1
|
Pérez JH, Tolla E, Dunn IC, Meddle SL, Stevenson TJ. A Comparative Perspective on Extra-retinal Photoreception. Trends Endocrinol Metab 2019; 30:39-53. [PMID: 30522810 DOI: 10.1016/j.tem.2018.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022]
Abstract
Ubiquitous in non-mammalian vertebrates, extra-retinal photoreceptors (ERPs) have been linked to an array of physiological, metabolic, behavioral, and morphological changes. However, the mechanisms and functional roles of ERPs remain one of the enduring questions of modern biology. In this review article, we use a comparative framework to identify conserved roles and distributions of ERPs, highlighting knowledge gaps. We conclude that ERP research can be divided into two largely unconnected categories: (i) identification and localization of photoreceptors and (ii) linkage of non-retinal light reception to behavioral and physiological processes, particularly endocrine systems. However, the emergence of novel gene editing and silencing techniques is enabling the unification of ERP research by allowing the bridging of this divide.
Collapse
Affiliation(s)
- Jonathan H Pérez
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3FX, Scotland; The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, Scotland.
| | - Elisabetta Tolla
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3FX, Scotland
| | - Ian C Dunn
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, Scotland
| | - Simone L Meddle
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, Scotland
| | - Tyler J Stevenson
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3FX, Scotland
| |
Collapse
|
2
|
Chen SC, Xiao C, Troje NF, Robertson RM, Hawryshyn CW. Functional characterisation of the chromatically antagonistic photosensitive mechanism of erythrophores in the tilapia Oreochromis niloticus. ACTA ACUST UNITED AC 2015; 218:748-56. [PMID: 25573822 DOI: 10.1242/jeb.106831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Non-visual photoreceptors with diverse photopigments allow organisms to adapt to changing light conditions. Whereas visual photoreceptors are involved in image formation, non-visual photoreceptors mainly undertake various non-image-forming tasks. They form specialised photosensory systems that measure the quality and quantity of light and enable appropriate behavioural and physiological responses. Chromatophores are dermal non-visual photoreceptors directly exposed to light and they not only receive ambient photic input but also respond to it. These specialised photosensitive pigment cells enable animals to adjust body coloration to fit environments, and play an important role in mate choice, camouflage and ultraviolet (UV) protection. However, the signalling pathway underlying chromatophore photoresponses and the physiological importance of chromatophore colour change remain under-investigated. Here, we characterised the intrinsic photosensitive system of red chromatophores (erythrophores) in tilapia. Like some non-visual photoreceptors, tilapia erythrophores showed wavelength-dependent photoresponses in two spectral regions: aggregations of inner pigment granules under UV and short-wavelengths and dispersions under middle- and long-wavelengths. The action spectra curve suggested that two primary photopigments exert opposite effects on these light-driven processes: SWS1 (short-wavelength sensitive 1) for aggregations and RH2b (rhodopsin-like) for dispersions. Both western blot and immunohistochemistry showed SWS1 expression in integumentary tissues and erythrophores. The membrane potential of erythrophores depolarised under UV illumination, suggesting that changes in membrane potential are required for photoresponses. These results suggest that SWS1 and RH2b play key roles in mediating intrinsic erythrophore photoresponses in different spectral ranges and this chromatically dependent antagonistic photosensitive mechanism may provide an advantage to detect subtle environmental photic change.
Collapse
Affiliation(s)
- Shyh-Chi Chen
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Chengfeng Xiao
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Nikolaus F Troje
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6 Department of Psychology, Queen's University, Kingston, Ontario, Canada K7L 3N6 Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - R Meldrum Robertson
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6 Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Craig W Hawryshyn
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6 Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
3
|
Ali SA, Naaz I, Choudhary RK. Berberine-induced pigment dispersion inBufo melanostictusmelanophores by stimulation of beta-2 adrenergic receptors. J Recept Signal Transduct Res 2013; 34:15-20. [DOI: 10.3109/10799893.2013.843193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Ivashkin E, Adameyko I. Progenitors of the protochordate ocellus as an evolutionary origin of the neural crest. EvoDevo 2013; 4:12. [PMID: 23575111 PMCID: PMC3626940 DOI: 10.1186/2041-9139-4-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/28/2012] [Indexed: 01/01/2023] Open
Abstract
The neural crest represents a highly multipotent population of embryonic stem cells found only in vertebrate embryos. Acquisition of the neural crest during the evolution of vertebrates was a great advantage, providing Chordata animals with the first cellular cartilage, bone, dentition, advanced nervous system and other innovations. Today not much is known about the evolutionary origin of neural crest cells. Here we propose a novel scenario in which the neural crest originates from neuroectodermal progenitors of the pigmented ocelli in Amphioxus-like animals. We suggest that because of changes in photoreception needs, these multipotent progenitors of photoreceptors gained the ability to migrate outside of the central nervous system and subsequently started to give rise to neural, glial and pigmented progeny at the periphery.
Collapse
Affiliation(s)
- Evgeniy Ivashkin
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles vag 1 A1, Stockholm 17177, Sweden.
| | | |
Collapse
|
5
|
Kasai A, Oshima N. Light-sensitive motile iridophores and visual pigments in the neon tetra, Paracheirodon innesi. Zoolog Sci 2007; 23:815-9. [PMID: 17043404 DOI: 10.2108/zsj.23.815] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although motile iridophores in the longitudinal stripes of neon tetra skin are under control of the sympathetic nervous system, they also respond to light directly and show circadian color changes. Using neon tetra skin, we found that the photoresponse of iridophores depends on light intensity, and that light near 500 nm is most effective. RT-PCR demonstrated the expression of mRNAs encoding rhodopsin and two kinds of cone opsins (Pi-green1 and Pi-green2) in neon tetra skin where the light-sensitive iridophores exist. These mRNAs are also expressed in the lateral eyes. The cone opsin genes, Pi-green1 and Pi-green2, show high similarity with the g101 and g103 genes of unique green cone opsins (belonging to the MWS/LWS group) of the blind Mexican cavefish. These results show that Pi-green1, Pi-green2, and/or rhodopsin may play important roles in the photoresponse of neon tetra iridophores, which are most sensitive to light near 500 nm.
Collapse
Affiliation(s)
- Akiko Kasai
- Biomolecular Science Major, Graduate School of Science, Toho University, Funabashi, Chiba, Japan
| | | |
Collapse
|
6
|
Bellingham J, Chaurasia SS, Melyan Z, Liu C, Cameron MA, Tarttelin EE, Iuvone PM, Hankins MW, Tosini G, Lucas RJ. Evolution of melanopsin photoreceptors: discovery and characterization of a new melanopsin in nonmammalian vertebrates. PLoS Biol 2006; 4:e254. [PMID: 16856781 PMCID: PMC1514791 DOI: 10.1371/journal.pbio.0040254] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 05/25/2006] [Indexed: 11/18/2022] Open
Abstract
In mammals, the melanopsin gene
(Opn4) encodes a sensory photopigment that underpins newly discovered inner retinal photoreceptors. Since its first discovery in
Xenopus laevis and subsequent description in humans and mice, melanopsin genes have been described in all vertebrate classes. Until now, all of these sequences have been considered representatives of a single orthologous gene (albeit with duplications in the teleost fish). Here, we describe the discovery and functional characterisation of a new melanopsin gene in fish, bird, and amphibian genomes, demonstrating that, in fact, the vertebrates have evolved two quite separate melanopsins. On the basis of sequence similarity, chromosomal localisation, and phylogeny, we identify our new melanopsins as the true orthologs of the melanopsin gene previously described in mammals and term this grouping
Opn4m. By contrast, the previously published melanopsin genes in nonmammalian vertebrates represent a separate branch of the melanopsin family which we term
Opn4x. RT-PCR analysis in chicken, zebrafish, and
Xenopus identifies expression of both
Opn4m and
Opn4x genes in tissues known to be photosensitive (eye, brain, and skin). In the day-14 chicken eye,
Opn4m mRNA is found in a subset of cells in the outer nuclear, inner nuclear, and ganglion cell layers, the vast majority of which also express
Opn4x. Importantly, we show that a representative of the new melanopsins (chicken
Opn4m) encodes a photosensory pigment capable of activating G protein signalling cascades in a light- and retinaldehyde-dependent manner under heterologous expression in Neuro-2a cells. A comprehensive in silico analysis of vertebrate genomes indicates that while most vertebrate species have both
Opn4m and
Opn4x genes, the latter is absent from eutherian and, possibly, marsupial mammals, lost in the course of their evolution as a result of chromosomal reorganisation. Thus, our findings show for the first time that nonmammalian vertebrates retain two quite separate melanopsin genes, while mammals have just one. These data raise important questions regarding the functional differences between Opn4x and Opn4m pigments, the associated adaptive advantages for most vertebrate species in retaining both melanopsins, and the implications for mammalian biology of lacking Opn4x.
A new melanopsin gene, identified in fish, bird, and amphibian genomes, is the true ortholog of the melanopsin gene previously described in mammals.
Collapse
Affiliation(s)
- James Bellingham
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
A subset of melanopsin-expressing retinal ganglion cells has been identified to be directly photosensitive (pRGCs), modulating a range of behavioral and physiological responses to light. Recent expression studies of melanopsin have provided compelling evidence that melanopsin is the photopigment of the pRGCs. However, the mechanism by which melanopsin transduces light information remains an open question. This review discusses the signaling pathways that may underlie melanopsin-dependent phototransduction in native pRGCs, as well as the many exciting challenges ahead.
Collapse
Affiliation(s)
- Stuart Peirson
- Division of Neuroscience and Mental Health, Department of Cellular and Molecular Neuroscience, Faculty of Medicine, Charing Cross Hospital, Imperial College London, London W6 8RF, United Kingdom.
| | | |
Collapse
|
8
|
Ban E, Kasai A, Sato M, Yokozeki A, Hisatomi O, Oshima N. The signaling pathway in photoresponses that may be mediated by visual pigments in erythrophores of Nile tilapia. ACTA ACUST UNITED AC 2005; 18:360-9. [PMID: 16162176 DOI: 10.1111/j.1600-0749.2005.00267.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to increase the synthesis or vary the distribution of pigment in response to light is an important feature of many pigment cells. Unlike other light-sensitive pigment cells, erythrophores of Nile tilapia change the direction of pigment migration depending on the peak wavelength of incident light: light near 365, 400 or 600 nm induces pigment aggregation, while dispersion occurs in response to light at 500 nm. How these phenomena are achieved is currently unknown. In the present study, the phototransduction involved in the pigment dispersion caused by light at 500 nm or the aggregation by light at 600 nm was examined, using pertussis toxin, cholera toxin, blockers of ion channels, various chemicals affecting serial steps of signaling pathways and membrane-permeable cAMP analog. The results show that light-induced bidirectional movements in tilapia erythrophores may be controlled by cytosolic cAMP levels via Gi- or Gs-type G proteins. In addition, RT-PCR demonstrated for the first time the expression of mRNAs encoding red and green opsins in tilapia fins, only where erythrophores exist. Here, we suggest that multiple cone-type visual pigments may be present in the erythrophores, and that unique cascades in which such opsins couple to Gi or Gs-type G proteins are involved in the photoresponses in these pigment cells. Thus, tilapia erythrophore system seems to be a nice model for understanding the photoresponses of cells other than visual cells.
Collapse
Affiliation(s)
- Eiko Ban
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Sato M, Ishikura R, Oshima N. Direct Effects of Visible and UVA Light on Pigment Migration in Erythrophores of Nile Tilapia. ACTA ACUST UNITED AC 2004; 17:519-24. [PMID: 15357839 DOI: 10.1111/j.1600-0749.2004.00178.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Erythrophores derived from Nile tilapia (Oreochromis niloticus) are sensitive to visible light of defined wavelengths in primary culture in the same manner as erythrophores in the skin. Cultured erythrophores aggregate their pigment in response to light with peak wavelengths near 400 or 600 nm, while dispersion is caused by light near 500 nm. In this study, we report that ultraviolet A (UVA) with a peak wavelength near 365 nm also induces pigment aggregation in erythrophores in the skin and in primary culture. The responses of erythrophores in the skin or in culture depend on the light intensity, although the photo-sensitivity differs among individual cells. From the results, we conclude that the action of visible light and UVA light on tilapia erythrophores is direct, and that multiple types of visual pigments may coexist in individual erythrophores.
Collapse
Affiliation(s)
- Masako Sato
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama, Funabashi, Chiba, Japan
| | | | | |
Collapse
|
10
|
Alvarez-Viejo M, Cernuda-Cernuda R, DeGrip WJ, Alvarez-López C, García-Fernández JM. Co-localization of mesotocin and opsin immunoreactivity in the hypothalamic preoptic nucleus of Xenopus laevis. Brain Res 2003; 969:36-43. [PMID: 12676362 DOI: 10.1016/s0006-8993(03)02273-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of the present investigation was to provide a detailed description of the encephalic photoreceptors of Xenopus laevis at the light microscopic level and to determine their relationship with the neurosecretory cells of the hypothalamus in order to further our understanding of photoperiodic regulation of seasonal rhythms. Numerous opsin-positive neurons were found in the hypothalamic magnocellular preoptic nucleus and their axonal processes were seen to run laterally towards the basal regions of the brain, reaching the neural lobe of the hypophysis. Analysis of labelling with different antisera in adjacent sections, as well as double-immunolabelling carried out on the same section, revealed that mesotocin immunoreactivity was present in most of the opsin-positive neurons; however, no evidence for opsin and vasotocin coexpression was found in any of the sections analysed. The close localization of LHRH and opsin/mesotocin fibers in some regions of the brain, such as the median eminence, suggests that some interaction between these two systems might exist. In conclusion, in this study we provide the first strong evidence that the hypothalamic mesotocinergic neurons, which have been proved to be connected to the GnRH system in other species, are directly involved in photoreception in Xenopus laevis. These findings represent a novel contribution to our understanding of how light influences the seasonal reproductive cycles in lower vertebrates.
Collapse
Affiliation(s)
- María Alvarez-Viejo
- Department of Morphology and Cellular Biology, University of Oviedo, Oviedo, Spain
| | | | | | | | | |
Collapse
|
11
|
Bellingham J, Whitmore D, Philp AR, Wells DJ, Foster RG. Zebrafish melanopsin: isolation, tissue localisation and phylogenetic position. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 107:128-36. [PMID: 12487121 DOI: 10.1016/s0169-328x(02)00454-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Photoreception is best understood in retinal rods and cones, but it is not confined to these cells. In non-mammals, intrinsically photosensitive cells have been identified within several structures including the pineal, hypothalamus and skin. More recently novel light sensitive cells have been identified in the inner/basal retina of both teleosts and rodents. Melanopsin has been proposed as the photopigment mediating many of these non-rod, non-cone responses to light. However, much about the melanopsin gene family remains to be clarified including their potential role as photopigments, and taxonomic distribution. We have isolated the first orthologue of melanopsin from a teleost fish and show expression of this gene in a sub-set of retinal horizontal cells (type B). Zebrafish melanopsin, and orthologues of this gene, differ markedly from the vertebrate photopigment opsins. The putative counterion is not a glutamate but a tyrosine, the putative G-protein binding domain in the third cytoplasmic loop is not conserved, and they show low levels of amino acid identity (approximately 27%) to both the known photopigment opsins and to other members of the melanopsin family. Mouse melanopsin is only 58% identical to Xenopus, and 68% identical to zebrafish. By contrast, the photosensory opsin families show approximately 75% conservation. On the basis of their structure, genomic organisation, discrete evolutionary lineage, and their co-expression with other opsins, the melanopins are not obvious photosensory opsins. They might represent a separate branch of photopigment evolution in the vertebrates or they may have a non-direct photosensory function, perhaps as a photoisomerase, in non-rod, non-cone light detection.
Collapse
Affiliation(s)
- James Bellingham
- Department of Integrative and Molecular Neuroscience, Imperial College Faculty of Medicine, Charing Cross Hospital, London, UK.
| | | | | | | | | |
Collapse
|
12
|
Abstract
When reflected from a surface, light can provide a representation of the spatial environment, whilst gross changes in environment light can signal the time of day. The differing sensory demands of using light to detect environmental space and time appear to have provided the selection pressures for the evolution of different photoreceptor systems in the vertebrates, and probably all animals. This point has been well recognised in the non-mammals, which possess multiple opsin/vitamin A-based photoreceptor populations in a variety of sites distributed both within and outside the CNS. By contrast, eye loss in mammals abolishes all responses to light, and as a result, all photoreception was attributed to the rods and cones of the retina. However, studies over the past decade have provided overwhelming evidence that the mammalian eye contains a novel photoreceptor system that does not depend upon the input from the rods and cones. Mice with eyes but lacking rod and cone photoreceptors can still detect light to regulate their circadian rhythms, suppress pineal melatonin, modify locomotor activity, and modulate pupil size. Furthermore, action spectra for some of these responses in rodents and humans have characterised at least one novel opsin/vitamin A-based photopigment, and molecular studies have identified a number of candidate genes for this photopigment. Parallel studies in fish showing that VA opsin photopigment is expressed within sub-sets of inner retina neurones, demonstrates that mammals are not alone in having inner retinal photoreceptors. It therefore seems likely that inner retinal photoreception will be a feature of all vertebrates. Current studies are directed towards an understanding of their mechanisms, determining the extent to which they contribute to physiology and behaviour in general, and establishing how they may interact with other photoreceptors, including the rods and cones. Progress on each of these topics is moving very rapidly. As a result, we hope this review will serve as an introduction to the cascade of papers that will emerge on these topics in the next few years. We also hope to convince the more casual reader that there is much more to vertebrate photoreceptors than the study of retinal rods and cones.
Collapse
Affiliation(s)
- Russell G Foster
- Department of Integrative and Molecular Neuroscience, Faculty of Medicine, Imperial College of Science, Engineering and Medicine, Charing Cross Hospital, Fulham Palace Road, W6 8RF, London, UK.
| | | |
Collapse
|
13
|
Okano K, Oishi T, Miyashita Y, Moriya T, Tsuda M, Irie T, Ueki N, Seki T. Identification of 3,4-didehydroretinal isomers in the Xenopus tadpole tail fin containing photosensitive melanophores. Zoolog Sci 2002; 19:191-5. [PMID: 12012782 DOI: 10.2108/zsj.19.191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is well characterized that melanophores in the tail fin of Xenopus laevis tadpoles are directly photosensitive. In order to better understand the mechanism underlying this direct photosensitivity, we performed a retinal analysis of the tail fins and eyes of Xenopus tadpoles at stages 51-56 using high performance liquid chromatography (HPLC). Following the extraction of retinoids by the formaldehyde method, a fraction containing retinal and/or 3,4-didehydroretinal isomers from the first HPLC analysis were collected. These isomers were then reduced by sodium borohydride to convert retinal and/or 3,4-didehydroretinal isomers into the corresponding retinol isomers to prepare for a second HPLC analysis. Peaks of 11-cis and all-trans 3,4-didehydroretinol were detected in the eyes and tail fins containing melanophores, but they were not detected in the tail fins without melanophores. The amounts of 11-cis and all-trans 3,4-didehydroretinol were 27.5 and 5.7 fmol/fin, respectively, and the total quantity of 3,4-didehydroretinal was calculated at approximately 5 x 10(6) molecules/melanophore. These results strongly suggest the presence of 11-cis and all-trans 3,4-didehydroretinal in melanophores of the tadpole tail fin, which probably function as the chromophore of photoreceptive molecules.
Collapse
Affiliation(s)
- Keiko Okano
- Department of Life Environment, Graduate School of Human Culture, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Miyashita Y, Moriya T, Kubota T, Yamada K, Asami K. Expression of opsin molecule in cultured murine melanocyte. J Investig Dermatol Symp Proc 2001; 6:54-7. [PMID: 11764286 DOI: 10.1046/j.0022-202x.2001.00018.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently, we demonstrated the expression of rhodopsin in the tail fin of the Xenopus tadpole, in which photosensitive melanophores exist (Miyashita et al, The photoreceptor molecules in Xenopus tadpole tail fin, in which melanophores exist. Zool Sci 18:671-674, 2001). The presence of opsin molecules in pigment cells of lower vertebrates raises the possibility that pigment cells in animal skin function as photosensors generally. To explore this possibility in higher vertebrates, we tried to detect photoreception molecules in mammalian melanocytes. We extracted total RNA from Melan a2, a cell line of immortal murine melanocyte, which is derived from C57BL mice. The DNA sequence obtained by reverse transcriptase-polymerase chain reaction (RT-PCR) amplification was homologous to the corresponding portion of the sequence of ocular rhodopsin of mice. Western blotting and fluorescent immunocytochemistry showed the existence of the opsin protein in the melanocytes. Another cell line, EL4, which is derived from lymphoma of C57BL/6N, scarcely expresses opsin mRNA, as judged by RT-PCR. Thus expression of the opsin gene is not ubiquitous among immortal cell lines. Detection of rhodopsin mRNA in murine tissues of C57BL/6N by RT-PCR showed its presence in the eye and skin but not in the liver. The role of the opsin molecule in melanocyte is not known at present, but this will provide additional insight into photoreception systems in animal skin.
Collapse
Affiliation(s)
- Y Miyashita
- Department of Biology, Sapporo Medical University School of Medicine, Japan.
| | | | | | | | | |
Collapse
|