1
|
López-Legentil S, Palanisamy SK, Smith KF, McCormack G, Erwin PM. Prokaryotic symbiont communities in three ascidian species introduced in both Ireland and New Zealand. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6805-6817. [PMID: 36002791 DOI: 10.1007/s11356-022-22652-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Ascidians or sea squirts are among the marine taxa with the most introduced species worldwide. These animals have a suite of biological characteristics that contribute to their successful establishment, including long reproductive seasons, rapid growth rates, and resistance to pollution. Here, we sequenced a fragment of the 16S ribosomal RNA gene to characterize symbiont diversity and host-specificity in the solitary species Syela clava and Ascidiella aspersa, and the colonial species Didemnum vexillum. Samples were collected from introduced populations in several marinas and mussel facilities around Ireland, and a marina in New Zealand. Two additional colonial species Botrylloides violaceus and Didemnum sp. were collected in Ireland, and ambient seawater was sampled from both countries for comparison. Data revealed a strong effect of host species and location on prokaryote symbiont composition, consistent with recent ascidian microbiome literature. However, a location effect did not manifest in alpha diversity metrics (e.g., the same ascidian species at different locations exhibited similar diversity) but was evident in beta diversity metrics (greater intra-specific differences across locations than within locations). Location effects were stronger than species effects only for the solitary species (i.e., A. aspersa from New Zealand was more similar to S. clava from New Zealand than to A. aspersa from Ireland). D. vexillum and A. aspersa hosted a high abundance of prokaryotic symbionts that were previously found in other ascidian species, while S. clava symbiotic community was more closely related to bacteria common in the marine environment. Further studies should aim to unravel host-microbe coevolutionary patterns and the microbial role in facilitating host establishment in different habitats.
Collapse
Affiliation(s)
- Susanna López-Legentil
- Department of Biology & Marine Biology, and Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, NC, 28409, USA.
| | - Satheesh Kumar Palanisamy
- Zoology, School of Natural Sciences & Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Kirsty F Smith
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Grace McCormack
- Zoology, School of Natural Sciences & Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Patrick M Erwin
- Department of Biology & Marine Biology, and Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, NC, 28409, USA
| |
Collapse
|
2
|
Kartavtsev YP. Some Examples of the Use of Molecular Markers for Needs of Basic Biology and Modern Society. Animals (Basel) 2021; 11:1473. [PMID: 34065552 PMCID: PMC8160991 DOI: 10.3390/ani11051473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 01/27/2023] Open
Abstract
Application of molecular genetic markers appeared to be very fruitful in achieving many goals, including (i) proving the theoretic basements of general biology and (ii) assessment of worldwide biodiversity. Both are provided in the present meta-analysis and a review as the main signal. One of the basic current challenges in modern biology in the face of new demands in the 21st century is the validation of its paradigms such as the synthetic theory of evolution (STE) and biological species concept (BSC). Another of most valuable goals is the biodiversity assessment for a variety of social needs including free web-based information resources about any living being, renovation of museum collections, nature conservation that recognized as a global project, iBOL, as well as resolving global trading problems such as false labeling of species specimens used as food, drug components, entertainment, etc. The main issues of the review are focused on animals and combine four items. (1) A combination of nDNA and mtDNA markers best suits the identification of hybrids and estimation of genetic introgression. (2) The available facts on nDNA and mtDNA diversity seemingly make introgression among many taxa obvious, although it is evident, that introgression may be quite restricted or asymmetric, thus, leaving at least the "source" taxon (taxa) intact. (3) If we consider sexually reproducing species in marine and terrestrial realms introgressed, as it is still evident in many cases, then we should recognize that the BSC, in view of the complete lack of gene flow among species, is inadequate because many zoological species are not biological ones yet. However, vast modern molecular data have proven that sooner or later they definitely become biological species. (4) An investigation into the fish taxa divergence using the BOLD database shows that most gene trees are basically monophyletic and interspecies reticulations are quite rare.
Collapse
Affiliation(s)
- Yuri Phedorovich Kartavtsev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
3
|
Hernández-Hernández T, Miller EC, Román-Palacios C, Wiens JJ. Speciation across the Tree of Life. Biol Rev Camb Philos Soc 2021; 96:1205-1242. [PMID: 33768723 DOI: 10.1111/brv.12698] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023]
Abstract
Much of what we know about speciation comes from detailed studies of well-known model systems. Although there have been several important syntheses on speciation, few (if any) have explicitly compared speciation among major groups across the Tree of Life. Here, we synthesize and compare what is known about key aspects of speciation across taxa, including bacteria, protists, fungi, plants, and major animal groups. We focus on three main questions. Is allopatric speciation predominant across groups? How common is ecological divergence of sister species (a requirement for ecological speciation), and on what niche axes do species diverge in each group? What are the reproductive isolating barriers in each group? Our review suggests the following patterns. (i) Based on our survey and projected species numbers, the most frequent speciation process across the Tree of Life may be co-speciation between endosymbiotic bacteria and their insect hosts. (ii) Allopatric speciation appears to be present in all major groups, and may be the most common mode in both animals and plants, based on non-overlapping ranges of sister species. (iii) Full sympatry of sister species is also widespread, and may be more common in fungi than allopatry. (iv) Full sympatry of sister species is more common in some marine animals than in terrestrial and freshwater ones. (v) Ecological divergence of sister species is widespread in all groups, including ~70% of surveyed species pairs of plants and insects. (vi) Major axes of ecological divergence involve species interactions (e.g. host-switching) and habitat divergence. (vii) Prezygotic isolation appears to be generally more widespread and important than postzygotic isolation. (viii) Rates of diversification (and presumably speciation) are strikingly different across groups, with the fastest rates in plants, and successively slower rates in animals, fungi, and protists, with the slowest rates in prokaryotes. Overall, our study represents an initial step towards understanding general patterns in speciation across all organisms.
Collapse
Affiliation(s)
- Tania Hernández-Hernández
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A.,Catedrática CONACYT asignada a LANGEBIO-UGA Cinvestav, Libramiento Norte Carretera León Km 9.6, 36821, Irapuato, Guanajuato, Mexico
| | - Elizabeth C Miller
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - Cristian Román-Palacios
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| |
Collapse
|
4
|
Taverna A, de Aranzamendi MC, Maggioni T, Alurralde G, Turon X, Tatián M. Morphology, genetics, and historical records support the synonymy of two ascidian species and suggest their spread throughout areas of the Southern Hemisphere. INVERTEBR SYST 2021. [DOI: 10.1071/is20060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Taxonomic uncertainties and the lack of ecological knowledge can hinder the correct identification and the assignment of biogeographic status of marine species. The ascidian Asterocarpa humilis (Heller, 1878), originally described from New Zealand, has a broad distribution in shallow temperate areas of the Southern Hemisphere, having recently colonised areas of the Northern Hemisphere. A closely related species, Cnemidocarpa robinsoni Hartmeyer, 1916, has been reported in the South-Eastern Pacific and the South-Western Atlantic, and several authors considered it a junior synonym of A. humilis. We gathered for the first time morphological and genetic data from specimens from distant areas. We studied the morphology of specimens collected at seven locations of South America. We also re-examined specimens from museum collections and revised the available literature on these species. Genetic data were obtained from specimens from Argentina and compared with available sequences of A. humilis from Chile, New Zealand, England and France. Morphological and genetic analyses showed that all compared specimens were conspecific. Furthermore, specimens from different continents shared haplotypes and exhibited low genetic distance among them. These results, the biological characteristics of this ascidian, and its longstanding presence in different habitats from disjoint areas, allow us to question its native range. We support the idea that A. humilis is a cryptogenic and neocosmopolitan species that has been transported by maritime traffic through the Southern Hemisphere, revealing frequent processes of exchange through this wide area for more than a century, with presumably associated alterations in the marine biota.
Collapse
|
5
|
Phylogenetic comparison of egg transparency in ascidians by hyperspectral imaging. Sci Rep 2020; 10:20829. [PMID: 33257720 PMCID: PMC7709464 DOI: 10.1038/s41598-020-77585-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/12/2020] [Indexed: 12/01/2022] Open
Abstract
The transparency of animals is an important biological feature. Ascidian eggs have various degrees of transparency, but this characteristic has not yet been measured quantitatively and comprehensively. In this study, we established a method for evaluating the transparency of eggs to first characterize the transparency of ascidian eggs across different species and to infer a phylogenetic relationship among multiple taxa in the class Ascidiacea. We measured the transmittance of 199 eggs from 21 individuals using a hyperspectral camera. The spectrum of the visual range of wavelengths (400–760 nm) varied among individuals and we calculated each average transmittance of the visual range as bio-transparency. When combined with phylogenetic analysis based on the nuclear 18S rRNA and the mitochondrial cytochrome c oxidase subunit I gene sequences, the bio-transparencies of 13 species were derived from four different families: Ascidiidae, Cionidae, Pyuridae, and Styelidae. The bio-transparency varied 10–90% and likely evolved independently in each family. Ascidiella aspersa showed extremely high (88.0 ± 1.6%) bio-transparency in eggs that was maintained in the “invisible” larva. In addition, it was indicated that species of the Ascidiidae family may have a phylogenetic constraint of egg transparency.
Collapse
|
6
|
Sensui N, Hirose E. Wettability and Substrate Selection in the Larval Settlement of the Solitary Ascidian Phallusia philippinensis (Phlebobranchia: Ascidiidae). Zoolog Sci 2020; 37:366-370. [DOI: 10.2108/zs200021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/11/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Noburu Sensui
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Euichi Hirose
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
7
|
Schreiber L, Kjeldsen KU, Funch P, Jensen J, Obst M, López-Legentil S, Schramm A. Endozoicomonas Are Specific, Facultative Symbionts of Sea Squirts. Front Microbiol 2016; 7:1042. [PMID: 27462299 PMCID: PMC4940369 DOI: 10.3389/fmicb.2016.01042] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/21/2016] [Indexed: 11/13/2022] Open
Abstract
Ascidians are marine filter feeders and harbor diverse microbiota that can exhibit a high degree of host-specificity. Pharyngeal samples of Scandinavian and Mediterranean ascidians were screened for consistently associated bacteria by culture-dependent and -independent approaches. Representatives of the Endozoicomonas (Gammaproteobacteria, Hahellaceae) clade were detected in the ascidian species Ascidiella aspersa, Ascidiella scabra, Botryllus schlosseri, Ciona intestinalis, Styela clava, and multiple Ascidia/Ascidiella spp. In total, Endozoicomonas was detected in more than half of all specimens screened, and in 25-100% of the specimens for each species. The retrieved Endozoicomonas 16S rRNA gene sequences formed an ascidian-specific subclade, whose members were detected by fluorescence in situ hybridization (FISH) as extracellular microcolonies in the pharynx. Two strains of the ascidian-specific Endozoicomonas subclade were isolated in pure culture and characterized. Both strains are chemoorganoheterotrophs and grow on mucin (a mucus glycoprotein). The strains tested negative for cytotoxic or antibacterial activity. Based on these observations, we propose ascidian-associated Endozoicomonas to be commensals, living off the mucus continuously secreted into the pharynx. Members of the ascidian-specific Endozoicomonas subclade were also detected in seawater from the Scandinavian sampling site, which suggests acquisition of the symbionts by horizontal transmission. The combined results indicate a host-specific, yet facultative symbiosis between ascidians and Endozoicomonas.
Collapse
Affiliation(s)
- Lars Schreiber
- Department of Bioscience, Center for Geomicrobiology and Section for Microbiology, Aarhus University Aarhus, Denmark
| | - Kasper U Kjeldsen
- Department of Bioscience, Center for Geomicrobiology and Section for Microbiology, Aarhus University Aarhus, Denmark
| | - Peter Funch
- Section of Genetics, Ecology and Evolution, Department of Bioscience, Aarhus University Aarhus, Denmark
| | - Jeppe Jensen
- Department of Bioscience, Center for Geomicrobiology and Section for Microbiology, Aarhus University Aarhus, Denmark
| | - Matthias Obst
- Department of Marine Sciences, University of Gothenburg Gothenburg, Sweden
| | - Susanna López-Legentil
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington Wilmington NC, USA
| | - Andreas Schramm
- Department of Bioscience, Center for Geomicrobiology and Section for Microbiology, Aarhus University Aarhus, Denmark
| |
Collapse
|
8
|
Vandepas LE, Oliveira LM, Lee SSC, Hirose E, Rocha RM, Swalla BJ. Biogeography of Phallusia nigra: is it really black and white? THE BIOLOGICAL BULLETIN 2015; 228:52-64. [PMID: 25745100 DOI: 10.1086/bblv228n1p52] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ascidians (Chordata, Tunicata) are an important group for the study of invasive species biology due to rapid generation times, potential for biofouling, and role as filter feeders in an ecosystem. Phallusia nigra is a putative cosmopolitan ascidian that has been described as introduced or invasive in a number of regions in the Indo-Pacific Ocean (India, Japan, and Hawaii) and in the Mediterranean. The taxonomic description of P. nigra includes a striking smooth, black tunic and large size. However, there are at least two similar Phallusia species-P. philippinensis and P. fumigata-which also have dark black tunics and can be difficult to discern from P. nigra. The distribution of P. nigra broadly overlaps with P. philippinensis in the Indo-Pacific and P. fumigata in the Mediterranean. A morphological comparison of P. nigra from Japan, the Caribbean coast of Panama, and Brazil found that Atlantic and Pacific samples were different species and led us to investigate the range of P. nigra using morphological and molecular analyses. We sequenced 18S rDNA and cytochrome oxidase B of individual ascidians from the Red Sea, Greece, Singapore, Japan, Caribbean Panama, Florida, and Brazil. Our results show that identification of the disparate darkly pigmented species has been difficult, and that several reports of P. nigra are likely either P. fumigata or P. philippinensis. Here we include detailed taxonomic descriptions of the distinguishing features of these three species and sequences for molecular barcoding in an effort to have ranges and potential invasions corrected in the ascidian literature.
Collapse
Affiliation(s)
- Lauren E Vandepas
- Biology Department, University of Washington, and Friday Harbor Laboratories, Seattle, Washington
| | - Livia M Oliveira
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Serina S C Lee
- Tropical Marine Science Institute, National University of Singapore, Singapore; and
| | - Euichi Hirose
- Department of Chemistry, Biology, and Marine Science, University of the Ryukyus, Nishihara-cho, Okinawa, Japan
| | - Rosana M Rocha
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Billie J Swalla
- Biology Department, University of Washington, and Friday Harbor Laboratories, Seattle, Washington;
| |
Collapse
|
9
|
|
10
|
López-Legentil S, Legentil ML, Erwin PM, Turon X. Harbor networks as introduction gateways: contrasting distribution patterns of native and introduced ascidians. Biol Invasions 2014; 17:1623-1638. [PMID: 26190935 PMCID: PMC4498637 DOI: 10.1007/s10530-014-0821-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 12/01/2014] [Indexed: 11/01/2022]
Abstract
Harbors and marinas are well known gateways for species introductions in marine environments but little work has been done to ascertain relationships between species diversity, harbor type, and geographic distance to uncover patterns of secondary spread. Here, we sampled ascidians from 32 harbors along ca. 300 km of the NW Mediterranean coast and investigated patterns of distribution and spread related to harbor type (marina, fishing, commercial) and geographic location using multivariate techniques. In total, 28 ascidians were identified at the species level and another 9 at the genus level based on morphology and genetic barcoding. Eight species were assigned to introduced forms, 15 were given native status and 5 were classified as cryptogenic. Aplidium accarense was reported for the first time in the Mediterranean Sea and was especially abundant in 23 of the harbors. Introduced and cryptogenic species were abundant in most of the surveyed harbors, while native forms were rare and restricted to a few harbors. Significant differences in the distribution of ascidians according to harbor type and latitudinal position were observed. These differences were due to the distribution of introduced species. We obtained a significant correlation between geographic distance and ascidian composition, indicating that closely located harbors shared more ascidian species among them. This study showed that harbors act as dispersal strongholds for introduced species, with native species only appearing sporadically, and that harbor type and geographic location should also be considered when developing management plans to constrain the spread of non-indigenous species in highly urbanized coastlines.
Collapse
Affiliation(s)
- Susanna López-Legentil
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, NC 28409 USA
| | - Miquel L Legentil
- Departament de Biologia Animal, Universitat de Barcelona (UB), Diagonal Avenue 643, 08028 Barcelona, Spain
| | - Patrick M Erwin
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, NC 28409 USA
| | - Xavier Turon
- Center for Advanced Studies of Blanes (CEAB-CSIC), Accés Cala S. Francesc 14, 17300 Blanes, Girona, Spain
| |
Collapse
|