1
|
Nakazato Y, Otaki JM. Socket Array Irregularities and Wing Membrane Distortions at the Eyespot Foci of Butterfly Wings Suggest Mechanical Signals for Color Pattern Determination. INSECTS 2024; 15:535. [PMID: 39057268 PMCID: PMC11276954 DOI: 10.3390/insects15070535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Eyespot foci on butterfly wings function as organizers of eyespot color patterns during development. Despite their importance, focal structures have not been examined in detail. Here, we microscopically examined scales, sockets, and the wing membrane in the butterfly eyespot foci of both expanded and unexpanded wings using the Blue Pansy butterfly Junonia orithya. Images from a high-resolution light microscope revealed that, although not always, eyespot foci had scales with disordered planar polarity. Scanning electron microscopy (SEM) images after scale removal revealed that the sockets were irregularly positioned and that the wing membrane was physically distorted as if the focal site were mechanically squeezed from the surroundings. Focal areas without eyespots also had socket array irregularities, but less frequently and less severely. Physical damage in the background area induced ectopic patterns with socket array irregularities and wing membrane distortions, similar to natural eyespot foci. These results suggest that either the process of determining an eyespot focus or the function of an eyespot organizer may be associated with wing-wide mechanics that physically disrupt socket cells, scale cells, and the wing membrane, supporting the physical distortion hypothesis of the induction model for color pattern determination in butterfly wings.
Collapse
Affiliation(s)
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan
| |
Collapse
|
2
|
Otaki JM, Nakazato Y. Butterfly Wing Color Pattern Modification Inducers May Act on Chitin in the Apical Extracellular Site: Implications in Morphogenic Signals for Color Pattern Determination. BIOLOGY 2022; 11:1620. [PMID: 36358322 PMCID: PMC9687432 DOI: 10.3390/biology11111620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 09/28/2023]
Abstract
Butterfly wing color patterns are modified by various treatments, such as temperature shock, injection of chemical inducers, and covering materials on pupal wing tissue. Their mechanisms of action have been enigmatic. Here, we investigated the mechanisms of color pattern modifications usingthe blue pansy butterfly Junoniaorithya. We hypothesized that these modification-inducing treatments act on the pupal cuticle or extracellular matrix (ECM). Mechanical load tests revealed that pupae treated with cold shock or chemical inducers were significantly less rigid, suggesting that these treatments made cuticle formation less efficient. A known chitin inhibitor, FB28 (fluorescent brightener 28), was discovered to efficiently induce modifications. Taking advantage of its fluorescent character, fluorescent signals from FB28 were observed in live pupae in vivo from the apical extracellular side and were concentrated at the pupal cuticle focal spots immediately above the eyespot organizing centers. It was shown that chemical modification inducers and covering materials worked additively. Taken together, various modification-inducing treatments likely act extracellularly on chitin or other polysaccharides to inhibit pupal cuticle formation or ECM function, which probably causes retardation of morphogenic signals. It is likely that an interactive ECM is required for morphogenic signals for color pattern determination to travel long distances.
Collapse
Affiliation(s)
- Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
| | | |
Collapse
|
3
|
Shimajiri T, Otaki JM. Phenotypic Plasticity of the Mimetic Swallowtail Butterfly Papilio polytes: Color Pattern Modifications and Their Implications in Mimicry Evolution. INSECTS 2022; 13:insects13070649. [PMID: 35886825 PMCID: PMC9322193 DOI: 10.3390/insects13070649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Diverse butterfly wing color patterns are evolutionary products in response to environmental changes in the past. Environmental stress, such as temperature shock, is known to induce color pattern modifications in various butterfly species, and this phenotypic plasticity plays an important role in color pattern evolution. However, the potential contributions of phenotypic plasticity to mimicry evolution have not been evaluated. Here, we focused on the swallowtail butterfly Papilio polytes, which has nonmimetic and mimetic forms in females, to examine its plastic phenotypes. Cold shock and heat shock treatments in the nonmimetic form induced color pattern modifications that were partly similar to those of the mimetic form, and nonmimetic females were more sensitive than males and mimetic females. These results suggest that phenotypic plasticity in nonmimetic females might have provided a basis of natural selection for mimetic color patterns during evolution. Abstract Butterfly wing color patterns are sensitive to environmental stress, such as temperature shock, and this phenotypic plasticity plays an important role in color pattern evolution. However, the potential contributions of phenotypic plasticity to mimicry evolution have not been evaluated. Here, we focused on the swallowtail butterfly Papilio polytes, which has nonmimetic and mimetic forms in females, to examine its plastic phenotypes. In the nonmimetic form, medial white spots and submarginal reddish spots in the ventral hindwings were enlarged by cold shock but were mostly reduced in size by heat shock. These temperature-shock-induced color pattern modifications were partly similar to mimetic color patterns, and nonmimetic females were more sensitive than males and mimetic females. Unexpectedly, injection of tungstate, a known modification inducer in nymphalid and lycaenid butterflies, did not induce any modification, but fluorescent brightener 28, another inducer discovered recently, induced unique modifications. These results suggest that phenotypic plasticity in nonmimetic females might have provided a basis of natural selection for mimetic color patterns during evolution.
Collapse
|
4
|
Liao KL, Chang WC, Marcus JM, Wang JN. Mathematical modeling of the eyespots in butterfly wings. J Theor Biol 2021; 531:110898. [PMID: 34508757 DOI: 10.1016/j.jtbi.2021.110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
Butterfly wing color patterns are a representative model system for studying biological pattern formation, due to their two-dimensional simple structural and high inter- and intra-specific variabilities. Moreover, butterfly color patterns have demonstrated roles in mate choice, thermoregulation, and predator avoidance via disruptive coloration, attack deflection, aposematism, mimicry, and masquerade. Because of the importance of color patterns to many aspects of butterfly biology and their apparent tractability for study, color patterns have been the subjects of many attempts to model their development. Early attempts focused on generalized mechanisms of pattern formation such as reaction-diffusion, diffusion gradient, lateral inhibition, and threshold responses, without reference to any specific gene products. As candidate genes with expression patterns that resembled incipient color patterns were identified, genetic regulatory networks were proposed for color pattern formation based on gene functions inferred from other insects with wings, such as Drosophila. Particularly detailed networks incorporating the gene products, Distal-less (Dll), Engrailed (En), Hedgehog (Hh), Cubitus interruptus (Ci), Transforming growth factor-β (TGF-β), and Wingless (Wg), have been proposed for butterfly border ocelli (eyespots) which helps the investigation of the formation of these patterns. Thus, in this work, we develop a mathematical model including the gene products En, Hh, Ci, TGF-β, and Wg to mimic and investigate the eyespot formation in butterflies. Our simulations show that the level of En has peaks in the inner and outer rings and the level of Ci has peaks in the inner and middle rings. The interactions among these peaks activate cells to produce white, black, and yellow pigments in the inner, middle, and outer rings, respectively, which captures the eyespot pattern of wild type Bicyclus anynana butterflies. Additionally, our simulations suggest that lack of En generates a single black spot and lack of Hh or Ci generates a single white spot, and a deficiency of TGF-β or Wg will cause the loss of the outer yellow ring. These deficient patterns are similar to those observed in the eyespots of Vanessa atalanta, Vanessa altissima, and Chlosyne nycteis. Thus, our model also provides a hypothesis to explain the mechanism of generating the deficient patterns in these species.
Collapse
Affiliation(s)
- Kang-Ling Liao
- Department of Mathematics, University of Manitoba, Manitoba R3T 2N2, Canada; Department of Biological Sciences, University of Manitoba, Manitoba R3T 2N2, Canada.
| | - Wei-Chen Chang
- Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Jeffrey M Marcus
- Department of Biological Sciences, University of Manitoba, Manitoba R3T 2N2, Canada
| | - Jenn-Nan Wang
- Institute of Applied Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan, ROC
| |
Collapse
|
5
|
The Fractal Geometry of the Nymphalid Groundplan: Self-Similar Configuration of Color Pattern Symmetry Systems in Butterfly Wings. INSECTS 2021; 12:insects12010039. [PMID: 33419048 PMCID: PMC7825419 DOI: 10.3390/insects12010039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary Highly diverse color patterns of butterfly wings can be explained as modifications of an archetypical color pattern of nymphalid butterflies called the nymphalid groundplan. The nymphalid groundplan contains three major symmetry systems and a discal symmetry system, but their relationships have been elusive. Here, the morphological and spatial relationships among these symmetry systems were studied based on cross-species color-pattern comparisons of the hindwings in nymphalid butterflies. It was shown that all symmetry systems can be expressed as various structures, suggesting the equivalence (homology) of these systems in developmental potential. In some cases, the discal symmetry system is circularly surrounded by the central symmetry system, which may then be surrounded by the border and basal symmetry systems, indicating a unified supersymmetry system covering the entire wing. These results suggest that butterfly color patterns are hierarchically constructed; one system is nested within another system, which is a self-similar relationship that achieves the fractal geometry. This self-similarity is likely mediated by the serial induction of organizers during development, and a possible mechanism is proposed for symmetry breaking of the system morphology, which contributes to the diversity of butterfly wing color patterns. Abstract The nymphalid groundplan is an archetypical color pattern of nymphalid butterflies involving three major symmetry systems and a discal symmetry system, which share the basic morphogenesis unit. Here, the morphological and spatial relationships among these symmetry systems were studied based on cross-species comparisons of nymphalid hindwings. Based on findings in Neope and Symbrenthia, all three major symmetry systems can be expressed as bands, spots, or eyespot-like structures, suggesting equivalence (homology) of these systems in developmental potential. The discal symmetry system can also be expressed as various structures. The discal symmetry system is circularly surrounded by the central symmetry system, which may then be surrounded by the border and basal symmetry systems, based mainly on findings in Agrias, indicating a unified supersymmetry system covering the entire wing. The border symmetry system can occupy the central part of the wing when the central symmetry system is compromised, as seen in Callicore. These results suggest that butterfly color patterns are hierarchically constructed in a self-similar fashion, as the fractal geometry of the nymphalid groundplan. This self-similarity is likely mediated by the serial induction of organizers, and symmetry breaking of the system morphology may be generated by the collision of opposing signals during development.
Collapse
|
6
|
Dong X, Zhao H, Li J, Tian Y, Zeng H, Ramos MA, Hu TS, Xu Q. Progress in Bioinspired Dry and Wet Gradient Materials from Design Principles to Engineering Applications. iScience 2020; 23:101749. [PMID: 33241197 PMCID: PMC7672307 DOI: 10.1016/j.isci.2020.101749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nature does nothing in vain. Through millions of years of revolution, living organisms have evolved hierarchical and anisotropic structures to maximize their survival in complex and dynamic environments. Many of these structures are intrinsically heterogeneous and often with functional gradient distributions. Understanding the convergent and divergent gradient designs in the natural material systems may lead to a new paradigm shift in the development of next-generation high-performance bio-/nano-materials and devices that are critically needed in energy, environmental remediation, and biomedical fields. Herein, we review the basic design principles and highlight some of the prominent examples of gradient biological materials/structures discovered over the past few decades. Interestingly, despite the anisotropic features in one direction (i.e., in terms of gradient compositions and properties), these natural structures retain certain levels of symmetry, including point symmetry, axial symmetry, mirror symmetry, and 3D symmetry. We further demonstrate the state-of-the-art fabrication techniques and procedures in making the biomimetic counterparts. Some prototypes showcase optimized properties surpassing those seen in the biological model systems. Finally, we summarize the latest applications of these synthetic functional gradient materials and structures in robotics, biomedical, energy, and environmental fields, along with their future perspectives. This review may stimulate scientists, engineers, and inventors to explore this emerging and disruptive research methodology and endeavors.
Collapse
Affiliation(s)
- Xiaoxiao Dong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Hong Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jiapeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yu Tian
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Melvin A Ramos
- Department of Mechanical Engineering, California State University, Los Angeles, CA 90032, USA
| | - Travis Shihao Hu
- Department of Mechanical Engineering, California State University, Los Angeles, CA 90032, USA
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| |
Collapse
|
7
|
Morphological and Spatial Diversity of the Discal Spot on the Hindwings of Nymphalid Butterflies: Revision of the Nymphalid Groundplan. INSECTS 2020; 11:insects11100654. [PMID: 32977583 PMCID: PMC7598249 DOI: 10.3390/insects11100654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Simple Summary Butterfly wing color patterns are diverse, but they can be understood as modifications of the common scheme called the nymphalid groundplan. The discal spot is relatively small, but it is one of the important components of the nymphalid groundplan. Using many hindwing specimens of the family Nymphalidae, the morphological and spatial diversity of the discal spot was studied. The discal spot is expressed as a small or narrow spot, a pair of parallel bands, a diamond or oval structure, a large dark spot, a few fragmented spots, or a white structure. The discal spot is always located in a central portion of the wing defined by the wing veins, and this portion is sandwiched by a pair of bands of the central symmetry system, another important component of the nymphalid groundplan. On the basis of these results, the present study revises the nymphalid groundplan in minor points; the discal spot is an independent and diverse miniature symmetry system nested within the central symmetry system. Due to the involvement of wing veins to define the locations of the discal spot, the present study suggests the possible developmental dynamics of butterfly color pattern formation that produces color pattern diversity. Abstract Diverse butterfly wing color patterns are understood through the nymphalid groundplan, which mainly consists of central, border, and basal symmetry systems and a discal spot. However, the status of the discal spot remains unexplored. Here, the morphological and spatial diversity of the discal spot was studied in nymphalid hindwings. The discal spot is expressed as a small or narrow spot, a pair of parallel bands, a diamond or oval structure, a large dark spot, a few fragmented spots, or a white structure. In some cases, the discal spot is morphologically similar to and integrated with the central symmetry system (CSS). The discal spot is always located in a distal portion of the discal cell defined by the wing veins, which is sandwiched by the distal and proximal bands of the CSS (dBC and pBC) and is rarely occupied by border ocelli. The CSS occasionally has the central band (cBC), which differs from the discal spot. These results suggest that the discal spot is an independent and diverse miniature symmetry system nested within the CSS and that the locations of the discal spot and the CSS are determined by the wing veins at the early stage of wing development.
Collapse
|
8
|
Otaki JM. Butterfly eyespot color pattern formation requires physical contact of the pupal wing epithelium with extracellular materials for morphogenic signal propagation. BMC DEVELOPMENTAL BIOLOGY 2020; 20:6. [PMID: 32234033 PMCID: PMC7110832 DOI: 10.1186/s12861-020-00211-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/13/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Eyespot color pattern formation on butterfly wings is sensitive to physical damage and physical distortion as well as physical contact with materials on the surface of wing epithelial tissue at the pupal stage. Contact-mediated eyespot color pattern changes may imply a developmental role of the extracellular matrix in morphogenic signal propagation. Here, we examined eyespot responses to various contact materials, focusing on the hindwing posterior eyespots of the blue pansy butterfly, Junonia orithya. RESULTS Contact with various materials, including both nonbiological and biological materials, induced eyespot enlargement, reduction, or no change in eyespot size, and each material was characterized by a unique response profile. For example, silicone glassine paper almost always induced a considerable reduction, while glass plates most frequently induced enlargement, and plastic plates generally produced no change. The biological materials tested here (fibronectin, polylysine, collagen type I, and gelatin) resulted in various responses, but polylysine induced more cases of enlargement, similar to glass plates. The response profile of the materials was not readily predictable from the chemical composition of the materials but was significantly correlated with the water contact angle (water repellency) of the material surface, suggesting that the surface physical chemistry of materials is a determinant of eyespot size. When the proximal side of a prospective eyespot was covered with a size-reducing material (silicone glassine paper) and the distal side and the organizer were covered with a material that rarely induced size reduction (plastic film), the proximal side of the eyespot was reduced in size in comparison with the distal side, suggesting that signal propagation but not organizer activity was inhibited by silicone glassine paper. CONCLUSIONS These results suggest that physical contact with an appropriate hydrophobic surface is required for morphogenic signals from organizers to propagate normally. The binding of the apical surface of the epithelium with an opposing surface may provide mechanical support for signal propagation. In addition to conventional molecular morphogens, there is a possibility that mechanical distortion of the epithelium that is propagated mechanically serves as a nonmolecular morphogen to induce subsequent molecular changes, in accordance with the distortion hypothesis for butterfly wing color pattern formation.
Collapse
Affiliation(s)
- Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213, Japan.
| |
Collapse
|
9
|
Iwata M, Otaki JM. Insights into eyespot color-pattern formation mechanisms from color gradients, boundary scales, and rudimentary eyespots in butterfly wings. JOURNAL OF INSECT PHYSIOLOGY 2019; 114:68-82. [PMID: 30797779 DOI: 10.1016/j.jinsphys.2019.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Butterfly eyespot color patterns are traditionally explained by the gradient model, where positional information is stably provided by a morphogen gradient from a single organizer and its output is a set of non-graded (or graded) colors based on pre-determined threshold levels. An alternative model is the induction model, in which the outer black ring and the inner black core disk of an eyespot are specified by graded signals from the primary and secondary organizers that also involve lateral induction. To examine the feasibility of these models, we analyzed eyespot color gradients, boundary scales, and rudimentary eyespots in various nymphalid butterflies. Most parts of eyespots showed color gradients with gradual or fluctuating changes with sharp boundaries in many species, but some species had eyespots that were composed of a constant color within a given part. Thus, a plausible model should be flexible enough to incorporate this diversity. Some boundary scales appeared to have two kinds of pigments, and others had "misplaced" colors, suggesting an overlapping of two signals and a difficulty in assuming sharp threshold boundaries. Rudimentary eyespots of three Junonia species revealed that the outer black ring is likely determined first and the inner yellow or red ring is laterally induced. This outside-to-inside determination together with the lateral induction may favor the induction model, in which dynamic signal interactions play a major role. The implications of these results for the ploidy hypothesis and color-pattern rules are discussed.
Collapse
Affiliation(s)
- Masaki Iwata
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0213, Japan; Department of International Agricultural Development, Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
10
|
Hirata K, Otaki JM. Real-Time In Vivo Imaging of the Developing Pupal Wing Tissues in the Pale Grass Blue Butterfly Zizeeria maha: Establishing the Lycaenid System for Multiscale Bioimaging. J Imaging 2019; 5:jimaging5040042. [PMID: 34460480 PMCID: PMC8320941 DOI: 10.3390/jimaging5040042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 11/17/2022] Open
Abstract
To systematically analyze biological changes with spatiotemporal dynamics, it is important to establish a system that is amenable for real-time in vivo imaging at various size levels. Herein, we focused on the developing pupal wing tissues in the pale grass blue butterfly, Zizeeria maha, as a system of choice for a systematic multiscale approach in vivo in real time. We showed that the entire pupal wing could be monitored throughout development using a high-resolution bright-field time-lapse imaging system under the forewing-lift configuration; we recorded detailed dynamics of the dorsal and ventral epithelia that behaved independently for peripheral adjustment. We also monitored changes in the dorsal hindwing at the compartmental level and directly observed evaginating scale buds. We also employed a confocal laser microscopy system with multiple fluorescent dyes for three-dimensional observations at the tissue and cellular levels. We discovered extensive cellular clusters that may be functionally important as a unit of cellular communication and differentiation. We also identified epithelial discal and marginal dents that may function during development. Together, this lycaenid forewing system established a foundation to study the differentiation process of epithelial cells and can be used to study biophysically challenging mechanisms such as the determination of color patterns and scale nanoarchitecture at the multiscale levels.
Collapse
|
11
|
Otaki JM. Long-Range Effects of Wing Physical Damage and Distortion on Eyespot Color Patterns in the Hindwing of the Blue Pansy Butterfly Junonia orithya. INSECTS 2018; 9:insects9040195. [PMID: 30572627 PMCID: PMC6316528 DOI: 10.3390/insects9040195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 11/24/2022]
Abstract
Butterfly eyespot color patterns have been studied using several different approaches, including applications of physical damage to the forewing. Here, damage and distortion experiments were performed, focusing on the hindwing eyespots of the blue pansy butterfly Junonia orithya. Physical puncture damage with a needle at the center of the eyespot reduced the eyespot size. Damage at the eyespot outer rings not only deformed the entire eyespot, but also diminished the eyespot core disk size, despite the distance from the damage site to the core disk. When damage was inflicted near the eyespot, the eyespot was drawn toward the damage site. The induction of an ectopic eyespot-like structure and its fusion with the innate eyespots were observed when damage was inflicted in the background area. When a small stainless ball was placed in close proximity to the eyespot using the forewing-lift method, the eyespot deformed toward the ball. Taken together, physical damage and distortion elicited long-range inhibitory, drawing (attracting), and inducing effects, suggesting that the innate and induced morphogenic signals travel long distances and interact with each other. These results are consistent with the distortion hypothesis, positing that physical distortions of wing tissue contribute to color pattern determination in butterfly wings.
Collapse
Affiliation(s)
- Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
12
|
Developmental dynamics of butterfly wings: real-time in vivo whole-wing imaging of twelve butterfly species. Sci Rep 2018; 8:16848. [PMID: 30442931 PMCID: PMC6237780 DOI: 10.1038/s41598-018-34990-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/24/2018] [Indexed: 01/13/2023] Open
Abstract
Colour pattern development of butterfly wings has been studied from several different approaches. However, developmental changes in the pupal wing tissues have rarely been documented visually. In this study, we recorded real-time developmental changes of the pupal whole wings of 9 nymphalid, 2 lycaenid, and 1 pierid species in vivo, from immediately after pupation to eclosion, using the forewing-lift method. The developmental period was roughly divided into four sequential stages. At the very early stage, the wing tissue was transparent, but at the second stage, it became semi-transparent and showed dynamic peripheral adjustment and slow low-frequency contractions. At this stage, the wing peripheral portion diminished in size, but simultaneously, the ventral epithelium expanded in size. Likely because of scale growth, the wing tissue became deeply whitish at the second and third stages, followed by pigment deposition and structural colour expression at the fourth stage. Some red or yellow (light-colour) areas that emerged early were “overpainted” by expanding black areas, suggesting the coexistence of two morphogenic signals in some scale cells. The discal spot emerged first in some nymphalid species, as though it organised the entire development of colour patterns. These results indicated the dynamic wing developmental processes common in butterflies.
Collapse
|
13
|
Beldade P, Peralta CM. Developmental and evolutionary mechanisms shaping butterfly eyespots. CURRENT OPINION IN INSECT SCIENCE 2017; 19:22-29. [PMID: 28521939 DOI: 10.1016/j.cois.2016.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 06/07/2023]
Abstract
Butterfly eyespots are visually compelling models to study the reciprocal interactions between evolutionary and developmental processes that shape phenotypic variation. They are evolutionarily diversified, ecologically relevant, and developmentally tractable, and have made key contributions to linking genotype, development, phenotype and fitness. Advances in the availability of analytical tools (e.g. gene editing and visualization techniques) and resources (e.g. genomic and transcriptomic data) are boosting the detailed dissection of the mechanisms underlying eyespot development and evolution. Here, we review current knowledge on the ecology, development, and evolution of butterfly eyespots, with focus on recent advances. We also highlight a number of unsolved mysteries in our understanding of the patterns and processes underlying the diversification of these structures.
Collapse
Affiliation(s)
- Patrícia Beldade
- Instituto Gulbenkian de Ciência, Oeiras, Portugal; UMR5174, University of Toulouse, France.
| | | |
Collapse
|
14
|
Iwasaki M, Ohno Y, Otaki JM. Butterfly eyespot organiser: in vivo imaging of the prospective focal cells in pupal wing tissues. Sci Rep 2017; 7:40705. [PMID: 28094808 PMCID: PMC5240560 DOI: 10.1038/srep40705] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/09/2016] [Indexed: 12/01/2022] Open
Abstract
Butterfly wing eyespot patterns are determined in pupal tissues by organisers located at the centre of the prospective eyespots. Nevertheless, organiser cells have not been examined cytochemically in vivo, partly due to technical difficulties. Here, we directly observed organiser cells in pupal forewing epithelium via an in vivo confocal fluorescent imaging technique, using 1-h post-pupation pupae of the blue pansy butterfly, Junonia orithya. The prospective eyespot centre was indented from the plane of the ventral tissue surface. Three-dimensional reconstruction images revealed that the apical portion of “focal cells” at the bottom of the eyespot indentation contained many mitochondria. The mitochondrial portion was connected with a “cell body” containing a nucleus. Most focal cells had globular nuclei and were vertically elongated, but cells in the wing basal region had flattened nuclei and were tilted toward the distal direction. Epithelial cells in any wing region had cytoneme-like horizontal processes. From 1 h to 10 h post-pupation, nuclear volume increased, suggesting DNA synthesis during this period. Morphological differences among cells in different regions may suggest that organiser cells are developmentally ahead of cells in other regions and that position-dependent heterochronic development is a general mechanism for constructing colour patterns in butterfly wings.
Collapse
Affiliation(s)
- Mayo Iwasaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Yoshikazu Ohno
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan
| |
Collapse
|
15
|
Connahs H, Rhen T, Simmons RB. Physiological Perturbation Reveals Modularity of Eyespot Development in the Painted Lady Butterfly, Vanessa cardui. PLoS One 2016; 11:e0161745. [PMID: 27560365 PMCID: PMC4999082 DOI: 10.1371/journal.pone.0161745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 08/11/2016] [Indexed: 11/19/2022] Open
Abstract
Butterfly eyespots are complex morphological traits that can vary in size, shape and color composition even on the same wing surface. Homology among eyespots suggests they share a common developmental basis and function as an integrated unit in response to selection. Despite strong evidence of genetic integration, eyespots can also exhibit modularity or plasticity, indicating an underlying flexibility in pattern development. The extent to which particular eyespots or eyespot color elements exhibit modularity or integration is poorly understood, particularly following exposure to novel conditions. We used perturbation experiments to explore phenotypic correlations among different eyespots and their color elements on the ventral hindwing of V. cardui. Specifically, we identified which eyespots and eyespot features are most sensitive to perturbation by heat shock and injection of heparin-a cold shock mimic. For both treatments, the two central eyespots (3 + 4) were most affected by the experimental perturbations, whereas the outer eyespot border was more resistant to modification than the interior color elements. Overall, the individual color elements displayed a similar response to heat shock across all eyespots, but varied in their response to each other. Graphical modeling also revealed that although eyespots differ morphologically, regulation of eyespot size and colored elements appear to be largely integrated across the wing. Patterns of integration, however, were disrupted following heat shock, revealing that the strength of integration varies across the wing and is strongest between the two central eyespots. These findings support previous observations that document coupling between eyespots 3 + 4 in other nymphalid butterflies.
Collapse
Affiliation(s)
- Heidi Connahs
- Biology Department, University of North Dakota, Grand Forks, North Dakota, United States of America
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Turk Rhen
- Biology Department, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Rebecca B. Simmons
- Biology Department, University of North Dakota, Grand Forks, North Dakota, United States of America
| |
Collapse
|
16
|
Iwata M, Otaki JM. Focusing on butterfly eyespot focus: uncoupling of white spots from eyespot bodies in nymphalid butterflies. SPRINGERPLUS 2016; 5:1287. [PMID: 27547662 PMCID: PMC4977239 DOI: 10.1186/s40064-016-2969-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/29/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND Developmental studies on butterfly wing color patterns often focus on eyespots. A typical eyespot (such as that of Bicyclus anynana) has a few concentric rings of dark and light colors and a white spot (called a focus) at the center. The prospective eyespot center during the early pupal stage is known to act as an organizing center. It has often been assumed, according to gradient models for positional information, that a white spot in adult wings corresponds to an organizing center and that the size of the white spot indicates how active that organizing center was. However, there is no supporting evidence for these assumptions. To evaluate the feasibility of these assumptions in nymphalid butterflies, we studied the unique color patterns of Calisto tasajera (Nymphalidae, Satyrinae), which have not been analyzed before in the literature. RESULTS In the anterior forewing, one white spot was located at the center of an eyespot, but another white spot associated with either no or only a small eyespot was present in the adjacent compartment. The anterior hindwing contained two adjacent white spots not associated with eyespots, one of which showed a sparse pattern. The posterior hindwing contained two adjacent pear-shaped eyespots, and the white spots were located at the proximal side or even outside the eyespot bodies. The successive white spots within a single compartment along the midline in the posterior hindwing showed a possible trajectory of a positional determination process for the white spots. Several cases of focus-less eyespots in other nymphalid butterflies were also presented. CONCLUSIONS These results argue for the uncoupling of white spots from eyespot bodies, suggesting that an eyespot organizing center does not necessarily differentiate into a white spot and that a prospective white spot does not necessarily signify organizing activity for an eyespot. Incorporation of these results in future models for butterfly wing color pattern formation is encouraged.
Collapse
Affiliation(s)
- Masaki Iwata
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213 Japan
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213 Japan
| |
Collapse
|
17
|
Abstract
Butterfly wing color patterns are highly complex and diverse, but they are believed to be derived from the nymphalid groundplan, which is composed of several color pattern systems. Among these pattern systems, the marginal band system, including marginal and submarginal bands, has rarely been studied. Here, we examined the color pattern diversity of the marginal band system among nymphalid butterflies. Marginal and submarginal bands are usually expressed as a pair of linear bands aligned with the wing margin. However, a submarginal band can be expressed as a broken band, an elongated oval, or a single dot. The marginal focus, usually a white dot at the middle of a wing compartment along the wing edge, corresponds to the pupal edge spot, one of the pupal cuticle spots that signify the locations of color pattern organizing centers. A marginal band can be expressed as a semicircle, an elongated oval, or a pair of eyespot-like structures, which suggest the organizing activity of the marginal focus. Physical damage at the pupal edge spot leads to distal dislocation of the submarginal band in Junonia almana and in Vanessa indica, suggesting that the marginal focus functions as an organizing center for the marginal band system. Taken together, we conclude that the marginal band system is developmentally equivalent to other symmetry systems. Additionally, the marginal band is likely a core element and the submarginal band a paracore element of the marginal band system, and both bands are primarily specified by the marginal focus organizing center.
Collapse
Affiliation(s)
- Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | | | | |
Collapse
|
18
|
Adhikari K, Otaki JM. A Single-Wing Removal Method to Assess Correspondence Between Gene Expression and Phenotype in Butterflies: The Case of Distal-less. Zoolog Sci 2016; 33:13-20. [PMID: 26853864 DOI: 10.2108/zs150113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is often desirable but difficult to retrieve information on the mature phenotype of an immature tissue sample that has been subjected to gene expression analysis. This problem cannot be ignored when individual variation within a species is large. To circumvent this problem in the butterfly wing system, we developed a new surgical method for removing a single forewing from a pupa using Junonia orithya; the operated pupa was left to develop to an adult without eclosion. The removed right forewing was subjected to gene expression analysis, whereas the non-removed left forewing was examined for color patterns. As a test case, we focused on Distal-less (Dll), which likely plays an active role in inducing elemental patterns, including eyespots. The Dll expression level in forewings was paired with eyespot size data from the same individual. One third of the operated pupae survived and developed wing color patterns. Dll expression levels were significantly higher in males than in females, although male eyespots were smaller in size than female eyespots. Eyespot size data showed weak but significant correlations with the Dll expression level in females. These results demonstrate that a single-wing removal method was successfully applied to the butterfly wing system and suggest the weak and non-exclusive contribution of Dll to eyespot size determination in this butterfly. Our novel methodology for establishing correspondence between gene expression and phenotype can be applied to other candidate genes for color pattern development in butterflies. Conceptually similar methods may also be applicable in other developmental systems.
Collapse
Affiliation(s)
- Kiran Adhikari
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
19
|
Taira W, Otaki JM. Butterfly Wings Are Three-Dimensional: Pupal Cuticle Focal Spots and Their Associated Structures in Junonia Butterflies. PLoS One 2016; 11:e0146348. [PMID: 26731532 PMCID: PMC4701663 DOI: 10.1371/journal.pone.0146348] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/15/2015] [Indexed: 11/19/2022] Open
Abstract
Butterfly wing color patterns often contain eyespots, which are developmentally determined at the late larval and early pupal stages by organizing activities of focal cells that can later form eyespot foci. In the pupal stage, the focal position of a future eyespot is often marked by a focal spot, one of the pupal cuticle spots, on the pupal surface. Here, we examined the possible relationships of the pupal focal spots with the underneath pupal wing tissues and with the adult wing eyespots using Junonia butterflies. Large pupal focal spots were found in two species with large adult eyespots, J. orithya and J. almana, whereas only small pupal focal spots were found in a species with small adult eyespots, J. hedonia. The size of five pupal focal spots on a single wing was correlated with the size of the corresponding adult eyespots in J. orithya. A pupal focal spot was a three-dimensional bulge of cuticle surface, and the underside of the major pupal focal spot exhibited a hollowed cuticle in a pupal case. Cross sections of a pupal wing revealed that the cuticle layer shows a curvature at a focal spot, and a positional correlation was observed between the cuticle layer thickness and its corresponding cell layer thickness. Adult major eyespots of J. orithya and J. almana exhibited surface elevations and depressions that approximately correspond to the coloration within an eyespot. Our results suggest that a pupal focal spot is produced by the organizing activity of focal cells underneath the focal spot. Probably because the focal cell layer immediately underneath a focal spot is thicker than that of its surrounding areas, eyespots of adult butterfly wings are three-dimensionally constructed. The color-height relationship in adult eyespots might have an implication in the developmental signaling for determining the eyespot color patterns.
Collapse
Affiliation(s)
- Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
- * E-mail:
| |
Collapse
|
20
|
Dhungel B, Ohno Y, Matayoshi R, Iwasaki M, Taira W, Adhikari K, Gurung R, Otaki JM. Distal-less induces elemental color patterns in Junonia butterfly wings. ZOOLOGICAL LETTERS 2016; 2:4. [PMID: 26937287 PMCID: PMC4774158 DOI: 10.1186/s40851-016-0040-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/17/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND The border ocellus, or eyespot, is a conspicuous color pattern element in butterfly wings. For two decades, it has been hypothesized that transcription factors such as Distal-less (Dll) are responsible for eyespot pattern development in butterfly wings, based on their expression in the prospective eyespots. In particular, it has been suggested that Dll is a determinant for eyespot size. However, functional evidence for this hypothesis has remained incomplete, due to technical difficulties. RESULTS Here, we show that ectopically expressed Dll induces ectopic elemental color patterns in the adult wings of the blue pansy butterfly, Junonia orithya (Lepidoptera, Nymphalidae). Using baculovirus-mediated gene transfer, we misexpressed Dll protein fused with green fluorescent protein (GFP) in pupal wings, resulting in ectopic color patterns, but not the formation of intact eyespots. Induced changes included clusters of black and orange scales (a basic feature of eyespot patterns), black and gray scales, and inhibition of cover scale development. In contrast, ectopic expression of GFP alone did not induce any color pattern changes using the same baculovirus-mediated gene transfer system. CONCLUSIONS These results suggest that Dll plays an instructive role in the development of color pattern elements in butterfly wings, although Dll alone may not be sufficient to induce a complete eyespot. This study thus experimentally supports the hypothesis of Dll function in eyespot development.
Collapse
Affiliation(s)
- Bidur Dhungel
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213 Japan
| | - Yoshikazu Ohno
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213 Japan
| | - Rie Matayoshi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213 Japan
| | - Mayo Iwasaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213 Japan
| | - Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213 Japan
| | - Kiran Adhikari
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213 Japan
| | - Raj Gurung
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213 Japan
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213 Japan
| |
Collapse
|
21
|
Iwata M, Taira W, Hiyama A, Otaki JM. The Lycaenid Central Symmetry System: Color Pattern Analysis of the Pale Grass Blue Butterfly Zizeeria maha. Zoolog Sci 2015; 32:233-9. [PMID: 26003977 DOI: 10.2108/zs140249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The nymphalid groundplan has been proposed to explain diverse butterfly wing color patterns. In this model, each symmetry system is composed of a core element and a pair of paracore elements. The development of this elemental configuration has been explained by the induction model for positional information. However, the diversity of color patterns in other butterfly families in relation to the nymphalid groundplan has not been thoroughly examined. Here, we examined aberrant color pattern phenotypes of a lycaenid butterfly, Zizeeria maha, from mutagenesis and plasticity studies as well as from field surveys. In several mutants, the third and fourth spot arrays were coordinately positioned much closer to the discal spot in comparison to the normal phenotype. In temperature-shock types, the third and fourth array spots were elongated inwardly or outwardly from their normal positions. In field-caught spontaneous mutants, small black spots were located adjacent to normal black spots. Analysis of these aberrant phenotypes indicated that the spots belonging to the third and fourth arrays are synchronously changeable in position and shape around the discal spot. Thus, these arrays constitute paracore elements of the central symmetry system of the lycaenid butterflies, and the discal spot comprises the core element. These aberrant phenotypes can be explained by the black-inducing signals that propagate from the prospective discal spot, as predicted by the induction model. These results suggest the existence of long-range developmental signals that cover a large area of a wing not only in nymphalid butterflies, but also in lycaenid butterflies.
Collapse
Affiliation(s)
- Masaki Iwata
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | | | | | | |
Collapse
|
22
|
Ohno Y, Otaki JM. Spontaneous long-range calcium waves in developing butterfly wings. BMC DEVELOPMENTAL BIOLOGY 2015; 15:17. [PMID: 25888365 PMCID: PMC4445562 DOI: 10.1186/s12861-015-0067-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/15/2015] [Indexed: 11/11/2022]
Abstract
Background Butterfly wing color patterns emerge as the result of a regular arrangement of scales produced by epithelial scale cells at the pupal stage. These color patterns and scale arrangements are coordinated throughout the wing. However, the mechanism by which the development of scale cells is controlled across the entire wing remains elusive. In the present study, we used pupal wings of the blue pansy butterfly, Junonia orithya, which has distinct eyespots, to examine the possible involvement of Ca2+ waves in wing development. Results Here, we demonstrate that the developing pupal wing tissue of the blue pansy butterfly displayed spontaneous low-frequency Ca2+ waves in vivo that propagated slowly over long distances. Some waves appeared to be released from the immediate peripheries of the prospective eyespot and discal spot, though it was often difficult to identify the specific origins of these waves. Physical damage, which is known to induce ectopic eyespots, led to the radiation of Ca2+ waves from the immediate periphery of the damaged site. Thapsigargin, which is a specific inhibitor of Ca2+-ATPases in the endoplasmic reticulum, induced an acute increase in cytoplasmic Ca2+ levels and halted the spontaneous Ca2+ waves. Additionally, thapsigargin-treated wings showed incomplete scale development as well as other scale and color pattern abnormalities. Conclusions We identified a novel form of Ca2+ waves, spontaneous low-frequency slow waves, which travel over exceptionally long distances. Our results suggest that spontaneous Ca2+ waves play a critical role in the coordinated development of scale arrangements and possibly in color pattern formation in butterflies. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0067-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoshikazu Ohno
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan.
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan.
| |
Collapse
|
23
|
Abstract
This article reviews the latest developments in our understanding of the origin, development, and evolution of nymphalid butterfly eyespots. Recent contributions to this field include insights into the evolutionary and developmental origin of eyespots and their ancestral deployment on the wing, the evolution of eyespot number and eyespot sexual dimorphism, and the identification of genes affecting eyespot development and black pigmentation. I also compare features of old and more recently proposed models of eyespot development and propose a schematic for the genetic regulatory architecture of eyespots. Using this schematic I propose two hypotheses for why we observe limits to morphological diversity across these serially homologous traits.
Collapse
Affiliation(s)
- Antónia Monteiro
- Biological Sciences, National University of Singapore, and Yale-NUS-College, Singapore;
| |
Collapse
|
24
|
Wnt signaling underlies evolution and development of the butterfly wing pattern symmetry systems. Dev Biol 2014; 395:367-78. [PMID: 25196151 DOI: 10.1016/j.ydbio.2014.08.031] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/22/2014] [Accepted: 08/27/2014] [Indexed: 11/23/2022]
Abstract
Most butterfly wing patterns are proposed to be derived from a set of conserved pattern elements known as symmetry systems. Symmetry systems are so-named because they are often associated with parallel color stripes mirrored around linear organizing centers that run between the anterior and posterior wing margins. Even though the symmetry systems are the most prominent and diverse wing pattern elements, their study has been confounded by a lack of knowledge regarding the molecular basis of their development, as well as the difficulty of drawing pattern homologies across species with highly derived wing patterns. Here we present the first molecular characterization of symmetry system development by showing that WntA expression is consistently associated with the major basal, discal, central, and external symmetry system patterns of nymphalid butterflies. Pharmacological manipulations of signaling gradients using heparin and dextran sulfate showed that pattern organizing centers correspond precisely with WntA, wingless, Wnt6, and Wnt10 expression patterns, thus suggesting a role for Wnt signaling in color pattern induction. Importantly, this model is supported by recent genetic and population genomic work identifying WntA as the causative locus underlying wing pattern variation within several butterfly species. By comparing the expression of WntA between nymphalid butterflies representing a range of prototypical symmetry systems, slightly deviated symmetry systems, and highly derived wing patterns, we were able to infer symmetry system homologies in several challenging cases. Our work illustrates how highly divergent morphologies can be derived from modifications to a common ground plan across both micro- and macro-evolutionary time scales.
Collapse
|
25
|
Iwata M, Ohno Y, Otaki JM. Real-time in vivo imaging of butterfly wing development: revealing the cellular dynamics of the pupal wing tissue. PLoS One 2014; 9:e89500. [PMID: 24586829 PMCID: PMC3931798 DOI: 10.1371/journal.pone.0089500] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/20/2014] [Indexed: 12/25/2022] Open
Abstract
Butterfly wings are covered with regularly arranged single-colored scales that are formed at the pupal stage. Understanding pupal wing development is therefore crucial to understand wing color pattern formation. Here, we successfully employed real-time in vivo imaging techniques to observe pupal hindwing development over time in the blue pansy butterfly, Junonia orithya. A transparent sheet of epithelial cells that were not yet regularly arranged was observed immediately after pupation. Bright-field imaging and autofluorescent imaging revealed free-moving hemocytes and tracheal branches of a crinoid-like structure underneath the epithelium. The wing tissue gradually became gray-white, epithelial cells were arranged regularly, and hemocytes disappeared, except in the bordering lacuna, after which scales grew. The dynamics of the epithelial cells and scale growth were also confirmed by fluorescent imaging. Fluorescent in vivo staining further revealed that these cells harbored many mitochondria at the surface of the epithelium. Organizing centers for the border symmetry system were apparent immediately after pupation, exhibiting a relatively dark optical character following treatment with fluorescent dyes, as well as in autofluorescent images. The wing tissue exhibited slow and low-frequency contraction pulses with a cycle of approximately 10 to 20 minutes, mainly occurring at 2 to 3 days postpupation. The pulses gradually became slower and weaker and eventually stopped. The wing tissue area became larger after contraction, which also coincided with an increase in the autofluorescence intensity that might have been caused by scale growth. Examination of the pattern of color development revealed that the black pigment was first deposited in patches in the central areas of an eyespot black ring and a parafocal element. These results of live in vivo imaging that covered wide wing area for a long time can serve as a foundation for studying the cellular dynamics of living wing tissues in butterflies.
Collapse
Affiliation(s)
- Masaki Iwata
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Yoshikazu Ohno
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
26
|
System-dependent regulations of colour-pattern development: a mutagenesis study of the pale grass blue butterfly. Sci Rep 2014; 3:2379. [PMID: 23917124 PMCID: PMC3753731 DOI: 10.1038/srep02379] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/23/2013] [Indexed: 12/22/2022] Open
Abstract
Developmental studies on wing colour patterns have been performed in nymphalid butterflies, but efficient genetic manipulations, including mutagenesis, have not been well established. Here, we have performed mutagenesis experiments in a lycaenid butterfly, the pale grass blue Zizeeria maha, to produce colour-pattern mutants. We fed the P-generation larvae an artificial diet containing the mutagen ethyl methane sulfonate (EMS), and the F1- and F2-generation adults showed various aberrant colour patterns: dorsoventral transformation, anterioposterior background colouration gap, weak contrast, disarrangement of spots, reduction of the size of spots, loss of spots, fusion of spots, and ectopic spots. Among them, the disarrangement, reduction, and loss of spots were likely produced by the coordinated changes of many spots of a single wing around the discal spot in a system-dependent manner, demonstrating the existence of the central symmetry system. The present study revealed multiple genetic regulations for system-dependent and wing-wide colour-pattern determination in lycaenid butterflies.
Collapse
|
27
|
Dhungel B, Ohno Y, Matayoshi R, Otaki JM. Baculovirus-mediated gene transfer in butterfly wings in vivo: an efficient expression system with an anti-gp64 antibody. BMC Biotechnol 2013; 13:27. [PMID: 23522444 PMCID: PMC3614531 DOI: 10.1186/1472-6750-13-27] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/15/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Candidate genes for color pattern formation in butterfly wings have been known based on gene expression patterns since the 1990s, but their functions remain elusive due to a lack of a functional assay. Several methods of transferring and expressing a foreign gene in butterfly wings have been reported, but they have suffered from low success rates or low expression levels. Here, we developed a simple, practical method to efficiently deliver and express a foreign gene using baculovirus-mediated gene transfer in butterfly wings in vivo. RESULTS A recombinant baculovirus containing a gene for green fluorescent protein (GFP) was injected into pupae of the blue pansy butterfly Junonia orithya (Nymphalidae). GFP fluorescence was detected in the pupal wings and other body parts of the injected individuals three to five days post-injection at various degrees of fluorescence. We obtained a high GFP expression rate at relatively high virus titers, but it was associated with pupal death before color pattern formation in wings. To reduce the high mortality rate caused by the baculovirus treatment, we administered an anti-gp64 antibody, which was raised against baculovirus coat protein gp64, to infected pupae after the baculovirus injection. This treatment greatly reduced the mortality rate of the infected pupae. GFP fluorescence was observed in pupal and adult wings and other body parts of the antibody-treated individuals at various degrees of fluorescence. Importantly, we obtained completely developed wings with a normal color pattern, in which fluorescent signals originated directly from scales or the basal membrane after the removal of scales. GFP fluorescence in wing tissues spatially coincided with anti-GFP antibody staining, confirming that the fluorescent signals originated from the expressed GFP molecules. CONCLUSIONS Our baculovirus-mediated gene transfer system with an anti-gp64 antibody is reasonably efficient, and it can be an invaluable tool to transfer, express, and functionally examine foreign genes in butterfly wings and also in other non-model insect systems.
Collapse
Affiliation(s)
- Bidur Dhungel
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | | | | | | |
Collapse
|
28
|
Otaki JM. Color Pattern Analysis of Nymphalid Butterfly Wings: Revision of the Nymphalid Groundplan. Zoolog Sci 2012; 29:568-76. [DOI: 10.2108/zsj.29.568] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Otaki JM. Structural analysis of eyespots: dynamics of morphogenic signals that govern elemental positions in butterfly wings. BMC SYSTEMS BIOLOGY 2012; 6:17. [PMID: 22409965 PMCID: PMC3368778 DOI: 10.1186/1752-0509-6-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/13/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as a foundation for future studies is still lacking. In this study, fundamental structural rules related to butterfly eyespots are proposed, and the induction model is elaborated in terms of the possible dynamics of morphogenic signals involved in the development of eyespots and parafocal elements (PFEs) based on colour-pattern analysis of the nymphalid butterfly Junonia almana. RESULTS In a well-developed eyespot, the inner black core ring is much wider than the outer black ring; this is termed the inside-wide rule. It appears that signals are wider near the focus of the eyespot and become narrower as they expand. Although fundamental signal dynamics are likely to be based on a reaction-diffusion mechanism, they were described well mathematically as a type of simple uniformly decelerated motion in which signals associated with the outer and inner black rings of eyespots and PFEs are released at different time points, durations, intervals, and initial velocities into a two-dimensional field of fundamentally uniform or graded resistance; this produces eyespots and PFEs that are diverse in size and structure. The inside-wide rule, eyespot distortion, structural differences between small and large eyespots, and structural changes in eyespots and PFEs in response to physiological treatments were explained well using mathematical simulations. Natural colour patterns and previous experimental findings that are not easily explained by the conventional gradient model were also explained reasonably well by the formal mathematical simulations performed in this study. CONCLUSIONS In a mode free from speculative molecular interactions, the present study clarifies fundamental structural rules related to butterfly eyespots, delineates a theoretical basis for the induction model, and proposes a mathematically simple mode of long-range signalling that may reflect developmental mechanisms associated with butterfly eyespots.
Collapse
Affiliation(s)
- Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
30
|
Otaki JM. Generation of butterfly wing eyespot patterns: a model for morphological determination of eyespot and parafocal element. Zoolog Sci 2012; 28:817-27. [PMID: 22035304 DOI: 10.2108/zsj.28.817] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The determination of color patterns of butterfly wing eyespots has been explained by the morphogen concentration gradient model. The induction model has been proposed recently as a more realistic alternative, in which the eyespot-specifying signal does not depend entirely on focal activity. However, this model requires further elaboration and supporting evidence to be validated. Here, I examined various color patterns of nymphalid butterflies to propose the mechanics of the induction model. Based on cases in which an eyespot light ring is identical to the background in color, I propose that eyespots are fundamentally composed of dark rings and non-dark "background" spaces between them. In the induction model, the dark-ring-inducing signal that is released from a prospective eyespot focus (the primary organizing center) as a slow-moving wave effects both selfenhancement and peripheral induction of the dark-ring-inhibitory signal at the secondary organizing centers, resulting in an eyespot that has alternate dark and light rings. Moreover, there are cases in which an unseen "imaginary light ring" surrounds an eyespot proper and in which PFEs are integrated into the eyespot. It appears that PFEs constitute a periodic continuum of eyespot dark rings; thus, a background space between the eyespot and a PFE is mechanistically equivalent to eyespot light rings. The eyespot dark-ring-inducing signals and PFE-inducing signal are likely to be identical in quality, but released at different times from the same organizing center. Computer simulations based on the reaction-diffusion system support the feasibility of the induction model.
Collapse
Affiliation(s)
- Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
31
|
Ohno Y, Otaki JM. Eyespot colour pattern determination by serial induction in fish: Mechanistic convergence with butterfly eyespots. Sci Rep 2012; 2:290. [PMID: 22375251 PMCID: PMC3289039 DOI: 10.1038/srep00290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 02/13/2012] [Indexed: 12/03/2022] Open
Abstract
Vertebrate and invertebrate colour pattern determination mechanisms are considered distinct; recently, however, both fish and butterfly colour patterns have been partly explained by reaction-diffusion mechanisms. Here, we show that multi-coloured eyespots of the spotted mandarin fish, which are reminiscent of butterfly eyespots, are determined by the serial induction of colour patterns. The morphological characterisation of eyespots indicates a sequence of colour pattern development and dynamic interactions between eyespots. A substantial part of an eyespot can be surgically removed and is then reconstructed by regeneration. Strikingly, ectopic patterns are induced by damage at a background (eyespotless) area, but focal damage did not change the eyespot size. Early stages of damage repair were accompanied by calcium oscillations. These results demonstrate that fish eyespots are determined by serial induction, which is likely based on a reaction-diffusion mechanism. These findings suggest mechanistic similarities between the fish and butterfly systems.
Collapse
Affiliation(s)
- Yoshikazu Ohno
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
32
|
VANE-WRIGHT RI, TENNENT WJOHN. Colour and size variation inJunonia villida(Lepidoptera, Nymphalidae): subspecies or phenotypic plasticity? SYST BIODIVERS 2011. [DOI: 10.1080/14772000.2011.640497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
33
|
Artificially induced changes of butterfly wing colour patterns: dynamic signal interactions in eyespot development. Sci Rep 2011; 1:111. [PMID: 22355628 PMCID: PMC3216593 DOI: 10.1038/srep00111] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/26/2011] [Indexed: 11/08/2022] Open
Abstract
Eyespot formation in butterfly wings has been explained by the concentration gradient model. However, this model has recently been questioned, and dynamic interactions between the black-inducing signal and its inhibitory signal have been proposed. Here, the validity of these models was examined using a nymphalid butterfly Junonia almana. Early focal damage to the major eyespots often made them smaller, whereas the late damage made the outer ring larger and the inner ring smaller in a single eyespot. Non-focal damage at the outer ring not only attracted the whole eyespot structure toward the damaged site but also reduced the overall size of the eyespot. Surprisingly, a reduction of the major eyespot was accompanied by an enlargement of the associated miniature eyespots. These results demonstrate limitations of the conventional gradient model and support a dynamic interactive nature of morphogenic signals for colour-pattern determination in butterfly wings.
Collapse
|