopher J. Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
- Hospital for Special Surgery, New York, New York 10021, United States
| | - Horst A. von Recum
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
10
|
Intra-articular vancomycin for the prophylaxis of periprosthetic joint infection caused by methicillin-resistant S. aureus after total knee arthroplasty in a rat model: the dosage, efficacy, and safety. Antimicrob Agents Chemother 2021; 66:e0164121. [PMID: 34807762 DOI: 10.1128/aac.01641-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although intra-articular vancomycin powder (VP) is sometimes applied before the closure of the incision to prevent periprosthetic joint infection (PJI) after joint replacement, the dosage, efficacy and safety remain controversial. This study aimed to explore the dosage, efficacy, and safety of intra-articular VP in the prophylaxis of infection after total knee arthroplasty (TKA) in a rat model. Sixty male rats were randomly divided into five groups after receiving TKA surgery: Control (no antibiotics); systemic vancomycin (SV) (intraperitoneal injection, 88 mg/kg, equal to 1g in a patient weighted 70kg); VP0.5, VP1.0 and VP2.0 (44 mg/kg, 88 mg/kg and 176 mg/kg respectively, intra-articular). All animals were inoculated in the knee with methicillin-resistant S. aureus (MRSA). General status, serum biomarkers, radiology, microbiological assay and histopathological tests were assessed within 14 days post-operatively. Compared with the Control and SV groups, bacterial counts, knee-width, tissue inflammation, and osteolysis were reduced in the VP0.5, VP1.0 and VP2.0 groups, without notable bodyweight loss and incision complications. Among all the VP groups, VP1.0 and VP2.0 groups presented superior outcomes in the knee-width and tissue inflammation than the VP0.5 group. Microbial culture indicated that no MRSA survived in the knee of VP1.0 and VP2.0 groups, while bacteria growth was observed in VP0.5 group. No obvious changes in the structure and functional biomarkers of liver and kidney were observed in both SV and VP groups. Therefore, intra-articular vancomycin powder at the dosage from 88 mg/kg to 176 mg/kg may be effective and safe in preventing PJI induced by methicillin-resistant S. aureus in the rat TKA model.
Collapse
|
11
|
Xi W, Hegde V, Zoller SD, Park HY, Hart CM, Kondo T, Hamad CD, Hu Y, Loftin AH, Johansen DO, Burke Z, Clarkson S, Ishmael C, Hori K, Mamouei Z, Okawa H, Nishimura I, Bernthal NM, Segura T. Point-of-care antimicrobial coating protects orthopaedic implants from bacterial challenge. Nat Commun 2021; 12:5473. [PMID: 34531396 PMCID: PMC8445967 DOI: 10.1038/s41467-021-25383-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022] Open
Abstract
Implant related infections are the most common cause of joint arthroplasty failure, requiring revision surgeries and a new implant, resulting in a cost of $8.6 billion annually. To address this problem, we created a class of coating technology that is applied in the operating room, in a procedure that takes less than 10 min, and can incorporate any desired antibiotic. Our coating technology uses an in situ coupling reaction of branched poly(ethylene glycol) and poly(allyl mercaptan) (PEG-PAM) polymers to generate an amphiphilic polymeric coating. We show in vivo efficacy in preventing implant infection in both post-arthroplasty infection and post-spinal surgery infection mouse models. Our technology displays efficacy with or without systemic antibiotics, the standard of care. Our coating technology is applied in a clinically relevant time frame, does not require modification of implant manufacturing process, and does not change the implant shelf life.
Collapse
Affiliation(s)
- Weixian Xi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, United States
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Vishal Hegde
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Stephen D Zoller
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Howard Y Park
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Christopher M Hart
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Takeru Kondo
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, University of California Los Angeles School of Dentistry, Los Angeles, CA, United States
| | - Christopher D Hamad
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Yan Hu
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Amanda H Loftin
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Daniel O Johansen
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Zachary Burke
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Samuel Clarkson
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Chad Ishmael
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Kellyn Hori
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Zeinab Mamouei
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Hiroko Okawa
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, University of California Los Angeles School of Dentistry, Los Angeles, CA, United States
| | - Ichiro Nishimura
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, University of California Los Angeles School of Dentistry, Los Angeles, CA, United States
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States.
| | - Tatiana Segura
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, United States.
- Department of Biomedical Engineering, Neurology, Dermatology, Duke University, Durham, NC, United States.
| |
Collapse
|
12
|
Local Application of Vancomycin in One-Stage Revision of Prosthetic Joint Infection Caused by Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother 2021; 65:e0030321. [PMID: 34181479 DOI: 10.1128/aac.00303-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rate of eradication of periprosthetic joint infection (PJI) caused by methicillin-resistant Staphylococcus aureus (MRSA) is still not satisfactory with systemic vancomycin administration after one-stage revision arthroplasty. This study aimed to explore the effectiveness and safety of intraarticular (IA) injection of vancomycin in the control of MRSA PJI after one-stage revision surgery in a rat model. Two weeks of intraperitoneal (IP) and/or IA injection of vancomycin was used to control the infection after one-stage revision surgery. The MRSA PJI rats treated with IA injection of vancomycin showed better outcomes in skin temperature, bacterial counts, biofilm on the prosthesis, serum α1-acid glycoprotein levels, residual bone volume, and inflammatory reaction in the joint tissue, compared with those treated with IP vancomycin, while the rats treated with IP and IA administration showed the best outcomes. However, only the IP and IA administration of vancomycin could eradicate MRSA. Minimal changes in renal pathology were observed in the IP and IP plus IA groups but not in the IA group, while no obvious changes were observed in the liver or in levels of serum markers, including creatinine, alanine aminotransferase, and aspartate aminotransferase. Therefore, IA use of vancomycin is effective and safe in the MRSA PJI rat model and is better than systemic administration, while IA and systemic vancomycin treatment could eradicate the infection with a 2-week treatment course.
Collapse
|
13
|
Quarterman JC, Geary SM, Salem AK. Evolution of drug-eluting biomedical implants for sustained drug delivery. Eur J Pharm Biopharm 2021; 159:21-35. [PMID: 33338604 PMCID: PMC7856224 DOI: 10.1016/j.ejpb.2020.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/19/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
In the field of drug delivery, the most commonly used treatments have traditionally been systemically delivered using oral or intravenous administration. The problems associated with this type of delivery is that the drug concentration is controlled by first pass metabolism, and therefore may not always remain within the therapeutic window. Implantable drug delivery systems (IDDSs) are an excellent alternative to traditional delivery because they offer the ability to precisely control the drug release, deliver drugs locally to the target tissue, and avoid the toxic side effects often experienced with systemic administration. Since the creation of the first FDA-approved IDDS in 1990, there has been a surge in research devoted to fabricating and testing novel IDDS formulations. The versatility of these systems is evident when looking at the various biomedical applications that utilize IDDSs. This review provides an overview of the history of IDDSs, with examples of the different types of IDDS formulations, as well as looking at current and future biomedical applications for such systems. Though there are still obstacles that need to be overcome, ever-emerging new technologies are making the manufacturing of IDDSs a rewarding therapeutic endeavor with potential for further improvements.
Collapse
Affiliation(s)
- Juliana C Quarterman
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States
| | - Sean M Geary
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States
| | - Aliasger K Salem
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States.
| |
Collapse
|
14
|
Image-guided in situ detection of bacterial biofilms in a human prosthetic knee infection model: a feasibility study for clinical diagnosis of prosthetic joint infections. Eur J Nucl Med Mol Imaging 2020; 48:757-767. [PMID: 32901352 PMCID: PMC8036220 DOI: 10.1007/s00259-020-04982-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Due to an increased human life expectancy, the need to replace arthritic or dysfunctional joints by prosthetics is higher than ever before. Prosthetic joints are unfortunately inherently susceptible to bacterial infection accompanied by biofilm formation. Accurate and rapid diagnosis is vital to increase therapeutic success. Yet, established diagnostic modalities cannot directly detect bacterial biofilms on prostheses. Therefore, the present study was aimed at investigating whether arthroscopic optical imaging can accurately detect bacterial biofilms on prosthetic joints. METHODS Here, we applied a conjugate of the antibiotic vancomycin and the near-infrared fluorophore IRDye800CW, in short vanco-800CW, in combination with arthroscopic optical imaging to target and visualize biofilms on infected prostheses. RESULTS We show in a human post-mortem prosthetic knee infection model that a staphylococcal biofilm is accurately detected in real time and distinguished from sterile sections in high resolution. In addition, we demonstrate that biofilms associated with the clinically most relevant bacterial species can be detected using vanco-800CW. CONCLUSION The presented image-guided arthroscopic approach provides direct visual diagnostic information and facilitates immediate appropriate treatment selection.
Collapse
|
15
|
Gordon O, Miller RJ, Thompson JM, Ordonez AA, Klunk MH, Dikeman DA, Joyce DP, Ruiz-Bedoya CA, Miller LS, Jain SK. Rabbit model of Staphylococcus aureus implant-associated spinal infection. Dis Model Mech 2020; 13:dmm.045385. [PMID: 32586832 PMCID: PMC7406311 DOI: 10.1242/dmm.045385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
Post-surgical implant-associated spinal infection is a devastating complication commonly caused by Staphylococcus aureus. Biofilm formation is thought to reduce penetration of antibiotics and immune cells, contributing to chronic and difficult-to-treat infections. A rabbit model of a posterior-approach spinal surgery was created, in which bilateral titanium pedicle screws were interconnected by a plate at the level of lumbar vertebra L6 and inoculated with a methicillin-resistant S.aureus (MRSA) bioluminescent strain. In vivo whole-animal bioluminescence imaging (BLI) and ex vivo bacterial cultures demonstrated a peak in bacterial burden by day 14, when wound dehiscence occurred. Structures suggestive of biofilm, visualized by scanning electron microscopy, were evident up to 56 days following infection. Infection-induced inflammation and bone remodeling were also monitored using 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) and computed tomography (CT). PET imaging signals were noted in the soft tissue and bone surrounding the implanted materials. CT imaging demonstrated marked bone remodeling and a decrease in dense bone at the infection sites. This rabbit model of implant-associated spinal infection provides a valuable preclinical in vivo approach to investigate the pathogenesis of implant-associated spinal infections and to evaluate novel therapeutics. Summary: A model of post-surgical methicillin-resistant Staphylococcus aureus implant-associated spinal infection was created in rabbits, recapitulating acute infection as well as chronic low-burden infection, with structures suggestive of biofilm formation and bone remodeling.
Collapse
Affiliation(s)
- Oren Gordon
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert J Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - John M Thompson
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alvaro A Ordonez
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mariah H Klunk
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dustin A Dikeman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel P Joyce
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Camilo A Ruiz-Bedoya
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Immunology, Janssen Research and Development, Spring House, PA 19477, USA
| | - Sanjay K Jain
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA .,Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
16
|
Vallet-Regí M, Lozano D, González B, Izquierdo-Barba I. Biomaterials against Bone Infection. Adv Healthc Mater 2020; 9:e2000310. [PMID: 32449317 PMCID: PMC7116285 DOI: 10.1002/adhm.202000310] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Chronic bone infection is considered as one of the most problematic biofilm-related infections. Its recurrent and resistant nature, high morbidity, prolonged hospitalization, and costly medical care expenses have driven the efforts of the scientific community to develop new therapies to improve the standards used today. There is great debate on the management of this kind of infection in order to establish consistent and agreed guidelines in national health systems. The scientific research is oriented toward the design of anti-infective biomaterials both for prevention and cure. The properties of these materials must be adapted to achieve better anti-infective performance and good compatibility, which allow a good integration of the implant with the surrounding tissue. The objective of this review is to study in-depth the antibacterial biomaterials and the strategies underlying them. In this sense, this manuscript focuses on antimicrobial coatings, including the new technological advances on surface modification; scaffolding design including multifunctional scaffolds with both antimicrobial and bone regeneration properties; and nanocarriers based on mesoporous silica nanoparticles with advanced properties (targeting and stimuli-response capabilities).
Collapse
Affiliation(s)
- María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| |
Collapse
|
17
|
Archer NK, Wang Y, Ortines RV, Liu H, Nolan SJ, Liu Q, Alphonse MP, Dikeman DA, Mazhar M, Miller RJ, Anderson LS, Francis KP, Simon SI, Miller LS. Preclinical Models and Methodologies for Monitoring Staphylococcus aureus Infections Using Noninvasive Optical Imaging. Methods Mol Biol 2020; 2069:197-228. [PMID: 31523776 PMCID: PMC7745539 DOI: 10.1007/978-1-4939-9849-4_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In vivo whole-animal optical (bioluminescence and fluorescence) imaging of Staphylococcus aureus infections has provided the opportunity to noninvasively and longitudinally monitor the dynamics of the bacterial burden and ensuing host immune responses in live anesthetized animals. Herein, we describe several different mouse models of S. aureus skin infection, skin inflammation, incisional/excisional wound infections, as well as mouse and rabbit models of orthopedic implant infection, which utilized this imaging technology. These animal models and imaging methodologies provide insights into the pathogenesis of these infections and innate and adaptive immune responses, as well as the preclinical evaluation of diagnostic and treatment modalities. Noninvasive approaches to investigate host-pathogen interactions are extremely important as virulent community-acquired methicillin-resistant S. aureus strains (CA-MRSA) are spreading through the normal human population, becoming more antibiotic resistant and creating a serious threat to public health.
Collapse
Affiliation(s)
- Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Roger V Ortines
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haiyun Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sabrina J Nolan
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin P Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dustin A Dikeman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Momina Mazhar
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert J Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leif S Anderson
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | | | - Scott I Simon
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
18
|
Miller RJ, Crosby HA, Schilcher K, Wang Y, Ortines RV, Mazhar M, Dikeman DA, Pinsker BL, Brown ID, Joyce DP, Zhang J, Archer NK, Liu H, Alphonse MP, Czupryna J, Anderson WR, Bernthal NM, Fortuno-Miranda L, Bulte JWM, Francis KP, Horswill AR, Miller LS. Development of a Staphylococcus aureus reporter strain with click beetle red luciferase for enhanced in vivo imaging of experimental bacteremia and mixed infections. Sci Rep 2019; 9:16663. [PMID: 31723175 PMCID: PMC6853927 DOI: 10.1038/s41598-019-52982-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/26/2019] [Indexed: 02/03/2023] Open
Abstract
In vivo bioluminescence imaging has been used to monitor Staphylococcus aureus infections in preclinical models by employing bacterial reporter strains possessing a modified lux operon from Photorhabdus luminescens. However, the relatively short emission wavelength of lux (peak 490 nm) has limited tissue penetration. To overcome this limitation, the gene for the click beetle (Pyrophorus plagiophtalamus) red luciferase (luc) (with a longer >600 emission wavelength), was introduced singly and in combination with the lux operon into a methicillin-resistant S. aureus strain. After administration of the substrate D-luciferin, the luc bioluminescent signal was substantially greater than the lux signal in vitro. The luc signal had enhanced tissue penetration and improved anatomical co-registration with infected internal organs compared with the lux signal in a mouse model of S. aureus bacteremia with a sensitivity of approximately 3 × 104 CFU from the kidneys. Finally, in an in vivo mixed bacterial wound infection mouse model, S. aureus luc signals could be spectrally unmixed from Pseudomonas aeruginosa lux signals to noninvasively monitor the bacterial burden of both strains. Therefore, the S. aureus luc reporter may provide a technological advance for monitoring invasive organ dissemination during S. aureus bacteremia and for studying bacterial dynamics during mixed infections.
Collapse
Affiliation(s)
- Robert J Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heidi A Crosby
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Katrin Schilcher
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Roger V Ortines
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Momina Mazhar
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dustin A Dikeman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bret L Pinsker
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Isabelle D Brown
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel P Joyce
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey Zhang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Haiyun Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Martin P Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| | - Lea Fortuno-Miranda
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Department of Chemical & Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Kevin P Francis
- PerkinElmer, Hopkinton, Massachusetts, USA.,Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| | - Alexander R Horswill
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA.,Denver VA Healthcare System, Denver, Colorado, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. .,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA. .,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA. .,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA.
| |
Collapse
|
19
|
Thompson JM, Miller LS. Preclinical Optical Imaging to Study Pathogenesis, Novel Therapeutics and Diagnostics Against Orthopaedic Infection. J Orthop Res 2019; 37:2269-2277. [PMID: 31342546 DOI: 10.1002/jor.24428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/15/2019] [Indexed: 02/04/2023]
Abstract
Preclinical in vivo optical imaging includes bioluminescence imaging (BLI) and fluorescence imaging (FLI), which provide noninvasive and longitudinal monitoring of biological processes in an in vivo context. In vivo BLI involves the detection of photons of light from bioluminescent bacteria engineered to naturally emit light in preclinical animal models of infection. Meanwhile, in vivo FLI involves the detection of photons of a longer emission wavelength of light after exposure of a fluorophore to a shorter excitation wavelength of light. In vivo FLI has been used in preclinical animal models to detect fluorescent-labeled host proteins or cells (often in engineered fluorescent reporter mice) to understand host-related processes, or to detect injectable near-infrared fluorescent probes as a novel approach for diagnosing infection. This review describes the use of in vivo optical imaging in preclinical models of orthopaedic implant-associated infection (OIAI), including (i) pathogenesis of the infectious course, (ii) monitoring efficacy of antimicrobial prophylaxis and therapy and (iii) evaluating novel near-infrared fluorescent probes for diagnosing infection. Finally, we describe optoacoustic imaging and fluorescence image-guided surgery, which are recent technologies that have the potential to translate to diagnosing and treating OIAI in humans. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2269-2277, 2019.
Collapse
Affiliation(s)
- John M Thompson
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287
| | - Lloyd S Miller
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21231
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, 21218
| |
Collapse
|