1
|
Zhang C, Liu F, Xu K, Hu W, Xia B, Zhao Y. Early one-stage posterior-only surgery for congenital cervicothoracic scoliosis in children: medium- and long-term follow-up. Front Surg 2025; 12:1473800. [PMID: 39916872 PMCID: PMC11799560 DOI: 10.3389/fsurg.2025.1473800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025] Open
Abstract
Objective The purpose of this study is to investigate the medium- and long-term correction outcomes and complications of early one-stage posterior-only surgery for congenital cervicothoracic scoliosis in children. Methods From March 2006 to March 2022, we retrospectively investigated 33 consecutive cases of congenital cervicothoracic scoliosis treated by one-stage posterior-only surgery, including 15 males and 18 females, with a mean age of 3.2 years. Radiographic parameters, including segmental scoliosis, distal compensatory curve, T1 tilt, clavicle angle, neck tilt, coronal balance distance, segmental kyphosis, and sagittal vertical axis, were measured preoperatively, postoperatively, and at the last follow-up. The results of the measurements were statistically analyzed using paired-sample t-tests. Complications were recorded. Results The mean operation time was 199.8 min (100-340 min) with an average blood loss of 261.5 ml (80-600 ml). The mean follow-up period was 75.8 months (28-182 months). Fusion levels averaged 3.4 segments (2-6 segments). The segmental scoliosis was improved from 48.2° ± 10.7° preoperatively to 10.0° ± 6.0° postoperatively (P < 0.001), with a correction rate of 79.3% ± 11.2%. The distal compensatory curve was spontaneously corrected from 23.4° ± 9.8° preoperatively to 9.2° ± 5.7° postoperatively (P < 0.001), with a correction rate of 58.8% ± 19.4%. One case of pleural rupture, three cases of transient nerve root injury, one case of Horner syndrome, and two cases of pleural effusion. Two cases underwent revision surgery due to loss of correction. Conclusion Early one-stage posterior-only surgery for congenital cervicothoracic scoliosis in children can effectively correct the local deformities and improve the appearance, and the medium- and long-term correction outcomes are satisfactory. Hemivertebra resection without internal fixation may be considered for some very young children. For the higher level of thoracic hemivertebra, the osteotomy level being shifted down one vertebra is a feasible and safer surgical procedure.
Collapse
Affiliation(s)
| | - Fuyun Liu
- Department of Pediatric Orthopedics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | | |
Collapse
|
2
|
Li G, Xu K, Yin X, Yang J, Cai J, Yang X, Li Q, Wang J, Zhao Z, Mahesahti A, Zhang N, Zhang TJ, Wu N. Integrating deep phenotyping with genetic analysis: a comprehensive workflow for diagnosis and management of rare bone diseases. Orphanet J Rare Dis 2024; 19:371. [PMID: 39380097 PMCID: PMC11462960 DOI: 10.1186/s13023-024-03367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
Phenotypes play a fundamental role in medical genetics, serving as external manifestations of underlying genotypes. Deep phenotyping, a cornerstone of precision medicine, involves precise multi-system phenotype assessments, facilitating disease subtyping and genetic understanding. Despite their significance, the field lacks standardized protocols for accurate phenotype evaluation, hindering clinical comprehension and research comparability. We present a comprehensive workflow of deep phenotyping for rare bone diseases from the Genetics Clinic of Skeletal Deformity at Peking Union Medical College Hospital. Our workflow integrates referral, informed consent, and detailed phenotype evaluation through HPO standards, capturing nuanced phenotypic characteristics using clinical examinations, questionnaires, and multimedia documentation. Genetic testing and counseling follow, based on deep phenotyping results, ensuring personalized interventions. Multidisciplinary team consultations facilitate comprehensive patient care and clinical guideline development. Regular follow-up visits emphasize dynamic phenotype reassessment, ensuring treatment strategies remain responsive to evolving patient needs. In conclusion, this study highlights the importance of deep phenotyping in rare bone diseases, offering a standardized framework for phenotype evaluation, genetic analysis, and multidisciplinary intervention. By enhancing clinical care and research outcomes, this approach contributes to the advancement of precision medicine in the field of medical genetics.
Collapse
Affiliation(s)
- Guozhuang Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Kexin Xu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiangjie Yin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jianle Yang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jihao Cai
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xinyu Yang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qing Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jie Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhengye Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Aoran Mahesahti
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ning Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
3
|
Cui J, Zhang J, Li W, Liu W, Wang Y, Xu T, Wang Y, Yu X. Analyzing Risk Factors for Delayed Extubation Following Posterior Approach Surgery for Congenital Scoliosis: A Retrospective Cohort Study. Global Spine J 2024:21925682241282275. [PMID: 39223805 PMCID: PMC11571709 DOI: 10.1177/21925682241282275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
STUDY DESIGN Retrospective cohort study. OBJECTIVES Investigate the risk factors for delayed extubation after posterior approach orthopedic surgery in patients with congenital scoliosis. METHODS The clinical data of patients who received surgery for congenital scoliosis at the First Affiliated Hospital of Xinjiang Medical University between January 2021 and July 2023 have been gathered. Patients are categorized into the usual and the delayed extubation groups, depending on the duration of tracheal intubation after surgery. The study employs univariate and multivariate logistic regression models to examine the clinical characteristics of the two cohorts and discover potential risk factors linked to delayed extubation. In addition, a prediction model is created to visually depict the significance of each risk factor in terms of weight according to the nomogram. RESULTS A total of 119 patients (74.8% females), with a median age of 15 years, are included. A total of 32 patients, accounting for 26.9% of the sample, encountered delayed extubation. Additionally, 13 patients (10.9%) suffered perioperative complications, with pneumonia being the most prevalent. The multivariate regression analysis revealed that the number of osteotomy segments, postoperative hematocrit, postoperative Interleukin-6 levels, and weight are predictive risk factors for delayed extubation. CONCLUSIONS Postoperative hematocrit and Interleukin-6 level, weight, and number of osteotomy segments can serve as independent risk factors for predicting delayed extubation, with combined value to assist clinicians in evaluating the risk of delayed extubation of postoperative congenital scoliosis patients, improving the success rate of extubation, and reducing postoperative treatment time in the intensive care unit.
Collapse
Affiliation(s)
- Jian Cui
- Department of Critical Care Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Jingjing Zhang
- 5th Department of Gynecology, The Tumor Hospital Affiliated of Xinjiang Medical University, Urumqi, China
| | - Wenzhe Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Wei Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Yixi Wang
- First Clinical Medical College, Xinjiang Medical University, Urumqi, China
| | - Tao Xu
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yi Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xiangyou Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| |
Collapse
|
4
|
Johnson AN, Lark RK. Current Concepts in the Treatment of Early Onset Scoliosis. J Clin Med 2024; 13:4472. [PMID: 39124741 PMCID: PMC11313220 DOI: 10.3390/jcm13154472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Despite many surgical advances in the treatment of early onset scoliosis (EOS) over the past two decades, this condition remains a challenge to address. While otherwise healthy children can have EOS, many of these patients have complicated comorbidities making proper treatment algorithms extraordinarily difficult. Non-operative measures can be successful when initiated early, but are many times utilized as a delay tactic until growth-friendly operative procedures can be safely performed. This article will summarize the current concepts in the treatment of EOS with a focus on the surgical advances that have recently been made.
Collapse
Affiliation(s)
| | - Robert K. Lark
- Department of Orthopaedics, Duke University Medical Center, Durham, NC 27701, USA;
| |
Collapse
|
5
|
Johari AN, Nemade A, Dhawale A, Wadia F, Shah M. Spinal dysraphism in congenital scoliosis and kyphosis: a retrospective analysis in an Indian population. INTERNATIONAL ORTHOPAEDICS 2024; 48:1589-1598. [PMID: 38581468 DOI: 10.1007/s00264-024-06156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/19/2024] [Indexed: 04/08/2024]
Abstract
PURPOSE Early recognition is crucial for occult spinal dysraphism associated with congenital spinal deformities. There is limited literature available on its occurrence in congenital scoliosis and kyphosis in the Indian population. METHODS Our study involved a retrospective review of 247 children who presented at a single centre. We analyzed their demographics and clinical and radiological findings, which included the type of deformity, its location, vertebral anomaly, Cobb angle, and MRI findings. The deformities were categorized as congenital scoliosis or congenital kyphosis with failure of formation, failure of segmentation, or both. RESULTS A total of 247 cases were examined (congenital scoliosis-229, congenital kyphosis-18). The average age was seven years (range 0.8 to 19 years, SD 4.6). The mean Cobb angle at presentation in the congenital scoliosis group was 49.4° (range 8 to 145°, SD 23.77) for those with abnormal MRI and 42.45° (range 5 to 97°, SD 20.09) for those with normal MRI. For the congenital kyphosis group, the mean K angle at presentation was 47.7° (range 14 to 110°, SD 33.33) for those with abnormal MRI and 47.36° (range 15 to 70°, SD 16.63) for those with normal MRI. Abnormal MRI results were observed in 130 of the patients (congenital scoliosis-53.7%, congenital kyphosis-38.8%). The highest incidence of abnormal MRI findings was observed in the failure of segmentation (66.6%) and mixed (65%) types. Deformities in the dorsal region had the highest incidence (61.9%). The most common dysraphism instances were diastematomyelia and tethered cord. There was a significant correlation between type of deformity and presence of dysraphism. CONCLUSION This is the largest case series of congenital scoliosis and kyphosis reported from India. We found a high incidence of occult spinal dysraphism as compared to other published series. Occult spinal dysraphism is more common in the thoracic region. Diastematomyelia followed by tethered cord was the most common anomaly observed. We recommend MRI screening of whole spine and craniovertebral junction.
Collapse
Affiliation(s)
| | - Amit Nemade
- Department of Orthopedics, N K P Salve Institute of Medical Sciences & Research Centre, Nagpur, India
| | - Arjun Dhawale
- Department of Orthopaedics, Sir H N Reliance Foundation Hospital and B.J. Wadia Hospital for Children, Mumbai, India.
| | - Farokh Wadia
- Southampton Children's Hospital, Southampton, UK
| | | |
Collapse
|
6
|
Feng X, Ye Y, Zhang J, Zhang Y, Zhao S, Mak JCW, Otomo N, Zhao Z, Niu Y, Yonezawa Y, Li G, Lin M, Li X, Cheung PWH, Xu K, Takeda K, Wang S, Xie J, Kotani T, Choi VNT, Song YQ, Yang Y, Luk KDK, Lee KS, Li Z, Li PS, Leung CYH, Lin X, Wang X, Qiu G, Watanabe K, Wu Z, Posey JE, Ikegawa S, Lupski JR, Cheung JPY, Zhang TJ, Gao B, Wu N. Core planar cell polarity genes VANGL1 and VANGL2 in predisposition to congenital vertebral malformations. Proc Natl Acad Sci U S A 2024; 121:e2310283121. [PMID: 38669183 PMCID: PMC11067467 DOI: 10.1073/pnas.2310283121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
Congenital scoliosis (CS), affecting approximately 0.5 to 1 in 1,000 live births, is commonly caused by congenital vertebral malformations (CVMs) arising from aberrant somitogenesis or somite differentiation. While Wnt/ß-catenin signaling has been implicated in somite development, the function of Wnt/planar cell polarity (Wnt/PCP) signaling in this process remains unclear. Here, we investigated the role of Vangl1 and Vangl2 in vertebral development and found that their deletion causes vertebral anomalies resembling human CVMs. Analysis of exome sequencing data from multiethnic CS patients revealed a number of rare and deleterious variants in VANGL1 and VANGL2, many of which exhibited loss-of-function and dominant-negative effects. Zebrafish models confirmed the pathogenicity of these variants. Furthermore, we found that Vangl1 knock-in (p.R258H) mice exhibited vertebral malformations in a Vangl gene dose- and environment-dependent manner. Our findings highlight critical roles for PCP signaling in vertebral development and predisposition to CVMs in CS patients, providing insights into the molecular mechanisms underlying this disorder.
Collapse
Affiliation(s)
- Xin Feng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yongyu Ye
- Department of Orthopedic Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou510080, China
| | - Jianan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yuanqiang Zhang
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan250012, China
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Judith C. W. Mak
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nao Otomo
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - Zhengye Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Yoshiro Yonezawa
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - Guozhuang Li
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Mao Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Prudence Wing Hang Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kexin Xu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Kazuki Takeda
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - Shengru Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Junjie Xie
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Toshiaki Kotani
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
| | - Vanessa N. T. Choi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - You-Qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen518009, China
| | - Yang Yang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Keith Dip Kei Luk
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kin Shing Lee
- Center for Comparative Medicine Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ziquan Li
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Pik Shan Li
- Center for Comparative Medicine Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Connie Y. H. Leung
- Center for Comparative Medicine Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaochen Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaolu Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | | | - Kota Watanabe
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
| | | | - Zhihong Wu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston77030, TX
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston77030, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston77030, TX
- Texas Children’s Hospital, Houston77030, TX
- Department of Pediatrics, Baylor College of Medicine, Houston77030, TX
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518009, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Bo Gao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518009, China
- Centre for Translational Stem Cell Biology, Hong Kong Special Administrative Region, China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| |
Collapse
|
7
|
Zhao S, Zhao H, Zhao L, Cheng X, Zheng Z, Wu M, Wen W, Wang S, Zhou Z, Xie H, Ruan D, Li Q, Liu X, Ou C, Li G, Zhao Z, Chen G, Niu Y, Yin X, Hu Y, Zhang X, Liu P, Qiu G, Liu W, Zhao C, Wu Z, Zhang J, Wu N. Unraveling the genetic architecture of congenital vertebral malformation with reference to the developing spine. Nat Commun 2024; 15:1125. [PMID: 38321032 PMCID: PMC10847475 DOI: 10.1038/s41467-024-45442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Congenital vertebral malformation, affecting 0.13-0.50 per 1000 live births, has an immense locus heterogeneity and complex genetic architecture. In this study, we analyze exome/genome sequencing data from 873 probands with congenital vertebral malformation and 3794 control individuals. Clinical interpretation identifies Mendelian etiologies in 12.0% of the probands and reveals a muscle-related disease mechanism. Gene-based burden test of ultra-rare variants identifies risk genes with large effect sizes (ITPR2, TBX6, TPO, H6PD, and SEC24B). To further investigate the biological relevance of the genetic association signals, we perform single-nucleus RNAseq on human embryonic spines. The burden test signals are enriched in the notochord at early developmental stages and myoblast/myocytes at late stages, highlighting their critical roles in the developing spine. Our work provides insights into the developmental biology of the human spine and the pathogenesis of spine malformation.
Collapse
Affiliation(s)
- Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hengqiang Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lina Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xi Cheng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhifa Zheng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Mengfan Wu
- Institute of Evolution & Marine Biodiversity, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Wen Wen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Shengru Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zixiang Zhou
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Haibo Xie
- Institute of Evolution & Marine Biodiversity, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Dengfeng Ruan
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Qing Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xinquan Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chengzhu Ou
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Guozhuang Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhengye Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Guilin Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuchen Niu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangjie Yin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuhong Hu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaochen Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Baylor Genetics, Houston, TX, 77021, USA
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Wanlu Liu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Chengtian Zhao
- Institute of Evolution & Marine Biodiversity, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Zhihong Wu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
8
|
Ye Y, Zhang J, Feng X, Chen C, Chang Y, Qiu G, Wu Z, Zhang TJ, Gao B, Wu N. Exploring the association between congenital vertebral malformations and neural tube defects. J Med Genet 2023; 60:1146-1152. [PMID: 37775263 DOI: 10.1136/jmg-2023-109501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/07/2023] [Indexed: 10/01/2023]
Abstract
Congenital vertebral malformations (CVMs) and neural tube defects (NTDs) are common birth defects affecting the spine and nervous system, respectively, due to defects in somitogenesis and neurulation. Somitogenesis and neurulation rely on factors secreted from neighbouring tissues and the integrity of the axial structure. Crucial signalling pathways like Wnt, Notch and planar cell polarity regulate somitogenesis and neurulation with significant crosstalk. While previous studies suggest an association between CVMs and NTDs, the exact mechanism underlying this relationship remains unclear. In this review, we explore embryonic development, signalling pathways and clinical phenotypes involved in the association between CVMs and NTDs. Moreover, we provide a summary of syndromes that exhibit occurrences of both CVMs and NTDs. We aim to provide insights into the potential mechanisms underlying the association between CVMs and NTDs, thereby facilitating clinical diagnosis and management of these anomalies.
Collapse
Affiliation(s)
- Yongyu Ye
- Department of Orthopedic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jianan Zhang
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xin Feng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chong Chen
- Department of Orthopedic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yunbing Chang
- Department of Orthopedic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zhihong Wu
- Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Bo Gao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Translational Stem Cell Biology, Hong Kong, China
| | - Nan Wu
- Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| |
Collapse
|
9
|
Rebello D, Wohler E, Erfani V, Li G, Aguilera AN, Santiago-Cornier A, Zhao S, Hwang SW, Steiner RD, Zhang TJ, Gurnett CA, Raggio C, Wu N, Sobreira N, Giampietro PF, Ciruna B. COL11A2 as a candidate gene for vertebral malformations and congenital scoliosis. Hum Mol Genet 2023; 32:2913-2928. [PMID: 37462524 PMCID: PMC10508038 DOI: 10.1093/hmg/ddad117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023] Open
Abstract
Human vertebral malformations (VMs) have an estimated incidence of 1/2000 and are associated with significant health problems including congenital scoliosis (CS) and recurrent organ system malformation syndromes such as VACTERL (vertebral anomalies; anal abnormalities; cardiac abnormalities; tracheo-esophageal fistula; renal anomalies; limb anomalies). The genetic cause for the vast majority of VMs are unknown. In a CS/VM patient cohort, three COL11A2 variants (R130W, R1407L and R1413H) were identified in two patients with cervical VM. A third patient with a T9 hemivertebra and the R130W variant was identified from a separate study. These substitutions are predicted to be damaging to protein function, and R130 and R1407 residues are conserved in zebrafish Col11a2. To determine the role for COL11A2 in vertebral development, CRISPR/Cas9 was used to create a nonsense mutation (col11a2L642*) as well as a full gene locus deletion (col11a2del) in zebrafish. Both col11a2L642*/L642* and col11a2del/del mutant zebrafish exhibit vertebral fusions in the caudal spine, which form due to mineralization across intervertebral segments. To determine the functional consequence of VM-associated variants, we assayed their ability to suppress col11a2del VM phenotypes following transgenic expression within the developing spine. While wildtype col11a2 expression suppresses fusions in col11a2del/+ and col11a2del/del backgrounds, patient missense variant-bearing col11a2 failed to rescue the loss-of-function phenotype in these animals. These results highlight an essential role for COL11A2 in vertebral development and support a pathogenic role for two missense variants in CS.
Collapse
Affiliation(s)
- Denise Rebello
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vida Erfani
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Guozhuang Li
- Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Alexya N Aguilera
- Department of Pediatrics, University of Illinois-Chicago, Chicago, IL 60612, USA
| | - Alberto Santiago-Cornier
- Genetic Section, San Jorge Children’s and Women’s Hospital, San Juan, Puerto Rico 00912, USA
- Department of Public Health, Ponce Health Sciences University, Ponce, Puerto Rico 00912, USA
| | - Sen Zhao
- Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven W Hwang
- Shriners Children’s-Philadelphia, Philadelphia, PA 19140, USA
| | - Robert D Steiner
- Department of Pediatrics, University of Wisconsin, Madison, WI 54449, USA
- Marshfield Clinic Health System, Marshfield, WI 54449, USA
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Christina A Gurnett
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | - Nan Wu
- Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Philip F Giampietro
- Department of Pediatrics, University of Illinois-Chicago, Chicago, IL 60612, USA
| | - Brian Ciruna
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|