1
|
Bose S, Sharan K. Effect of probiotics on postmenopausal bone health: a preclinical meta-analysis. Br J Nutr 2024; 131:567-580. [PMID: 37869975 DOI: 10.1017/s0007114523002362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Postmenopausal osteoporosis is a major concern for women worldwide due to increased risk of fractures and diminished bone quality. Recent research on gut microbiota has suggested that probiotics can combat various diseases, including postmenopausal bone loss. Although several preclinical studies have explored the potential of probiotics in improving postmenopausal bone loss, the results have been inconsistent and the mechanism of action remains unclear. To address this, a meta-analysis was conducted to determine the effect of probiotics on animal models of postmenopausal osteoporosis. The bone parameters studied were bone mineral density (BMD), bone volume fractions (BV/TV), and hallmarks of bone formation and resorption. Pooled analysis showed that probiotic treatment significantly improves BMD and BV/TV of the ovariectomised animals. Probiotics, while not statistically significant, exhibited a tendency towards enhancing bone formation and reducing bone resorption. Next, we compared the effects of Lactobacillus sp. and Bifidobacterium sp. on osteoporotic bone. Both probiotics improved BMD and BV/TV compared with control, but Lactobacillus sp. had a larger effect size. In conclusion, our findings suggest that probiotics have the potential to improve bone health and prevent postmenopausal osteoporosis. However, further studies are required to investigate the effect of probiotics on postmenopausal bone health in humans.
Collapse
Affiliation(s)
- Shibani Bose
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru570020, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
2
|
Haffer H, Muellner M, Chiapparelli E, Moser M, Dodo Y, Zhu J, Shue J, Sama AA, Cammisa FP, Girardi FP, Hughes AP. Bone quality in patients with osteoporosis undergoing lumbar fusion surgery: analysis of the MRI-based vertebral bone quality score and the bone microstructure derived from microcomputed tomography. Spine J 2022; 22:1642-1650. [PMID: 35675866 DOI: 10.1016/j.spinee.2022.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/26/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Osteoporosis is a risk factor for instrumentation failure in spine surgery. Bone strength is commonly assessed by bone mineral density (BMD) as a surrogate marker. However, BMD represents only a portion of bone strength and does not capture the qualitative dimensions of bone. Recently, the magnetic resonance imaging (MRI)-based vertebral bone quality (VBQ) score was introduced as a novel marker of bone quality. However, it is still unclear if the VBQ score correlates with in-vivo bone microstructure. PURPOSE The aims of the study were (1) to demonstrate differences in MRI-based (VBQ) and in-vivo (microcomputed tomography; μCT) bone quality between osteopenic/osteoporotic and normal bone, (2) to show the correlation between VBQ, bone microstructure and volumetric BMD (vBMD), and (3) to determine the predictive value of the VBQ score for the prevalence of osteopenia/osteoporosis. STUDY DESIGN/SETTING Retrospective cross-sectional study. PATIENT SAMPLE 267 patients who underwent posterior lumbar fusion surgery from 2014 to 2021 at a single academic institution. Bone biopsies were harvested intraoperatively in 118 patients. OUTCOME MEASURES VBMD, VBQ score, and bone microstructure parameters derived from μCT. METHODS Quantitative computed tomography (QCT) measurements were performed at the lumbar spine and the L1/L2 average was used to categorize patients with a vBMD ≤120mg/cm3 as osteopenic/osteoporotic. The VBQ score was determined by dividing the median signal intensity of the L1-L4 vertebrae by the signal intensity of the cerebrospinal fluid using sagittal T1-weighted MRI scans. Intraoperative bone biopsies from the posterior superior iliac spine were obtained and evaluated with μCT. VBQ scores and μCT parameters were compared between the normal and the osteopenic/osteoporotic group. Correlations between VBQ score, μCT parameters and vBMD were assessed with Spearman's correlation (ρ). Receiver operating characteristic (ROC) analysis was performed to determine the VBQ score as a predictor for osteopenia/osteoporosis. Multiple linear regression analysis with vBMD L1/L2 as outcome was used to identify independent predictors from VBQ, μCT parameters and demographics. RESULTS 267 patients (55.8% female, age 63.3 years, BMI 29.7 kg/m2; n=118 with bone biopsy) with a prevalence of osteopenia/osteoporosis of 65.2% were analyzed. In the osteopenic/osteoporotic group the VBQ score, structured model index (SMI), and trabecular separation (Tb.Sp) were significantly higher, whereas bone volume fraction (BV/TV), connectivity density (Conn.D) and trabecular number (Tb.N) were significantly lower. There were significant correlations between VBQ and μCT parameters ranging from ρ=-.387 to ρ=0.314 as well as between vBMD and μCT parameters ranging from ρ=-.425 to ρ=.421, and vBMD and VBQ (ρ=-.300, p<.001). ROC analysis discriminated osteopenia/osteoporosis with a sensitivity of 84.7% and a specificity of 40.6% at a VBQ score threshold value of 2.18. Age, BV/TV and trabecular thickness (Tb.Th), but not VBQ, were significant independent predictors for vBMD (corrected R2=0.434). CONCLUSIONS This study demonstrated for the first time that the VBQ score is associated with trabecular microstructure determined by μCT. The bone microstructure and VBQ score were significantly different in patients with impaired vBMD. However, the ability to predict osteopenia/osteoporosis with the VBQ score was moderate. The VBQ score appears to reflect additional bone quality characteristics and might have a complementary role to vBMD. This enhances our understanding of the biological background of the radiographic VBQ score and might be a take-off point to evaluate the clinical utility of it as non-invasive screening tool for bone quality.
Collapse
Affiliation(s)
- Henryk Haffer
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York, NY, USA; Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilian Muellner
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York, NY, USA; Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Erika Chiapparelli
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Manuel Moser
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York, NY, USA; Department of Spine Surgery, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - Yusuke Dodo
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Jiaqi Zhu
- Department of Epidemiology and Biostatistics, Hospital for Special Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Jennifer Shue
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Andrew A Sama
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Frank P Cammisa
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Federico P Girardi
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Alexander P Hughes
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Swain P, Mortreux M, Laws JM, Kyriacou H, De Martino E, Winnard A, Caplan N. Bone deconditioning during partial weight-bearing in rodents - A systematic review and meta-analysis. LIFE SCIENCES IN SPACE RESEARCH 2022; 34:87-103. [PMID: 35940692 DOI: 10.1016/j.lssr.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Space agencies are preparing to send humans to the Moon (16% Earth's gravity) and Mars (38% Earth's gravity), however, there is limited evidence regarding the effects of hypogravity on the skeletal system. A novel rodent partial weight-bearing (PWB) model may provide insight into how human bone responds to hypogravity. The aim of this study was to perform a systematic review investigating the effect of PWB on the structure and function of rodent bone. Five online databases were searched with the following inclusion criteria: population (rodents), intervention (PWB for ≥1-week), control (full weight-bearing), outcomes (bone structure/function), and study design (animal intervention). Of the 2,993 studies identified, eight were included. The main findings were that partial weight-bearing exposure for 21-28 days at 20%, 40%, and 70% of full loading causes: (1) loss of bone mineral density, (2) loss of trabecular bone volume, thickness, number, and increased separation, (3) loss of cortical area and thickness, and 4) reduced bone stiffness and strength. These findings predominately relate the tibia/femur of young/mature female mice, however, their deconditioning response appeared similar, but not identical, to male rats. A dose-response trend was frequently observed between the magnitude of deconditioning and PWB level. The deconditioning patterns in PWB resembled those in rodents and humans exposed to microgravity and microgravity analogs. The present findings suggest that countermeasures against bone deconditioning may be required for humans exploring the Lunar and Martian surfaces.
Collapse
Affiliation(s)
- Patrick Swain
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom.
| | - Marie Mortreux
- Harvard Medical School, Department of Neurology, Beth Israel Deaconess Medical Center Boston, MA, United States
| | - Jonathan M Laws
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Harry Kyriacou
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Enrico De Martino
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Andrew Winnard
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Nick Caplan
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
4
|
Kutlu Z, Bilen A, Celik M, Maman A, Gulaboglu M, Kul A, Celik Z, Halici Z. The relationship of telmisartan with sclerostin in the osteoporosis model induced by ovariectomy in rats. J Pharm Pharmacol 2021; 73:1693-1702. [PMID: 34874446 DOI: 10.1093/jpp/rgab123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/17/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Our aim is to explain the relationship between Ang II and Scl in osteoporotic (OP) rats and the contribution of Scl in the antiosteoporotic effect mechanism of angiotensin receptor blockers (ARB). METHODS This study consists of two sub-studies conducted on 4th and 12th weeks after ovariectomy. In study 1, treatment was started immediately after bilateral ovariectomy (OVX), while, in study 2, treatment was started 2 months after OVX. Two different doses of telmisartan (5 and 10 mg/kg) were administered with the aid of gavage for 30 days in both sub-study groups. RESULTS Serum and tissue Scl, osteocalcin, osteopontin and tartrate-resistant acid phosphatase mRNA expressions were higher and bone mineral densities (BMD) and bone-specific alkaline phosphatase (BALP) mRNA expressions were found to be lower in the OVX groups compared with the sham group. In OVX groups where two different doses of telmisartan were administered, BMD and BALP mRNA expressions increased and serum and tissue Scl decreased. CONCLUSION There may be a close relationship between angiotensin II and sclerostin in the development of osteoporosis. In this study, telmisartan administration showed an antiosteoporotic effect and significantly decreased the level of sclerostin. These results strongly support this relationship.
Collapse
Affiliation(s)
- Zerrin Kutlu
- Department of Biochemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Arzu Bilen
- Department of Internal Medicine, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Muhammet Celik
- Department of Medical Biochemistry, School of Medicine, Ataturk University, Erzurum, Turkey
| | - Adem Maman
- Department of Nuclear Medicine, School of Medicine, Ataturk University, Erzurum, Turkey
| | - Mine Gulaboglu
- Department of Biochemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Ayhan Kul
- Department of Physical Medicine and Rehabilitation, Medical Faculty of Ataturk University Erzurum, Erzurum, Turkey
| | - Zeynep Celik
- Department of Biochemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Zekai Halici
- Faculty of Medicine, Department of Pharmacology, Ataturk University, Erzurum, Turkey
- Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| |
Collapse
|
5
|
Birocale AM, Ferreira de Melo A, Peixoto P, Costalonga Oliveira PW, Gonçalves Ruffoni LD, Takayama LM, Nogueira BV, Nonaka KO, Rodrigues Pereira RM, Martins de Oliveira J, Bissoli NS. Telmisartan use in rats with preexisting osteoporotics bone disorders increases bone microarchitecture alterations via PPARγ. Life Sci 2019; 237:116890. [PMID: 31606379 DOI: 10.1016/j.lfs.2019.116890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 10/25/2022]
Abstract
AIMS Telmisartan (TEL), an angiotensin II type I receptor blocker and PPARγ partial agonist, has been used for to treat hypertension. It is known that PPARγ activation induces bone loss. Therefore, we evaluate the effects of telmisartan on PPARγ protein expression, biomechanics, density and bone microarchitecture of femurs and lumbar vertebrae in SHR ovariectomized animals, a model of hypertension in which preexisting bone impairment has been demonstrated. MAIN METHODS SHR females (3 months old) were distributed into four groups: sham (S), sham + TEL (ST), OVX (C) and OVX + TEL (CT). TEL (5 mg/kg/day) or vehicle were administered according to the groups. After the protocol, blood pressure was measured and density, microarchitecture and biomechanics of bone were analyzed. Western blotting analysis was performed to evaluate PPARγ protein expression in the bones. KEY FINDINGS Castration induced a deleterious effect on mineral density and trabecular parameters, with telmisartan enhancing such effects. Telmisartan increased PPARγ levels, which were at their highest when the treatment was combined with castration. As to biomechanical properties, telmisartan reduced the stiffness in the castration group (CT vs. S or C group), as well as resilience and failure load in ST group (vs. all others groups). SIGNIFICANCE These results demonstrated that telmisartan compromised bone density and microarchitecture in animals that shows preexisting osteoporotic bone disorders, probably via mechanisms associated with increased PPARγ. If this translates to humans, a need for greater caution in the use of telmisartan by patients that have preexisting bone problems, as in the postmenopausal period, may be in order.
Collapse
Affiliation(s)
- Antonio Marcos Birocale
- Department of Health Integrated Education, Federal University of Espirito Santo, Vitória, ES, Brazil
| | | | - Pollyana Peixoto
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES, Brazil
| | | | | | - Liliam Masako Takayama
- Department of Medical Clinic, Medicine College, University of São Paulo, São Paulo, SP, Brazil
| | | | - Keico Okino Nonaka
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | | | - Nazaré Souza Bissoli
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES, Brazil.
| |
Collapse
|
6
|
Feasibility of Assessing Maxillary and Mandibular Bone Mineral Density for Dental Implantation by Using Multidetector Computed Tomography. IMPLANT DENT 2019; 28:367-371. [PMID: 31135649 DOI: 10.1097/id.0000000000000907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the feasibility of measuring bone mineral density (BMD) of the maxillary and mandibular bones for dental implantation by using multidetector computed tomography (MDCT). MATERIALS AND METHODS We performed MDCT in 141 patients (78 women and 63 men) at the lumbar vertebrae and at the maxillary and mandibular bones, with a view to dental implantation, from July 2015 to June 2017. Quantitative CT (QCT) using MDCT was performed to obtain Hounsfield unit (HU) values for the maxillary and mandibular bones and to obtain T scores for the lumbar vertebrae. We statistically analyzed the relationships among HU values, and the correlations of QCT values with T scores and of T scores with HU values. RESULTS There were statistically significant correlations among all these parameters. CONCLUSIONS QCT using MDCT of the maxillary and mandibular bones seems to be a feasible method for measuring BMD before dental implantation.
Collapse
|
7
|
Komrakova M, Fiebig J, Hoffmann DB, Krischek C, Lehmann W, Stuermer KM, Sehmisch S. The Advantages of Bilateral Osteotomy Over Unilateral Osteotomy for Osteoporotic Bone Healing. Calcif Tissue Int 2018; 103:80-94. [PMID: 29352329 DOI: 10.1007/s00223-018-0392-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/11/2018] [Indexed: 11/28/2022]
Abstract
Most models of osteoporotic bone fractures are performed unilaterally (UL). We investigated healing of tibia osteotomy performed either UL or bilaterally (BL) in ovariectomized rats. Behavior of animals and muscle structure were assessed. Three-month-old female Sprague-Dawley rats were ovariectomized (n = 32). After 10 weeks, half the rats underwent UL osteotomy of tibia metaphysis (right limb) with plate osteosynthesis. The other rats were osteotomized BL. Half of the rats in each group received either standard pain treatment with carprofen (5 mg/kg body weight (BW), 1x/day for 2 days) or carprofen and buprenorphine (5 mg/kg BW, 1x/day and 0.03 mg/kg BW, 2x/day for 5 days) after osteotomy. The UL rats started to load the injured limb from day 27 ± 9; BL rats did this from day 4 ± 4 onward. The UL rats more frequently loaded only one hind limb; BL rats more often loaded both hind limbs. Osteotomy was not bridged in 20% of UL rats and in 4% of BL rats. Callus volume and bone volume fraction were lower in UL group. Weight and fiber size of UL-intact limb muscles were enhanced, compared to the osteotomized limb and those in BL group. Most of the other parameters which assess physiology, activity, body posture, head, or coat were not different. The effect of two pain therapies was not significant on any variable studied. Welfare of the animals was acceptable in all rats. In UL rats, bone healing was delayed. The more advanced healing in BL rats suggested a positive effect of earlier loading. In studies on bone healing, it is advisable to perform BL osteotomy.
Collapse
Affiliation(s)
- M Komrakova
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center, Robert-Koch 40, 37075, Goettingen, Germany.
| | - J Fiebig
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center, Robert-Koch 40, 37075, Goettingen, Germany
| | - D B Hoffmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center, Robert-Koch 40, 37075, Goettingen, Germany
| | - C Krischek
- Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
- Institute of Food Quality and Safety, Foundation University of Veterinary Medicine, Bischofsholer Damm 15, 30173, Hanover, Germany
| | - W Lehmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center, Robert-Koch 40, 37075, Goettingen, Germany
| | - K M Stuermer
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center, Robert-Koch 40, 37075, Goettingen, Germany
| | - S Sehmisch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center, Robert-Koch 40, 37075, Goettingen, Germany
| |
Collapse
|
8
|
Wang M, Yang N. A review of bioregulatory and coupled mechanobioregulatory mathematical models for secondary fracture healing. Med Eng Phys 2017; 48:90-102. [DOI: 10.1016/j.medengphy.2017.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/18/2017] [Accepted: 06/18/2017] [Indexed: 01/09/2023]
|
9
|
A review of computational models of bone fracture healing. Med Biol Eng Comput 2017; 55:1895-1914. [DOI: 10.1007/s11517-017-1701-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/25/2017] [Indexed: 12/22/2022]
|
10
|
Roth TD, Ladd LM, Kempton LB. Fracture Healing and Imaging Evaluation. CURRENT RADIOLOGY REPORTS 2017. [DOI: 10.1007/s40134-017-0221-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Quantitative MR imaging in fracture dating—Initial results. Forensic Sci Int 2016; 261:61-9. [DOI: 10.1016/j.forsciint.2016.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/13/2015] [Accepted: 01/18/2016] [Indexed: 01/08/2023]
|
12
|
Lau KHW, Chen ST, Wang X, Mohan S, Wergedal JE, Kesavan C, Srivastava AK, Gridley DS, Hall SL. Opposing effects of Sca-1(+) cell-based systemic FGF2 gene transfer strategy on lumbar versus caudal vertebrae in the mouse. Gene Ther 2016; 23:500-9. [PMID: 26934099 PMCID: PMC4891288 DOI: 10.1038/gt.2016.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/09/2016] [Accepted: 02/26/2016] [Indexed: 01/24/2023]
Abstract
Our previous work showed that a Sca-1+ cell-based FGF2 therapy was capable of promoting robust increases in trabecular bone formation and connectivity on the endosteum of long bones. Past work reported that administration of FGF2 protein promoted bone formation in red marrow but not in yellow marrow. The issue as to whether the Sca-1+ cell-based FGF2 therapy is effective in yellow marrow is highly relevant to its clinical potential for osteoporosis, as most red marrows in a person of an advanced age, are converted to yellow marrows. Accordingly, this study sought to compare the osteogenic effects of this stem cell-based FGF2 therapy on red marrow-filled lumbar vertebrae with those on yellow marrow-filled caudal vertebrae of young adult W41/W41 mice. The Sca-1+ cell-based FGF2 therapy drastically increased trabecular bone formation in lumbar vertebrae, but the therapy not only did not promote bone formation but instead caused substantial loss of trabecular bone in caudal vertebrae. The lack of an osteogenic response was not due to insufficient engraftment of FGF2-expressing Sca-1+ cells or inadequate FGF2 expression in caudal vertebrae. Previous studies have demonstrated that recipient mice of this stem cell-based FGF2 therapy developed secondary hyperparathyroidism and increased bone resorption. Thus, the loss of bone mass in caudal vertebrae might in part be due to an increase in resorption without a corresponding increase in bone formation. In conclusion, the Sca-1+ cell-based FGF2 therapy is osteogenic in red marrow but not in yellow marrow.
Collapse
Affiliation(s)
- K-H W Lau
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | - S-T Chen
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | - X Wang
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | - S Mohan
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | - J E Wergedal
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | - C Kesavan
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | - A K Srivastava
- Laboratory of Human Toxicology, Pharmacology, Applied/Developmental Research Directorate, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - D S Gridley
- Department of Radiation Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - S L Hall
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| |
Collapse
|
13
|
Chen J, Grogan SP, Shao H, D'Lima D, Bydder GM, Wu Z, Du J. Evaluation of bound and pore water in cortical bone using ultrashort-TE MRI. NMR IN BIOMEDICINE 2015; 28:1754-1762. [PMID: 26527298 PMCID: PMC4898891 DOI: 10.1002/nbm.3436] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/24/2015] [Accepted: 09/26/2015] [Indexed: 05/31/2023]
Abstract
Bone water exists in different states with the majority bound to the organic matrix and to mineral, and a smaller fraction in 'free' form in the pores of cortical bone. In this study, we aimed to develop and evaluate ultrashort-TE (UTE) MRI techniques for the assessment of T2*, T1 and concentration of collagen-bound and pore water in cortical bone using a 3-T clinical whole-body scanner. UTE MRI, together with an isotope study using tritiated and distilled water (THO-H2O) exchange, as well as gravimetric analysis, were performed on ten sectioned bovine bone samples. In addition, 32 human cortical bone samples were prepared for comparison between the pore water concentration measured with UTE MRI and the cortical porosity derived from micro-computed tomography (μCT). A short T2* of 0.27 ± 0.03 ms and T1 of 116 ± 6 ms were observed for collagen-bound water in bovine bone. A longer T2* of 1.84 ± 0.52 ms and T1 of 527 ± 28 ms were observed for pore water in bovine bone. UTE MRI measurements showed a pore water concentration of 4.7-5.3% by volume and collagen-bound water concentration of 15.7-17.9% in bovine bone. THO-H2O exchange studies showed a pore water concentration of 5.9 ± 0.6% and collagen-bound water concentration of 18.1 ± 2.1% in bovine bone. Gravimetric analysis showed a pore water concentration of 6.3 ± 0.8% and collagen-bound water concentration of 19.2 ± 3.6% in bovine bone. A mineral water concentration of 9.5 ± 0.6% was derived in bovine bone with the THO-H2O exchange study. UTE-measured pore water concentration is highly correlated (R(2) = 0.72, p < 0.0001) with μCT porosity in the human cortical bone study. Both bovine and human bone studies suggest that UTE sequences could reliably measure collagen-bound and pore water concentration in cortical bone using a clinical scanner.
Collapse
Affiliation(s)
- Jun Chen
- Department of Orthopedics, Peking Union Medical College, Beijing, China
- Department of Radiology, University of California, San Diego, CA
| | - Shawn P Grogan
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA
| | - Hongda Shao
- Department of Radiology, University of California, San Diego, CA
| | - Darryl D'Lima
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA
| | - Graeme M Bydder
- Department of Radiology, University of California, San Diego, CA
| | - Zhihong Wu
- Department of Orthopedics, Peking Union Medical College, Beijing, China
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA
| |
Collapse
|
14
|
Crookshank M, Ploeg HL, Ellis R, MacIntyre NJ. Repeatable calibration of Hounsfield units to mineral density and effect of scanning medium. ACTA ACUST UNITED AC 2014. [DOI: 10.12989/aba.2013.1.1.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Terzi H, Cırpan T, Terzi R, Yeniel AÖ, Aktuğ H, Bilgin O. Osteoprotective effect of hormone therapy on bone microarchitecture before impaired bone mineral density in ovariectomized rats. J Turk Ger Gynecol Assoc 2012; 13:261-6. [PMID: 24592053 DOI: 10.5152/jtgga.2012.42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 10/27/2012] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE We aimed to determine the effect of hormone replacement therapy on bone microarchitecture in ovariectomized rats. MATERIAL AND METHODS In the Animal Ethics Committee approved-study, the effect of treatment with 17 β-estradiol 50 μg/kg and medroxyprogesterone 2.5 mg/kg on bone architecture and bone mineral density in rats versus ovariectomized control rats over the course of 20 days were evaluated. Femoral and lumbar bone mineral density levels and morphometric measurements were performed. RESULTS There were no significant differences in the femoral and lumbar bone mineral density levels between the groups. In the intact control group, the trabecular structures were significantly superior to those in the other groups. Additionally, the osteoblast count was significantly higher while the osteoclast count was significantly lower than in all other groups. Two parameters reflecting trabecular bone microarchitecture, which include the trabecular count and the trabecular area, demonstrated significant improvement in the hormone replacement group when compared to the ovariectomized control group. In the hormone replacement groups, the osteoblast count was significantly higher while the osteoclast count was significantly lower than in the ovariectomized control group. CONCLUSION We suggest that offering estrogen alone or in combination with progestogen can be a beneficial approach in preventing early postmenopausal bone loss regardless of bone mineral density.
Collapse
Affiliation(s)
- Hasan Terzi
- Department of Gynecology and Obstetrics, Derince Training and Research Hospital, Kocaeli, Turkey
| | - Teksin Cırpan
- Department of Gynecology and Obstetrics, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Rabia Terzi
- Department of Physical Medicine and Rehabilitation, Derince Training and Research Hospital, Kocaeli, Turkey
| | - Ahmet Özgür Yeniel
- Department of Gynecology and Obstetrics, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Hüseyin Aktuğ
- Department of Histology, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Onur Bilgin
- Department of Gynecology and Obstetrics, Faculty of Medicine, Ege University, İzmir, Turkey
| |
Collapse
|
16
|
Liu Y, Chan JKY, Teoh SH. Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems. J Tissue Eng Regen Med 2012; 9:85-105. [DOI: 10.1002/term.1617] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/13/2012] [Accepted: 08/25/2012] [Indexed: 12/16/2022]
Affiliation(s)
- Yuchun Liu
- Division of Bioengineering, School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637459
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine; National University of Singapore; Singapore 119228
| | - Jerry K Y Chan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine; National University of Singapore; Singapore 119228
- Department of Reproductive Medicine, KK Women's and Children's Hospital; Singapore 229899
- Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School; Singapore
| | - Swee-Hin Teoh
- Division of Bioengineering, School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637459
| |
Collapse
|
17
|
Macintyre NJ, Lorbergs AL. Imaging-Based Methods for Non-invasive Assessment of Bone Properties Influenced by Mechanical Loading. Physiother Can 2012; 64:202-15. [PMID: 23449969 DOI: 10.3138/ptc.2011-08bh] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To describe the most common in vivo imaging-based research tools used to assess bone properties that are influenced by mechanical loading associated with exercise, habitual physical activity, or disease states. Bone is a complex metabolically active tissue that adapts to changes in mechanical loading by altering the amount and spatial organization of mineral. METHOD Using a narrative review design, the authors provide an overview of bone biology and biomechanics to emphasize the importance of bone size scale, porosity, and degree of mineralization when interpreting measures acquired using quantitative ultrasound (QUS), dual-energy X-ray absorptiometry (DXA), computed tomography (CT), magnetic resonance imaging (MRI), and finite element analysis (FEA). For each imaging modality, basic imaging principles, typical outcome measures associated with changes in mechanical loading, and salient features for physiotherapists are described. MAIN RESULTS While each imaging modality has strengths and limitations, currently CT-based methods are best suited for determining the effects of mechanical loading on bone properties-particularly in the peripheral skeleton. CONCLUSIONS Regardless of the imaging technology used, the physiotherapist must carefully consider the assumptions of the imaging-based method, the clinical context, the nature of the change in mechanical loading, and the expected time course for change in bone properties. Purpose: To describe the most common in vivo imaging-based research tools used to assess bone properties that are influenced by mechanical loading associated with exercise, habitual physical activity, or disease states. Bone is a complex metabolically active tissue that adapts to changes in mechanical loading by altering the amount and spatial organization of mineral. Method: Using a narrative review design, the authors provide an overview of bone biology and biomechanics to emphasize the importance of bone size scale, porosity, and degree of mineralization when interpreting measures acquired using quantitative ultrasound (QUS), dual-energy X-ray absorptiometry (DXA), computed tomography (CT), magnetic resonance imaging (MRI), and finite element analysis (FEA). For each imaging modality, basic imaging principles, typical outcome measures associated with changes in mechanical loading, and salient features for physiotherapists are described. Main Results: While each imaging modality has strengths and limitations, currently CT-based methods are best suited for determining the effects of mechanical loading on bone properties—particularly in the peripheral skeleton. Conclusions: Regardless of the imaging technology used, the physiotherapist must carefully consider the assumptions of the imaging-based method, the clinical context, the nature of the change in mechanical loading, and the expected time course for change in bone properties.
Collapse
Affiliation(s)
- Norma J Macintyre
- School of Rehabilitation Science, McMaster University, Hamilton, Ont
| | | |
Collapse
|
18
|
Macsai CE, Hopwood B, Chung R, Foster BK, Xian CJ. Structural and molecular analyses of bone bridge formation within the growth plate injury site and cartilage degeneration at the adjacent uninjured area. Bone 2011; 49:904-12. [PMID: 21807132 DOI: 10.1016/j.bone.2011.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 11/22/2022]
Abstract
Injury to the growth plate is common and yet the injured cartilage is often repaired with undesirable bony tissue, leading to bone growth defects in children. Using a rat tibial growth plate injury model, our previous studies have shown sequential inflammatory, fibrogenic, osteogenic and bone maturation responses involved in the bony repair. However, it remains unclear whether there is progressive accumulation of bone within the injury site and any potential degenerative changes at the adjacent non-injured area of the growth plate. This study examined effects of growth plate injury on the structure, composition and some cellular and molecular changes at the injury site and adjacent uninjured area. Micro-CT analysis revealed that while the bone volume within the injury site at day 14 was small, the bone bridge was considerably larger at the injury site by 60 days post-injury. Interestingly, formation of bone bridges in the adjacent uninjured area was detected in 60% of injured animals at day 60. Immunohistochemical analyses revealed reduced chondrocyte proliferation (PCNA labelling) but increased apoptosis (nick translation labelling) in the adjacent uninjured area. RT-PCR analysis on adjacent uninjured growth plate tissue found increased expression of osteocalcin at day 60, differential expression of apoptosis-regulatory genes and alterations in genes associated with chondrocyte proliferation/differentiation, including Sox9 and IGF-I. Therefore, this study has demonstrated progressive changes in the structure/composition of the injury site and adjacent uninjured area and identified cellular and molecular alterations or degeneration in adjacent uninjured growth plate in response to injury.
Collapse
Affiliation(s)
- C E Macsai
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | | | | | | | | |
Collapse
|
19
|
Fitzpatrick LA, Smith PL, McBride TA, Fries MA, Hossain M, Dabrowski CE, Gordon DN. Ronacaleret, a calcium-sensing receptor antagonist, has no significant effect on radial fracture healing time: results of a randomized, double-blinded, placebo-controlled Phase II clinical trial. Bone 2011; 49:845-52. [PMID: 21742071 DOI: 10.1016/j.bone.2011.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/07/2011] [Accepted: 06/16/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND Fractures cause significant morbidity, mortality, and use of health care resources. An oral agent that enhances fracture healing could reduce costs and prevent future disabilities. In Phase I studies, ronacaleret, a novel calcium-sensing receptor antagonist, stimulated parathyroid hormone (PTH) release and increased bone formation markers, suggesting that it may act as an effective oral anabolic agent to enhance fracture healing. METHODS This was a randomized, double-blind, placebo-controlled, parallel-group, clinical trial in 85 male and female subjects who had sustained a closed, unilateral, extra-articular fracture of the distal radius and were receiving conservative treatment. Subjects were randomly assigned in a double-blind manner to ronacaleret 200 mg twice daily, ronacaleret 400 mg once daily or matching placebo and followed for 12 weeks. Fracture healing was assessed by radiographs and quantitative computed tomography (CT), and bone turnover markers were measured. The study was terminated early for futility based on the results of an unplanned interim analysis. RESULTS There were no significant differences between treatment groups in time to radiographic fracture healing (74, 65 and 68 days for placebo, 200 mg twice daily and 400 mg once daily dose groups, respectively), cortical bridging, grip strength, pain and swelling, time to cast removal, or range of motion. Markers of bone formation and levels of whole PTH, intact PTH and serum calcium increased following treatment with ronacaleret. CONCLUSION Ronacaleret had no significant effect on duration of healing by radiograph or CT scan, time to cast removal, clinical symptoms, grip strength, or range of motion.
Collapse
|
20
|
Keibl C, Fügl A, Zanoni G, Tangl S, Wolbank S, Redl H, van Griensven M. Human adipose derived stem cells reduce callus volume upon BMP-2 administration in bone regeneration. Injury 2011; 42:814-20. [PMID: 21457972 DOI: 10.1016/j.injury.2011.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 03/02/2011] [Accepted: 03/07/2011] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The demand for new therapeutic approaches to treat bone defects and fractures is increasing in trauma surgery and orthopaedics because the number of patients with degenerative diseases is continuously growing. "Tissue Engineering" offers promising new technologies that combine the three components - cells, growth factors and matrix. Efforts are targeted at improving and accelerating recovery, especially for long bone fractures, and reducing the risk of delayed bone healing or pseudoarthrosis. Adult human adipose-derived stem cells (ASC) can differentiate into osteoblasts in an osteogenic surrounding. Bone morphogenetic protein-2 (BMP-2) accelerates and initiates this differentiation. Fibrin, a matrix that promotes wound healing, is a promising carrier for ASCs and BMP-2. MATERIALS AND METHODS In this study, a 2mm transcortical drill hole in the femur of male rats served as a small non-critical size defect model for fracture simulation. In vivo bone healing was investigated upon administration of the growth factor BMP-2 embedded with ASCs in a locally applied fibrin matrix. Groups with the components alone were also investigated. After 2 and 4 weeks, μCT and histology were performed to determine the bone and callus volume. RESULTS AND DISCUSSION After only a short period of time (2 and 4 weeks), this animal model discloses comparative information about the osteogenetic potential and bone regeneration with little effort (no osteosynthesis necessary). The most significant result found in this model is that the combination of ASCs and BMP-2 in a fibrin matrix significantly reduces callus formation after 2 weeks compared to BMP-2 alone. BMP-2 alone significantly increased callus formation. ASCs embedded alone in the fibrin matrix did not lead to increased bone regeneration. CONCLUSION Transplantation of ASC modulated the callus induction by BMP-2 to a normal volume.
Collapse
Affiliation(s)
- Claudia Keibl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
21
|
Witt F, Petersen A, Seidel R, Vetter A, Weinkamer R, Duda GN. Combined in vivo/in silico study of mechanobiological mechanisms during endochondral ossification in bone healing. Ann Biomed Eng 2011; 39:2531-41. [PMID: 21692004 DOI: 10.1007/s10439-011-0338-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 06/06/2011] [Indexed: 11/29/2022]
Abstract
Mechanobiological theories have been introduced to illustrate the interaction between biology and the local mechanical environment during bone healing. Although several theories have been proposed, a quantitative validation using histomorphometric data is still missing. In this study, in vivo histological data based on an ovine animal experiment was quantified and used to validate bone healing simulations focussing on the endochondral ossification process. The bone formation at different callus regions (periosteal and endosteal bone at the medial and lateral side) was analyzed from in vivo data and quantitatively compared with in silico results. A histomorphometric difference was found in medial and lateral hard callus formation 3 weeks after osteotomy. However, the same amount of new bone was formed on both sides between week 3 and 6. Using a parametric approach, distinct ranges for mechanical strain levels regulating tissue formation were found, for which the in silico prediction agrees with the in vivo endochondral ossification both in pattern and quantity. According to this finding, a strain range of 1 to 8% seems to be conducive for cartilage formation while bone formation may be facilitated by strains up to 4%. This study demonstrates the potential of a thorough validation of in silico results for gaining a better understanding of mechanobiological mechanisms during bone healing.
Collapse
Affiliation(s)
- Florian Witt
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Kalpakcioglu BB, Engelke K, Genant HK. Advanced imaging assessment of bone fragility in glucocorticoid-induced osteoporosis. Bone 2011; 48:1221-31. [PMID: 21320651 DOI: 10.1016/j.bone.2011.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 01/30/2023]
Abstract
Advanced bone imaging techniques provide structural information, beyond bone mineral density (BMD), and growing evidence indicates that BMD only partially explains bone strength and fracture resistance. Assessing glucocorticoid-induced osteoporosis (GIO) is important, especially the documentation of glucocorticoid (GC) impact on trabecular and cortical bone and on macro and microstructural features. Advanced methods for assessing macrostructure of bone include volumetric quantitative computed tomography (vQCT), high-resolution computed tomography (hrCT), and high-resolution magnetic resonance imaging (hrMRI). The methods for assessing bone microstructure include micro computed tomography (μCT) and micro magnetic resonance imaging (μMRI). Many advanced imaging techniques have been used in vitro and in vivo to examine structural effects of GIO in animals and in humans, and these applications are explored in this review. In human in vitro studies, investigators have used standard bone histomorphometry and μCT to compare trabecular microarchitecture and bone remodeling in postmenopausal women and in males with GIO, and have found that high-dose GC produces dramatic bone loss, accompanied by major reduction in trabecular connectivity and increases in trabecular perforations. In animal studies, investigators have used standard histomorphometry along with pQCT, vQCT, hrMRI or μCT to examine GIO in a variety of animal models including rats, minipigs and sheep. They generally have found excellent relationships between treatment-induced structural changes assessed by these advanced imaging techniques and changes in BMD and biomechanical properties. They also have examined various therapeutic interventions in animals and monitored their efficacy using quantitative imaging methods. In human in vivo studies, investigators have serially examined postmenopausal women and males with GIO in order to assess the extent of skeletal deterioration and to determine the best advanced measures of BMD and structure, with which to monitor disease activity and therapeutic response, and to predict fracture risk. They generally have found that bone density and structural measures obtained by pQCT, vQCT and hrMRI contributed substantially to understanding the skeletal effects of glucocorticoids and to predicting the risk of fracture in human GIO. These animal and human applications, illustrating advanced imaging in GIO, are still in early stages of development. However, as discussed in this review, the novelty and power of the imaging approaches are compelling, and their utility is promising.
Collapse
Affiliation(s)
- Banu B Kalpakcioglu
- Department of Physical Therapy and Rehabilitation, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | | | | |
Collapse
|
23
|
Hohlweg-Majert B, Metzger MC, Kummer T, Schulze D. Morphometric analysis - Cone beam computed tomography to predict bone quality and quantity. J Craniomaxillofac Surg 2010; 39:330-4. [PMID: 21030266 DOI: 10.1016/j.jcms.2010.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 08/24/2010] [Accepted: 10/04/2010] [Indexed: 10/18/2022] Open
Abstract
AIM Modified quantitative computed tomography is a method used to predict bone quality and quantify the bone mass of the jaw. The aim of this study was to determine whether bone quantity or quality was detected by cone beam computed tomography (CBCT) combined with image analysis. MATERIALS AND PROCEDURES: Different measurements recorded on two phantoms (Siemens phantom, Comac phantom) were evaluated on images taken with the Somatom VolumeZoom (Siemens Medical Solutions, Erlangen, Germany) and the NewTom 9000 (NIM s.r.l., Verona, Italy) in order to calculate a calibration curve. The spatial relationships of six sample cylinders and the repositioning from four pig skull halves relative to adjacent defined anatomical structures were assessed by means of three-dimensional visualization software. RESULTS The calibration curves for computer tomography (CT) and cone beam computer tomography (CBCT) using the Siemens phantom showed linear correlation in both modalities between the Hounsfield Units (HU) and bone morphology. A correction factor for CBCT was calculated. Exact information about the micromorphology of the bone cylinders was only available using of micro computer tomography. CONCLUSION Cone-beam computer tomography is a suitable choice for analysing bone mass, but, it does not give any information about bone quality.
Collapse
Affiliation(s)
- B Hohlweg-Majert
- Department of Oral and Maxillofacial Surgery, Technische Universität München, Klinikum rechts der Isar, Ismaninger Str. 22, D-81675 München, Germany
| | | | | | | |
Collapse
|
24
|
Affiliation(s)
- R Rizzoli
- Division of Bone Diseases, Department of Rehabilitation and Geriatrics, Geneva University Hospitals and Faculty of Medicine, 24, rue Micheli-du-crest, 1211, Geneva 14, Switzerland.
| |
Collapse
|
25
|
Rutkowski JL, Johnson DA, Radio NM, Fennell JW. Platelet rich plasma to facilitate wound healing following tooth extraction. J ORAL IMPLANTOL 2010; 36:11-23. [PMID: 20218866 DOI: 10.1563/aaid-joi-09-00063] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Following tooth removal bone formation normally takes 16 weeks and may result in less than adequate volume for the necessary reconstruction. Platelet rich plasma (PRP) has been promoted as an effective method for improving bone formation. Its use is often expensive, time consuming, or not clinically convenient for the patient and/or clinician. This study examines a simple method for obtaining a "Buffy Coat"-PRP (BC-PRP) and its effect on bone healing following the removal of bilateral mandibular 3rd molars. Subtraction digital radiography and CT scan analysis were used to track changes in radiographic density at PRP treated sites in comparison to ipsilateral non-PRP treated sites. PRP treated sites demonstrated early and significant increased radiographic density over baseline measurements following tooth removal. The greatest benefit of PRP is during the initial 2-week postoperative healing time period (P < .001). During weeks 3 though 12, BC-PRP treatment resulted in significant (P < .0001) increases in bone density compared to control, but there was no significant interaction between time and treatment (P > .05). For the entire time period (0-25 weeks) PRP treatment was significant (P < .0001) and time was significant (P < .0001) but there was no significant interaction (P > .05) between the effect of PRP treatment and time. It required 6 weeks for control extraction sites to reach comparable bone density that PRP treated sites achieved at week 1. Postoperative pain, bleeding, and numbness were not significantly affected by BC-PRP application. Results suggest that this simple technique may be of value to clinicians performing oral surgery by facilitating bone regeneration following tooth extraction.
Collapse
|
26
|
Abstract
Bone has the ability to adapt its shape and size in response to mechanical loads via a process known as modelling in which bones are shaped or reshaped by the independent action of osteoblasts and osteoclasts. Remodelling is a process that maintains mechanical integrity of the skeleton, allowing it to selectively repair and replace damaged bone. During adulthood, bone remodelling is the dominant process; after the age of 40 years, the age-related decline in bone mass increases the risk of fracture, especially in women. Osteoporosis is defined as a reduction in bone mass and an impairment of bone architecture resulting in thinning and increased cortical porosity, bone fragility and fracture risk. As new products and methods have been developed, focusing on bone fragility, effective and sensitive non-invasive means able to detect early changes in bone fragility process have also been developed. Due to limitations in assessing fracture risk and response to therapy, the evaluation of bone mineral contents by bone densitometry is progressively replaced by new non-invasive and/or non-destructive techniques able to estimate bone strength, providing structural information about the pathophysiology of bone fragility by quantitative assessments of macro- and microstructural bone features. DXA and volumetric QCT quantify bone macrostructure, whereas high-resolution CT, microCT, high-resolution MR and microMR assess bone microstructure. Knowledge of bone microarchitecture is a clue for understanding osteoporosis pathophysiology and improving its diagnosis and treatment; the response of microarchitecture parameters to treatment should allow assessment of the real efficacy of the osteoporosis therapy.
Collapse
Affiliation(s)
- Maria Luisa Brandi
- Department of Internal Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
27
|
Abstract
Selecting the most appropriate outcome measures can be especially burdensome in trials studying fracture healing, because the process of fracture healing is subjective and without a gold standard. Although a wide variety of radiographic modalities are available, plain radiography remains the most common approach for healing assessment. Radiographic criteria, however, do not correlate well with fracture strength and stiffness. Additional challenges include a lack of consensus in what radiographic measures are most appropriate in the assessment of healing. In this article, we provide an overview of the most commonly used radiographic and clinical criteria for defining fracture healing. The validity and reliability of alternative approaches is also discussed.
Collapse
|
28
|
Yang SO, Kim S, Juhng SK. Imaging Diagnosis of Osteoporotic Fracture. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2010. [DOI: 10.5124/jkma.2010.53.1.67] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Seoung-Oh Yang
- Department of Radiology, Eulji University College of Medicine, Korea.
| | - Sungjun Kim
- Department of Radiology, Yonsei University College of Medicine, Korea
| | - Seon-Kwan Juhng
- Department of Radiology, Wonkwang University College of Medicine, Korea
| |
Collapse
|
29
|
Geris L, Vander Sloten J, Van Oosterwyck H. In silico biology of bone modelling and remodelling: regeneration. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2009; 367:2031-2053. [PMID: 19380324 DOI: 10.1098/rsta.2008.0293] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bone regeneration is the process whereby bone is able to (scarlessly) repair itself from trauma, such as fractures or implant placement. Despite extensive experimental research, many of the mechanisms involved still remain to be elucidated. Over the last decade, many mathematical models have been established to investigate the regeneration process in silico. The first models considered only the influence of the mechanical environment as a regulator of the healing process. These models were followed by the development of bioregulatory models where mechanics was neglected and regeneration was regulated only by biological stimuli such as growth factors. The most recent mathematical models couple the influences of both biological and mechanical stimuli. Examples are given to illustrate the added value of mathematical regeneration research, specifically in the in silico design of treatment strategies for non-unions. Drawbacks of the current continuum-type models, together with possible solutions in extending the models towards other time and length scales are discussed. Finally, the demands for dedicated and more quantitative experimental research are presented.
Collapse
Affiliation(s)
- L Geris
- Division of Biomechanics and Engineering Design, Katholieke Universiteit Leuven, Celestijnenlaan 300C, PB 2419, 3001 Leuven, Belgium.
| | | | | |
Collapse
|
30
|
Reginster JY, Neuprez A, Bruyère O. Ibandronate in profile: drug characteristics and clinical efficacy. Expert Opin Drug Metab Toxicol 2008; 4:941-51. [DOI: 10.1517/17425255.4.7.941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|