1
|
Das M, Mondal S, Ghosh R, Darbar S, Roy L, Das AK, Pal D, Bhattacharya SS, Mallick AK, Kundu JK, Pal SK. A study of scarless wound healing through programmed inflammation, proliferation and maturation using a redox balancing nanogel. J Biomed Mater Res A 2024; 112:1594-1611. [PMID: 38545912 DOI: 10.1002/jbm.a.37712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 07/12/2024]
Abstract
In the study, we have shown the efficacy of an indigenously developed redox balancing chitosan gel with impregnated citrate capped Mn3O4 nanoparticles (nanogel). Application of the nanogel on a wound of preclinical mice model shows role of various signaling molecules and growth factors, and involvement of reactive oxygen species (ROS) at every stage, namely hemostasis, inflammation, and proliferation leading to complete maturation for the scarless wound healing. While in vitro characterization of nanogel using SEM, EDAX, and optical spectroscopy reveals pH regulated redox buffering capacity, in vivo preclinical studies on Swiss albino involving IL-12, IFN-γ, and α-SMA signaling molecules and detailed histopathological investigation and angiogenesis on every stage elucidate role of redox buffering for the complete wound healing process.
Collapse
Affiliation(s)
- Monojit Das
- Department of Zoology, Vidyasagar University, Midnapore, India
- Department of Zoology, Uluberia College, University of Calcutta, Howrah, India
| | - Susmita Mondal
- Department of Chemical, and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Ria Ghosh
- Department of Chemical, and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Soumendra Darbar
- Research and Development Division, Dey's Medical Stores (Mfg.) Ltd, Kolkata, India
| | - Lopamudra Roy
- Department of Applied Optics and Photonics, University of Calcutta, Kolkata, West Bengal, India
| | - Anjan Kumar Das
- Department of Pathology, Coochbehar Government Medical College and Hospital, India
| | - Debasish Pal
- Department of Zoology, Uluberia College, University of Calcutta, Howrah, India
| | | | - Asim Kumar Mallick
- Department of Pediatrics, Nil RatanSircar Medical College and Hospital, Kolkata, India
| | | | - Samir Kumar Pal
- Department of Zoology, Uluberia College, University of Calcutta, Howrah, India
- Department of Chemical, and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| |
Collapse
|
2
|
Gorgzadeh A, Amiri PA, Yasamineh S, Naser BK, Abdulallah KA. The potential use of nanozyme in aging and age-related diseases. Biogerontology 2024; 25:583-613. [PMID: 38466515 DOI: 10.1007/s10522-024-10095-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/17/2024] [Indexed: 03/13/2024]
Abstract
The effects of an increasingly elderly population are among the most far-reaching in 21st-century society. The growing healthcare expense is mainly attributable to the increased incidence of chronic illnesses that accompany longer life expectancies. Different ideas have been put up to explain aging, but it is widely accepted that oxidative damage to proteins, lipids, and nucleic acids contributes to the aging process. Increases in life expectancy in all contemporary industrialized cultures are accompanied by sharp increases in the prevalence of age-related diseases such as cardiovascular and neurological conditions, type 2 diabetes, osteoporosis, and cancer. Therefore, academic and public health authorities should prioritize the development of therapies to increase health span. Nanozyme (NZ)-like activity in nanomaterials has been identified as promising anti-aging nanomedicines. More than that, nanomaterials displaying catalytic activities have evolved as artificial enzymes with high structural stability, variable catalytic activity, and functional diversity for use in a wide range of biological settings, including those dealing with age-related disorders. Due to their inherent enzyme-mimicking qualities, enzymes have attracted significant interest in treating diseases associated with reactive oxygen species (ROS). The effects of NZs on aging and age-related disorders are summarized in this article. Finally, prospects and threats to enzyme research and use in aging and age-related disorders are offered.
Collapse
Affiliation(s)
| | - Paria Arab Amiri
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | | | | |
Collapse
|
3
|
Tenchov R, Sasso JM, Wang X, Zhou QA. Antiaging Strategies and Remedies: A Landscape of Research Progress and Promise. ACS Chem Neurosci 2024; 15:408-446. [PMID: 38214973 PMCID: PMC10853939 DOI: 10.1021/acschemneuro.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Aging is typified by a gradual loss of physiological fitness and accumulation of cellular damage, leading to deteriorated functions and enhanced vulnerability to diseases. Antiaging research has a long history throughout civilization, with many efforts put forth to understand and prevent the effects of aging. Multiple strategies aiming to promote healthy aging and extend the lifespan have been developed including lifestyle adjustments, medical treatments, and social programs. A multitude of antiaging medicines and remedies have also been explored. Here, we use data from the CAS Content Collection to analyze the publication landscape of recent research related to antiaging strategies and treatments. We review the recent advances and delineate trends in research headway of antiaging knowledge and practice across time, geography, and development pipelines. We further assess the state-of-the-art antiaging approaches and explore their correlations with age-related diseases. The landscape of antiaging drugs has been outlined and explored. Well-recognized and novel, currently evaluated antiaging agents have also been summarized. Finally, we review clinical applications of antiaging products with their development pipelines. The objective of this review is to summarize current knowledge on preventive strategies and treatment remedies in the field of aging, to outline challenges and evaluate growth opportunities, in order to further efforts to solve the problems that remain.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Janet M. Sasso
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Xinmei Wang
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
4
|
Zhao S, Chang X, Li J, Zhu Y, Pan X, Hua Z, Li J. The two-way immunotoxicity in native fish induced by exudates of Microcystis aeruginosa: Immunostimulation and immunosuppression. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132554. [PMID: 37741215 DOI: 10.1016/j.jhazmat.2023.132554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Secondary metabolites of cyanobacterial blooms have caused serious risks to aquatic animals. The immune system is an important barrier for fish against pollutants in aquatic systems. The immunetoxic mechanism of the exudates of Microcystis aeruginosa (MaE) on fish was lacking due to the complex components of MaE. In this project, Sinocyclocheilus grahami was used as the model to study the immunotoxic effects of MaE and PHS (one of the main components of the MaE) in fish. The immunosuppression effects of MaE are mainly in, decreased head-kindey index, damaged tissue structure of head-kidney and downregulated NF-κB, IL-1β. PHS induce immunostimulation via, increasing spleen index, apparently increasing leucocytes, increasing the IgM and lysozyme levels in serum and skin mucus, upregulating protease in skin mucus, increasing pro-immunologic factors (IL-1β, IL-6, IL-8, IL-10, TNF-α and NF-κB), probably activating the TLRs/NF-κB, MAPK, FoxO1 and PPARγ signaling pathways. Therefore, our research identified potential data gaps that how the exudates of cyanobacteria induces immunostimulation and immunosuppression from immune organs level to skin mucus to blood cells to inflammatory factors to potential molecular initiating event of MaE and PHS. Further research is needed to obtain a deeper view of the molecular mechanisms involved in MaE and PHS immunotoxicity and its consequences in long-time exposures.
Collapse
Affiliation(s)
- Sen Zhao
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650500, China
| | - Xuexiu Chang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Jun Li
- Institute of International Rivers and Eco-security, Kunming, Yunnan 650500, China
| | - Yanhua Zhu
- No. 1 School of Clinical Medicine, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Xiaofu Pan
- The State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Zexiang Hua
- Aquatic Technology Promotion Station of Yunnan Province, Kunming 650034, China
| | - Jiaojiao Li
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650500, China.
| |
Collapse
|
5
|
Regalado L, Sario S, Mendes RJ, Valle J, Harvey PJ, Teixeira C, Gomes P, Andreu D, Santos C. Towards a Sustainable Management of the Spotted-Wing Drosophila: Disclosing the Effects of Two Spider Venom Peptides on Drosophila suzukii. INSECTS 2023; 14:533. [PMID: 37367349 DOI: 10.3390/insects14060533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
The spotted-wing drosophila (Drosophila suzukii) is a polyphagous pest that causes severe damage and economic losses to soft-skinned fruit production. Current control methods are dominated by inefficient cultural practices and broad-spectrum insecticides that, in addition to having toxic effects on non-target organisms, are becoming less effective due to acquired resistance. The increasing awareness of the real impact of insecticides on health and the environment has promoted the exploration of new insecticidal compounds, addressing novel molecular targets. This study explores the efficacy of two orally delivered spider venom peptides (SVPs), J-atracotoxin-Hv1c (Hv1c) and µ-theraphotoxin-Hhn2b (TRTX), to manage D. suzukii, through survival assays and the evaluation of gene expression associated with detoxification pathways. Treatment with TRTX at 111.5 µM for 48 h enhanced fly longevity compared with the control group. Gene expression analysis suggests that detoxification and stress-related mechanisms, such as expression of P450 proteins and apoptotic stimuli signaling, are triggered in D. suzukii flies in response to these treatments. Our results highlight the potential interest of SVPs to control this pest, shedding light on how to ultimately develop improved target-specific formulations.
Collapse
Affiliation(s)
- Laura Regalado
- iB2, Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- LAQV-REQUIMTE, Faculty of Sciences, University of Porto, 4050-453 Porto, Portugal
| | - Sara Sario
- iB2, Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- LAQV-REQUIMTE, Faculty of Sciences, University of Porto, 4050-453 Porto, Portugal
| | - Rafael J Mendes
- iB2, Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- LAQV-REQUIMTE, Faculty of Sciences, University of Porto, 4050-453 Porto, Portugal
| | - Javier Valle
- Proteomics and Protein Chemistry Unit, Department of Medicine and Life Sciences, Pompeu Fabra University, 08002 Barcelona, Spain
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cátia Teixeira
- LAQV-REQUIMTE, Faculty of Sciences, University of Porto, 4050-453 Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Faculty of Sciences, University of Porto, 4050-453 Porto, Portugal
| | - David Andreu
- Proteomics and Protein Chemistry Unit, Department of Medicine and Life Sciences, Pompeu Fabra University, 08002 Barcelona, Spain
| | - Conceição Santos
- iB2, Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- LAQV-REQUIMTE, Faculty of Sciences, University of Porto, 4050-453 Porto, Portugal
| |
Collapse
|
6
|
Bento de Carvalho T, Barbosa JB, Teixeira P. Effectiveness and Durability of a Quaternary Ammonium Compounds-Based Surface Coating to Reduce Surface Contamination. BIOLOGY 2023; 12:biology12050669. [PMID: 37237483 DOI: 10.3390/biology12050669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Foodborne diseases are of major concern as they have a significant impact on public health, both socially and economically. The occurrence of cross-contamination of food in household kitchens is a serious threat and the adoption of safe food practices is of paramount importance. This work aimed to study the effectiveness and durability of a commercial quaternary ammonium compound-based surface coating which, according to the manufacturer, retains its antimicrobial activity for 30 days, and is suitable for all types of hard surfaces for the prevention and/or control of cross-contamination. For that, its antimicrobial efficacy, killing contact time and durability on three different surfaces-polyvinyl chloride, glass, and stainless-steel-against three pathogens-Escherichia coli ATCC 25922, Acinetobacter baumannii ESB260 and Listeria monocytogenes Scott A-were tested according to the current antimicrobial treated surfaces efficacy test (ISO22196:2011). The results showed that the antimicrobial coating was effective against all pathogens with a reduction of >5.0 log CFU/cm2 in less than one minute for the three surfaces, but its durability was less than one week on all surfaces cleaned in the usual manner. Additionally, trace amounts (≤0.2 mg/kg) of the antimicrobial coating, which may migrate into food when contacting the surface, did not show cytotoxicity to human colorectal adenocarcinoma cells. The suggested antimicrobial coating has the potential to significantly reduce surface contamination, ensure surface disinfection and reduce the likelihood of cross-contamination in domestic kitchens, although it is less durable than suggested. The use of this technology in household settings is an attractive complement to the existing cleaning protocols and solutions that are already in place.
Collapse
Affiliation(s)
- Teresa Bento de Carvalho
- Universidade Católica Portuguesa, Laboratório Associado, CBQF-Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Rua Diego Botelho 1327, 4169-005 Porto, Portugal
| | - Joana Bastos Barbosa
- Universidade Católica Portuguesa, Laboratório Associado, CBQF-Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Rua Diego Botelho 1327, 4169-005 Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, Laboratório Associado, CBQF-Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Rua Diego Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
7
|
Raji-Amirhasani A, Khaksari M, Soltani Z, Saberi S, Iranpour M, Darvishzadeh Mahani F, Hajializadeh Z, Sabet N. Beneficial effects of time and energy restriction diets on the development of experimental acute kidney injury in Rat: Bax/Bcl-2 and histopathological evaluation. BMC Nephrol 2023; 24:59. [PMID: 36941590 PMCID: PMC10026443 DOI: 10.1186/s12882-023-03104-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
People's lifestyles and, especially, their eating habits affect their health and the functioning of the organs in their bodies, including the kidneys. One's diet influences the cells' responses to stressful conditions such as acute kidney injury (AKI). This study aims to determine the preconditioning effects of four different diets: energy restriction (ER) diet, time restriction (TR) eating, intermittent fasting (IF), and high-fat diet (HF) on histopathological indices of the kidney as well as the molecules involved in apoptosis during AKI. Adult male rats underwent ER, TR, IF, and HF diets for eight weeks. Then, AKI was induced, and renal function indices, histopathological indices, and molecules involved in apoptosis were measured. In animals with AKI, urinary albumin excretion, serum urea, creatinine and, Bax/Bcl-2 ratio increased in the kidney, while renal eGFR decreased. ER and TR diets improved renal parameters and prevented an increase in the Bax/Bcl-2 ratio. The IF diet improved renal parameters but had no effect on the Bax/Bcl-2 ratio. On the other hand, the HF diet worsened renal function and increased the Bax/Bcl-2 ratio. Histopathological examination also showed improved kidney conditions in the ER and TR groups and more damage in the HF group. This study demonstrated that ER and TR diets have renoprotective effects on AKI and possibly cause the resistance of kidney cells to damage by reducing the Bax/Bcl-2 ratio and improving apoptotic conditions.
Collapse
Affiliation(s)
- Alireza Raji-Amirhasani
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shadan Saberi
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pathology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Darvishzadeh Mahani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cardiovascular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Hajializadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cardiovascular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazanin Sabet
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Lee G, Choi H, Liu H, Han YH, Paul NC, Han GH, Kim H, Kim PI, Seo SI, Song J, Sang H. Biocontrol of the causal brown patch pathogen Rhizoctonia solani by Bacillus velezensis GH1-13 and development of a bacterial strain specific detection method. FRONTIERS IN PLANT SCIENCE 2023; 13:1091030. [PMID: 36699832 PMCID: PMC9868939 DOI: 10.3389/fpls.2022.1091030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Brown patch caused by the basidiomycete fungus Rhizoctonia solani is an economically important disease of cool-season turfgrasses. In order to manage the disease, different types of fungicides have been applied, but the negative impact of fungicides on the environment continues to rise. In this study, the beneficial bacteria Bacillus velezensis GH1-13 was characterized as a potential biocontrol agent to manage brown patch disease. The strain GH1-13 strongly inhibited the mycelial growth of turf pathogens including different anastomosis groups of R. solani causing brown patch and large patch. R. solani AG2-2(IIIB) hyphae were morphologically changed, and fungal cell death resulted from exposure to the strain GH1-13. In addition, the compatibility of fungicides with the bacterial strain, and the combined application of fungicide azoxystrobin and the strain in brown patch control on creeping bentgrass indicated that the strain could serve as a biocontrol agent. To develop strain-specific detection method, two unique genes from chromosome and plasmid of GH1-13 were found using pan-genome analysis of 364 Bacillus strains. The unique gene from chromosome was successfully detected using both SYBR Green and TaqMan qPCR methods in bacterial DNA or soil DNA samples. This study suggests that application of GH1-13 offers an environmentally friendly approach via reducing fungicide application rates. Furthermore, the developed pipeline of strain-specific detection method could be a useful tool for detecting and studying the dynamics of specific biocontrol agents.
Collapse
Affiliation(s)
- Gahee Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Hyeongju Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Haifeng Liu
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Yun-Hyeong Han
- Division of Food and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
- Damyang-gun Agricultural Technology Center, Damyang, Republic of Korea
| | - Narayan Chandra Paul
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Gui Hwan Han
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup, Republic of Korea
| | | | - Pyoung Il Kim
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup, Republic of Korea
| | - Sun-Il Seo
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup, Republic of Korea
| | - Jaekyeong Song
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
- Division of Food and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
9
|
Zhang Y, Wang M, Dong H, Yang T. Effects of peroxisome proliferator activated receptor-α agonist on growth performance, blood profiles, gene expression related to liver fat metabolism in broilers fed diets containing corn naturally contaminated with mycotoxins. Front Vet Sci 2023; 9:1103185. [PMID: 36686165 PMCID: PMC9848495 DOI: 10.3389/fvets.2022.1103185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
This study was conducted to determine the subclinical symptom of broilers exposure to mycotxoins from corn naturally contaminated, and the preventive effect with peroxisome proliferator activated receptor-α (PPARα) agonist (Wy-14643) supplementation. A total of 360 one-day -old male Arbor Acres broilers were randomly distributed into 4 treatments with 9 replicates of 10 birds. Dietary treatments included: treatment 1, normal corn diets group, treatment 2, normal corn + Wy-14643 diets group, treatment 3, mycotoxin-contaminated corn diets group, treatment 4, mycotoxin-contaminated corn + Wy-14643 diets group. The supplementation of Wy-14643 was added at the expense of 1 and 2 mg/kg in starter and grower diets, respectively. Birds fed mycotoxin diets had lower (P < 0.05) final body weight (BW), Body weight gain (BWG), feed intake (FI), and had higher (P < 0.05) feed conversion ratio (FCR). Feeding mycotoxin diets reduced (P < 0.05) the levels of serum superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT), total antioxidative capacity (T-AOC) and high-density lipoprotein cholesterol (HDL-C), but higher malondialdehyde (MDA), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and fatty acid synthetase (FAS). The supplementation of Wy-14643 increased (P < 0.05) the level of serum T-AOC, but reduced (P < 0.05) TG and LDL-C. Interactive effect was not observed (P > 0.05) in growth performance and blood profiles. The relative expression of PPARα mRNA and 3-Hydroxy-3-MethylGlutaryl-CO enzyme A (HMGCoA) mRNA was higher (P < 0.05) in treatment 3 and treatment 4 than treatment 1 and treatment 2, and there was significant difference (P <0.05) between treatment 3 and treatment 4. There was significant difference (P < 0.05) between groups of the relative expression of recombinant carnitine palmitoyl transferase 1 (CPT1) mRNA. The relative expression of acyl CoA oxidase (ACO) mRNA was higher (P < 0.05) in treatment 1 and treatment 4 than treatment 2 and treatment 3, and there was significant difference (P < 0.05) between treatment 1 and treatment 4. The relative expression of apolipoprotein A (APO-A) mRNA was higher (P < 0.05) in treatment 1 and treatment 4 than treatment 2 and treatment 3. The relative expression of sterol regulatory element binding protein (SREBP) mRNA was lower (P < 0.05) in treatment 2, treatment 3 and treatment 4 than treatment 1, and there was significant difference (P < 0.05) between treatment 3 and treatment 4. Overall, feeding naturally contaminated mycotoxin diets caused negative effects on growth performance and blood profiles, while diet supplementation with Wy-14643 alleviate the detrimental effects on gene and expression related to liver fat metabolism in broilers.
Collapse
|
10
|
Corona-Herrera GA, Navarrete-Ramírez P, Sanchez-Flores FA, Jimenez-Jacinto V, Martínez-Palacios CA, Palomera-Sánchez Z, Volkoff H, Martínez-Chávez CC. Shining light on the transcriptome: Molecular regulatory networks leading to a fast-growth phenotype by continuous light in an environmentally sensitive teleost (Atherinopsidae). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112550. [PMID: 36049383 DOI: 10.1016/j.jphotobiol.2022.112550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Photoperiod can profoundly affect the physiology of teleost fish, including accelerated growth here defined as "fast growth phenotypes". However, molecular regulatory networks (MRNs) and biological processes being affected by continuous illumination and which allow some teleost species evident plasticity to thrive under this condition are not yet clear. Therefore, to provide a broad perspective of such mechanisms, Chirostoma estor fish were raised and sampled for growth under a simulated control (LD) 12 h Light: 12 h Dark or a continuous illumination (LL) 24 h Light: 0 h Dark since fertilization. The experiment lasted 12 weeks after hatching (wah), the time at which fish were sampled for growth, length, and whole-body cortisol levels. Additionally, 3 heads of fish from each treatment were used to perform a de novo transcriptome analysis using Next-Generation Sequencing. Fish in LL developed the fast growth phenotype with significant differences visible at 4 wah and gained 66% more mass by 12 wah than LD fish. Cortisol levels under LL were below basal levels at all times compared to fish in LD, suggesting circadian dysregulation effects. A strong effect of LL was observed in samples with a generalized down-regulation of genes except for Reactive Oxygen Species responses, genome stability, and growth biological processes. To our knowledge, this work is the first study using a transcriptomic approach to understand environmentally sensitive MRNs that mediate phenotypic plasticity in fish submitted to continuous illumination. This study gives new insights into the plasticity mechanisms of teleost fish under constant illumination.
Collapse
Affiliation(s)
- Guillermo A Corona-Herrera
- Laboratorio de Biotecnología Acuícola, Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58330, Mexico
| | - Pamela Navarrete-Ramírez
- CONACYT-Laboratorio de Biotecnología Acuícola, Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - F Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática del Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Verónica Jimenez-Jacinto
- Unidad Universitaria de Secuenciación Masiva y Bioinformática del Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Carlos A Martínez-Palacios
- Laboratorio de Biotecnología Acuícola, Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58330, Mexico
| | - Zoraya Palomera-Sánchez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58330, Mexico
| | - Helene Volkoff
- Department of Biology, Memorial University of Newfoundland, St John's A1B3X9, Canada
| | - C Cristian Martínez-Chávez
- Laboratorio de Biotecnología Acuícola, Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58330, Mexico.
| |
Collapse
|
11
|
Melatonin-related signaling pathways and their regulatory effects in aging organisms. Biogerontology 2022; 23:529-539. [PMID: 35895186 DOI: 10.1007/s10522-022-09981-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2022] [Indexed: 12/17/2022]
Abstract
Melatonin is a tryptophan-derived ancestral molecule evolved in bacteria. According to the endosymbiotic theory, eukaryotic cells received mitochondria, plastids, and other organelles from bacteria by internalization. After the endosymbiosis, bacteria evolved into organelles and retained their ability of producing melatonin. Melatonin is a small, evolutionarily conserved indole with multiple receptor-mediated, receptor-dependent, and independent actions. Melatonin's initial function was likely a radical scavenger in bacteria that's why there was high intensity of free radicals on primitive atmosphere in the ancient times, and hormetic functions of melatonin, which are effecting through the level of gene expression via prooxidant and antioxidant redox pathways, are developed in throughout the eukaryotic evolution. In the earlier stages of life, endosymbiotic events between mitochondria and other downstream organelles continue with mutual benefits. However, this interaction gradually deteriorates as a result of the imperfection of both mitochondrial and extramitochondrial endosymbiotic crosstalk with the advancing age of eukaryotic organisms. Throughout the aging process melatonin levels tend to reduce and as a manifestation of this, many symptoms in organisms' homeostasis, such as deterioration in adjustment of cellular clocks, are commonly seen. In addition, due to deterioration in mitochondrial integrity and functions, immunity decreases, and lower levels of melatonin renders older individuals to be more susceptible to impaired redox modulation and age-related diseases. Our aim in this paper is to focus on the several redox modulation mechanisms in which melatonin signaling has a central role, to discuss melatonin's gerontological aspects and to provide new research ideas with researchers.
Collapse
|
12
|
Yalcin YS, Aydin BN, Sayadujjhara M, Sitther V. Antibiotic-Induced Changes in Pigment Accumulation, Photosystem II, and Membrane Permeability in a Model Cyanobacterium. Front Microbiol 2022; 13:930357. [PMID: 35814666 PMCID: PMC9257187 DOI: 10.3389/fmicb.2022.930357] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/25/2022] [Indexed: 11/27/2022] Open
Abstract
Fremyella diplosiphon is a well-studied a model cyanobacterium for photosynthesis due to its efficient light absorption potential and pigment accumulation. In the present study, the impact of ampicillin, tetracycline, kanamycin, and cefotaxime on pigment fluorescence and photosynthetic capacity in Fremyella diplosiphon strains B481-WT and B481-SD was investigated. Our results indicated that both strains exposed to kanamycin from 0.2 to 3.2 mg/L and tetracycline from 0.8 to 12.8 mg/L enhanced growth and pigment accumulation. Additionally, B481-SD treated with 0.2-51.2 mg/L ampicillin resulted in a significant enhancement of pigment fluorescence. A detrimental effect on growth and pigmentation in both the strains exposed to 6.4-102.5 mg/L kanamycin and 0.8-102.5 mg/L cefotaxime was observed. Detection of reactive oxygen species revealed highest levels of oxidative stress at 51.2 and 102.5 mg/L kanamycin for B481-SD and 102.5 mg/L for B481-WT. Membrane permeability detected by lactate dehydrogenase assay indicated maximal activity at 0.8 mg/L ampicillin, kanamycin, and tetracycline treatments on day 6. Abundant vacuolation, pyrophosphate, and cyanophycin granule formation were observed in treated cells as a response to antibiotic stress. These findings on the hormetic effect of antibiotics on F. diplosiphon indicate that optimal antibiotic concentrations induce cellular growth while high concentrations severely impact cellular functionality. Future studies will be aimed to enhance cellular lipid productivity at optimal antibiotic concentrations to disintegrate the cell wall, thus paving the way for clean bioenergy applications.
Collapse
Affiliation(s)
| | | | | | - Viji Sitther
- Department of Biology, Morgan State University, Baltimore, MD, United States
| |
Collapse
|
13
|
Chao MW, Liao CW, Lin CH, Tseng CY. Immunomodulatory protein from ganoderma microsporum protects against oxidative damages and cognitive impairments after traumatic brain injury. Mol Cell Neurosci 2022; 120:103735. [PMID: 35562037 DOI: 10.1016/j.mcn.2022.103735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022] Open
Abstract
A traumatic brain injury (TBI) causes abnormal proliferation of neuroglial cells, and over-release of glutamate induces oxidative stress and inflammation and leads to neuronal death, memory deficits, and even death if the condition is severe. There is currently no effective treatment for TBI. Recent interests have focused on the benefits of supplements or natural products like Ganoderma. Studies have indicated that immunomodulatory protein from Ganoderma microsporum (GMI) inhibits oxidative stress in lung cancer cells A549 and induces cancer cell death by causing intracellular autophagy. However, no evidence has shown the application of GMI on TBI. Thus, this study addressed whether GMI could be used to prevent or treat TBI through its anti-inflammation and antioxidative effects. We used glutamate-induced excitotoxicity as in vitro model and penetrating brain injury as in vivo model of TBI. We found that GMI inhibits the generation of intracellular reactive oxygen species and reduces neuronal death in cortical neurons against glutamate excitotoxicity. In neurite injury assay, GMI promotes neurite regeneration, the length of the regenerated neurite was even longer than that of the control group. The animal data show that GMI alleviates TBI-induced spatial memory deficits, expedites the restoration of the injured areas, induces the secretion of brain-derived neurotrophic factors, increases the superoxide dismutase 1 (SOD-1) and lowers the astroglial proliferation. It is the first paper to apply GMI to brain-injured diseases and confirms that GMI reduces oxidative stress caused by TBI and improves neurocognitive function. Moreover, the effects show that prevention is better than treatment. Thus, this study provides a potential treatment in naturopathy against TBI.
Collapse
Affiliation(s)
- Ming-Wei Chao
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, 200 Chung Pei Road, Zhongli District, Taoyuan City 32023, Taiwan.
| | - Chia-Wei Liao
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Zhongli District, Taoyuan City 32023, Taiwan
| | - Chin-Hung Lin
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Zhongli District, Taoyuan City 32023, Taiwan.
| | - Chia-Yi Tseng
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Zhongli District, Taoyuan City 32023, Taiwan.
| |
Collapse
|
14
|
Uthaug MV, Mason NL, Havenith MN, Vancura M, Ramaekers JG. An experience with Holotropic Breathwork is associated with improvement in non-judgement and satisfaction with life while reducing symptoms of stress in a Czech-speaking population. JOURNAL OF PSYCHEDELIC STUDIES 2022. [DOI: 10.1556/2054.2021.00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Background
Holotropic breathwork (Grof ® Breathwork), was developed by Stanislav Grof and Christina Grof as a ‘non-drug’ alternative technique to evoke altered states of consciousness (ASC). Interestingly, although HBW has been anecdotally reported to evoke experiences and mental health effects corresponding to those of psychedelic substances, the scientific literature on the matter is scarce.
Aims
The objective of this study was to assess the (sub)acute and long-term effects of HBW on satisfaction with life, and whether these depend on the depth of the experience evoked by the HBW session.
Methods
A naturalistic observational design was employed in the present study. Between January 2019 and July 2020, 58 Czech-speaking participants who had an experience with HBW were assessed using three separate anonymous online-surveys created and hosted on Qualtrics. Assessments of mindfulness, satisfaction with life, depression, anxiety, and stress were made once prior to (baseline), and two times following (sub-acutely and 4-weeks) the participants’ experience with HBW. The ego dissolution inventory and the 5-dimensional altered states of consciousness scale was used to quantify the HBW experience.
Results
Despite low ratings of the psychedelic experience (mean range of 0–34% out of 100%), ratings of non-judgement significantly increased sub-acutely following the HBW session and persisted for 4-weeks. Stress-related symptoms significantly decreased while satisfaction with life significantly increased at 4-weeks after HBW.
Conclusion
An experience with HBW may be associated with improvement in non-judgement, satisfaction with life, and reductions of stress-related symptoms.
Collapse
Affiliation(s)
- Malin Vedøy Uthaug
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
| | - Natasha L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
| | - Martha N Havenith
- Zero-Noise Lab, Ernst Strüngmann Institute for Neuroscience, Deutschordenstr. 46, 60528, Frankfurt a.M., Germany
| | - Michael Vancura
- Diabasis z.s., Rybničná 1, Prague 6, Prague, The Czech Republic
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
| |
Collapse
|
15
|
Raji-Amirhasani A, Khaksari M, Shahrokhi N, Soltani Z, Nazari-Robati M, Mahani FD, Hajializadeh Z, Sabet N. Comparison of the effects of different dietary regimens on susceptibility to experimental acute kidney injury: the role of SIRT1 and TGF-β1. Nutrition 2022; 96:111588. [DOI: 10.1016/j.nut.2022.111588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/10/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
|
16
|
Dadan M, Tylewicz U, Tappi S, Rybak K, Witrowa-Rajchert D, Dalla Rosa M. Effect of Ultrasound, Steaming, and Dipping on Bioactive Compound Contents and Antioxidant Capacity of Basil and Parsley. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/141430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Parveen S. Impact of calorie restriction and intermittent fasting on periodontal health. Periodontol 2000 2021; 87:315-324. [PMID: 34463980 DOI: 10.1111/prd.12400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The scientific evidence indicates that calorie restriction and intermittent fasting are among the appropriate strategies targeting factual causative factors of various inflammatory and lifestyle-related disorders. Periodontitis is a common oral inflammatory disease leading to bone loss that is associated with various systemic problems. Previous studies suggest that calorie restriction may dampen inflammation and concomitant tissue damage under inflammatory conditions, such as periodontal diseases in nonhuman primates. However, insufficient research has been carried out to assess the effects of a calorie-restricted diet on the initiation and progression of periodontal disease in humans. This review of the literature aims to describe the general concepts of calorie restriction, its clinical implications, and related therapeutic potential in controlling periodontal inflammation. The review shows that fasting regimen groups have shown lesser bone loss because of an increase in osteoprogenitor cells than non-fasting groups. Calorie restriction dampens the inflammatory response and reduces circulating inflammatory mediators like tumor necrosis factor-alpha, interleukin-6, matrix metalloproteinase-8, matrix metalloproteinase-9, and interleukin-1-beta in gingival crevicular fluid. However, the incorporation of this form of dietary intervention continues to be challenging in our current society, in which obesity is a major public concern. Calorie restriction and intermittent fasting can play a key role in the cost-effective resolution of periodontal inflammation as a primary prevention strategy for the management of chronic inflammatory diseases, including periodontal diseases.
Collapse
Affiliation(s)
- Sameena Parveen
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
18
|
Georgoulis I, Feidantsis K, Giantsis IA, Kakale A, Bock C, Pörtner HO, Sokolova IM, Michaelidis B. Heat hardening enhances mitochondrial potential for respiration and oxidative defence capacity in the mantle of thermally stressed Mytilus galloprovincialis. Sci Rep 2021; 11:17098. [PMID: 34429490 PMCID: PMC8384858 DOI: 10.1038/s41598-021-96617-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Ectotherms are exposed to a range of environmental temperatures and may face extremes beyond their upper thermal limits. Such temperature extremes can stimulate aerobic metabolism toward its maximum, a decline in aerobic substrate oxidation, and a parallel increase of anaerobic metabolism, combined with ROS generation and oxidative stress. Under these stressful conditions, marine organisms recruit several defensive strategies for their maintenance and survival. However, thermal tolerance of ectothermic organisms may be increased after a brief exposure to sub-lethal temperatures, a process known as "hardening". In our study, we examined the ability of M. galloprovincialis to increase its thermal tolerance under the effect of elevated temperatures (24, 26 and 28 °C) through the "hardening" process. Our results demonstrate that this process can increase the heat tolerance and antioxidant defense of heat hardened mussels through more efficient ETS activity when exposed to temperatures beyond 24 °C, compared to non-hardened individuals. Enhanced cell protection is reflected in better adaptive strategies of heat hardened mussels, and thus decreased mortality. Although hardening seems a promising process for the maintenance of aquacultured populations under increased seasonal temperatures, further investigation of the molecular and cellular mechanisms regulating mussels' heat resistance is required.
Collapse
Affiliation(s)
- Ioannis Georgoulis
- grid.4793.90000000109457005Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- grid.4793.90000000109457005Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis A. Giantsis
- grid.184212.c0000 0000 9364 8877Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Asimina Kakale
- grid.4793.90000000109457005Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christian Bock
- grid.10894.340000 0001 1033 7684Alfred-Wegener-Institut, Helmholtz-Center for Polar and Marine Research, Integrative Ecophysiology, Postfach 120161, 27515 Bremerhaven, Germany
| | - Hans O. Pörtner
- grid.10894.340000 0001 1033 7684Alfred-Wegener-Institut, Helmholtz-Center for Polar and Marine Research, Integrative Ecophysiology, Postfach 120161, 27515 Bremerhaven, Germany
| | - Inna M. Sokolova
- grid.10493.3f0000000121858338Department of Marine Biology, Institute for Biological Sciences, University of Rostock, A.-Einstein Str., 3, 18055 Rostock, Germany
| | - Basile Michaelidis
- grid.4793.90000000109457005Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
19
|
Hartmann AM, Dell'Oro M, Kessler CS, Schumann D, Steckhan N, Jeitler M, Fischer JM, Spoo M, Kriegel MA, Schneider JG, Häupl T, Kandil FI, Michalsen A, Koppold-Liebscher DA. Efficacy of therapeutic fasting and plant-based diet in patients with rheumatoid arthritis (NutriFast): study protocol for a randomised controlled clinical trial. BMJ Open 2021; 11:e047758. [PMID: 34380725 PMCID: PMC8359474 DOI: 10.1136/bmjopen-2020-047758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Previous studies have shown beneficial effects of therapeutic fasting and plant-based dietary interventions on disease activity in patients with rheumatoid arthritis (RA) for a duration of up to 1 year. To date, the effects of such interventions on the gut microbiome and on modern diagnostic markers in patients with RA have not been studied. This trial aims to investigate the clinical effects of therapeutic fasting and a plant-based diet in patients with RA, additionally considering current immunological diagnostic tools and microbiome analyses. METHODS/DESIGN This trial is an open-label, single-centre, randomised, controlled, parallel-group clinical trial. We will randomly assign 84 patients with RA under a stable standard therapy to either (1) therapeutic fasting followed by a plant-based dietary intervention or (2) to a conventional nutritional counselling focusing on an anti-inflammatory dietary pattern according to the recommendations of the Deutsche Gesellschaft für Ernährung (German society for nutrition). Primary outcome parameter is the group difference from baseline to 12 weeks on the Health Assessment Questionnaire (HAQ). Other secondary outcomes include established clinical criteria for disease activity and treatment response in RA (Disease Activity Score 28, Simple Disease Activity Index, ACR-Response Criteria), changes in self-reported health and physical functional ability, mood, stress, quality of life, dietary behaviour via 3-day food records and a modified Food Frequency Questionnaire, body composition, changes in the gut microbiome, metabolomics and cytometric parameters. Outcomes will be assessed at baseline and day 7, after 6 weeks, 12 weeks and after 6 months. ETHICS AND DISSEMINATION Ethical approval to process and analyse data, and to publish the results was obtained through the institutional review board of Charité-Universitätsmedizin Berlin. Results of this trial will be disseminated through peer-reviewed publications and scientific presentations. TRIAL REGISTRATION NUMBER NCT03856190.
Collapse
Affiliation(s)
- Anika M Hartmann
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Melanie Dell'Oro
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin-Wannsee Branch, Berlin, Germany
| | - Christian S Kessler
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin-Wannsee Branch, Berlin, Germany
| | - Dania Schumann
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nico Steckhan
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Jeitler
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin-Wannsee Branch, Berlin, Germany
| | - Jan Moritz Fischer
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michaela Spoo
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin-Wannsee Branch, Berlin, Germany
| | - Martin A Kriegel
- Institute for Musculoskeletal Medicine, Department of Translational Rheumatology and Immunology, University of Münster, Münster, Germany
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jochen G Schneider
- Department of Internal Medicine II, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Homburg, Germany
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Farid I Kandil
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Michalsen
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin-Wannsee Branch, Berlin, Germany
| | - Daniela A Koppold-Liebscher
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
20
|
Andrianova NV, Buyan MI, Bolikhova AK, Zorov DB, Plotnikov EY. Dietary Restriction for Kidney Protection: Decline in Nephroprotective Mechanisms During Aging. Front Physiol 2021; 12:699490. [PMID: 34295266 PMCID: PMC8291992 DOI: 10.3389/fphys.2021.699490] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/10/2021] [Indexed: 01/07/2023] Open
Abstract
Dietary restriction (DR) is believed to be one of the most promising approaches to extend life span of different animal species and to delay deleterious age-related physiological alterations and diseases. Among others, DR was shown to ameliorate acute kidney injury (AKI) and chronic kidney disease (CKD). However, to date, a comprehensive analysis of the mechanisms of the protective effect of DR specifically in kidney pathologies has not been carried out. The protective properties of DR are mediated by a range of signaling pathways associated with adaptation to reduced nutrient intake. The adaptation is accompanied by a number of metabolic changes, such as autophagy activation, metabolic shifts toward lipid utilization and ketone bodies production, improvement of mitochondria functioning, and decreased oxidative stress. However, some studies indicated that with age, the gain of DR-mediated positive remodeling gradually decreases. This may be an obstacle if we seek to translate the DR approach into a clinic for the treatment of kidney diseases as most patients with AKI and CKD are elderly. It is well known that aging is accompanied by impairments in a huge variety of organs and systems, such as hormonal regulation, stress sensing, autophagy and proteasomal activity, gene expression, and epigenome profile, increased damage to macromolecules and organelles including mitochondria. All these age-associated changes might be the reasons for the reduced protective potential of the DR during aging. We summarized the available mechanisms of DR-mediated nephroprotection and described ways to improve the effectiveness of this approach for an aged kidney.
Collapse
Affiliation(s)
- Nadezda V Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Marina I Buyan
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia K Bolikhova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry B Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia
| |
Collapse
|
21
|
Korak T, Ergül E, Sazci A. Nigella sativa and Cancer: A Review Focusing on Breast Cancer, Inhibition of Metastasis and Enhancement of Natural Killer Cell Cytotoxicity. Curr Pharm Biotechnol 2020; 21:1176-1185. [PMID: 32351178 DOI: 10.2174/1389201021666200430120453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/25/2020] [Accepted: 04/06/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND In the last decade, there have been accumulating data that the use of medicinal plants could bring additional benefits to the supportive treatment of various diseases. Nigella sativa (N. sativa, family Ranunculaceae) is one of these plants that has attracted considerable interest. The extracts and seeds of N. sativa and its active component thymoquinone have been studied extensively and the results suggest that N. sativa might carry some therapeutic potential for many diseases, including cancer. METHODS The selection criteria for references were applied through Pubmed with "N. sativa and cancer", "N. sativa and breast cancer", "N. sativa and metastasis", "N. sativa and cytotoxicity of natural killer cells". The pathway analysis was performed using the PANTHER tool by using five randomly selected N. sativa affected genes (Cyclin D1, P53, p21 protein (Cdc42/Rac) activated kinase 1 (PAK1), B-cell lymphoma 2 (Bcl-2) and vascular endothelial growth factor (VEGF)) in order to elucidate further potentially affected signaling pathways. RESULTS The aim of this review was to summarize studies regarding the effects of N. sativa in cancer generally, with a focus on breast cancer, its anti-metastatic effects, and how N. sativa modulates the cytotoxicity of Natural Killer cells that play a crucial role in tumor surveillance. CONCLUSION In summary, the data suggest that N. sativa might be used for its anti-cancer and antimetastatic properties and as an immune system activator against cancer.
Collapse
Affiliation(s)
- Tuğcan Korak
- Department of Medical Biology and Genetics, Kocaeli University, Kocaeli, Turkey
| | - Emel Ergül
- Department of Medical Biology and Genetics, Kocaeli University, Kocaeli, Turkey
| | - Ali Sazci
- Department of Medical Biology and Genetics, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
22
|
Santillán-Cigales JJ, Mercado-Gómez OF, Arriaga-Ávila V, Landgrave-Gómez J, Guevara-Guzmán R. Daytime-restricted feeding modulates the expression of inflammatory mediators and diminishes reactive astrogliosis and microgliosis following status epilepticus. Brain Res 2020; 1734:146724. [PMID: 32057806 DOI: 10.1016/j.brainres.2020.146724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/07/2020] [Accepted: 02/09/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Juan Jair Santillán-Cigales
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Octavio Fabián Mercado-Gómez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Virginia Arriaga-Ávila
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Jorge Landgrave-Gómez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| |
Collapse
|
23
|
Bjerrum OW, Siersma V, Hasselbalch HC, Lind B, Andersen CL. Association of the blood eosinophil count with end-organ symptoms. Ann Med Surg (Lond) 2019; 45:11-18. [PMID: 31360453 PMCID: PMC6637252 DOI: 10.1016/j.amsu.2019.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 12/15/2022] Open
Abstract
Introduction Eosinophilia may cause organ dysfunction, but an exact relation between eosinophil blood counts and adverse outcomes has not been described. The aim of the study is to associate in one model both normal and increased blood eosinophil counts to the subsequent development of common conditions in internal medicine, in which eosinophil granulocytes may play a role for the symptoms. Methods From the Copenhagen Primary Care Differential Count (CopDiff) Database, we identified 359,950 individuals with at least one differential cell count (DIFF) during 2000–2007. From these, one DIFF was randomly chosen. From the Danish National Patient Register we ascertained organ damage, within four years following the DIFF. Using multivariable logistic regression, odds ratios were calculated and adjusted for previous eosinophilia, sex, age, year, month, CRP and comorbid conditions. Results Risks for skin- and respiratory disease were increased from above the median eosinophil count of 0.16 × 109/l and reached a plateau around 1.0 × 109/l. Furthermore, risks of most outcomes also increased when the eosinophil count approached zero. Conclusions The observed U-shaped association with a plateau of risks around 1 × 109/l indicates that the risk for symptoms due to eosinophilia do not increase proportionate at higher counts. This study demonstrates for the first time that there is indeed an increased risk below median count of 0.16 × 109/l for an increased risk for the same manifestations. Clinically, it means that a normal or even low count of eosinophils do not rule out a risk for organ affection by eosinophils, and may contribute to explain, why patients may have normal eosinophil counts in e.g. asthma or allergy and still have symptoms from the lungs and skin, most likely explained by the extravasation of eosinophils. Blood eosinophilia may cause end-organ symptoms. An exact relation between eosinophil count and outcome has not been demonstrated. Eosinophil numbers correlate to organ damage even below the definition of eosinophilia. This association is U-shaped between organ manifestations and eosinophil count in blood. A plateau of risks is observed around 1 × 109/l.
Collapse
Affiliation(s)
- Ole Weis Bjerrum
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Denmark.,Department of Hematology, Odense University Hospital, Denmark
| | - Volkert Siersma
- The Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, Denmark
| | | | - Bent Lind
- Department of Clinical Biochemistry, Hvidovre University Hospital, Denmark
| | - Christen Lykkegaard Andersen
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Denmark.,The Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, Denmark.,Department of Hematology, Roskilde University Hospital, Denmark
| |
Collapse
|
24
|
Abstract
The hormesis concept demonstrates that in contrast to the toxic effect of high doses of materials, irradiation, etc., low doses of them are beneficial and, in addition, help to eliminate (prevent) the deleterious effect of high doses given after it. By this effect, it is an important factor of (human) evolution protecting man from harmful impacts, similarly to the role of immunity. However, immunity is also continuously influenced by hormetic effects of environmental [chemical (pollutions), physical (background irradiations and heat), etc.] and medical (drugs and therapeutic irradiations) and food interactions. In contrast to earlier beliefs, the no-threshold irradiation dogma is not valid in low-dose domains and here the hormesis concept is valid. Low-dose therapeutic irradiation, as well as background irradiations (by radon spas or moderately far from the epicenter of atomic bomb or nuclear facilities), is rather beneficial than destructive and the fear from them seems to be unreasonable from immunological point of view. Practically, all immune parameters are beneficially influenced by all forms of low-dose radiations.
Collapse
Affiliation(s)
- György Csaba
- 1 Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
25
|
Viallon M, Leporq B, Drinda S, Wilhelmi de Toledo F, Galusca B, Ratiney H, Croisille P. Chemical-Shift-Encoded Magnetic Resonance Imaging and Spectroscopy to Reveal Immediate and Long-Term Multi-Organs Composition Changes of a 14-Days Periodic Fasting Intervention: A Technological and Case Report. Front Nutr 2019; 6:5. [PMID: 30881957 PMCID: PMC6407435 DOI: 10.3389/fnut.2019.00005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022] Open
Abstract
Objectives: The aim of this study was to investigate the feasibility of measuring the effects of a 14-day Periodic Fasting (PF) intervention (<200 cal) on multi-organs of primary interest (liver, visceral/subcutaneous/bone marrow fat, muscle) using non-invasive advanced magnetic resonance spectroscopic (MRS) and imaging (MRI) methods. Methods: One subject participated in a 14-day PF under daily supervision of nurses and specialized physicians, ingesting a highly reduced intake: 200 Kcal/day coupled with active walking and drinking at least 3 L of liquids/day. The fasting was preceded by a 7-day pre-fasting vegetarian period and followed by 14 days of stepwise reintroduction of food. The longitudinal study collected imaging and biological data before the fast, at peak fasting, and 7 days, 1 month, and 4 months after re-feeding. Body fat mass in the trunk, abdomen, and thigh, liver and muscle mass, were respectively computed using advanced MRI and MRS signal modeling. Fat fraction, MRI relativity index T2* and susceptibility (Chi), as well as Fatty acid composition, were calculated at all-time points. Results: A decrease in body weight (BW: −9.5%), quadriceps muscle volume (−3.2%), Subcutaneous and Visceral Adipose Tissue (SAT −34.4%; VAT −20.8%), liver fat fraction (PDFF = 1.4 vs. 2.6 % at baseline) but increase in Spine Bone Marrow adipose tissue (BMAT) associated with a 10% increase in global adiposity fraction (PDFF: 54.4 vs. 50.9%) was observed. Femoral BMAT showed minimal changes compared to spinal level, with a slight decrease (−3.1%). Interestingly, fatty acid (FA) pattern changes differed depending on the AT locations. In muscle, all lipids increased after fasting, with a greater increase of intramyocellular lipid (IMCL: from 2.7 to 6.3 mmol/kg) after fasting compared to extramyocellular lipid (EMCL: from 6.2 to 9.5 mmol/kg) as well as Carnosine (6.9 to 8.1 mmol/kg). Heterogenous and reverse changes were also observed after re-feeding depending on the organ. Conclusion: These results suggest that investigating the effects of a 14-day PF intervention using advanced MRI and MRS is feasible. Quantitative MR indexes are a crucial adjunct to further understanding the effective changes in multiple crucial organs especially liver, spin, and muscle, differences between adipose tissue composition and the interplay that occurs during periodic fasting.
Collapse
Affiliation(s)
- Magalie Viallon
- Université de Lyon, Lyon, France.,Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France.,Université Jean Monnet, Saint-Étienne, France.,CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Étienne, France.,Institut National des Sciences Appliquées de Lyon, Villeurbanne, France
| | - Benjamin Leporq
- Université de Lyon, Lyon, France.,Université Jean Monnet, Saint-Étienne, France.,CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Étienne, France.,Institut National des Sciences Appliquées de Lyon, Villeurbanne, France
| | - Stephan Drinda
- Klinik St. Katharinental, Diessenhofen, Switzerland.,Buchinger Wilhelmi Clinic, Uberlingen, Germany
| | | | - Bogdan Galusca
- Université de Lyon, Lyon, France.,Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France.,Eating Disorders, Addictions & Extreme Bodyweight Research Group (TAPE) EA, Saint-Étienne, France
| | - Helene Ratiney
- Université de Lyon, Lyon, France.,Université Jean Monnet, Saint-Étienne, France.,CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Étienne, France.,Institut National des Sciences Appliquées de Lyon, Villeurbanne, France
| | - Pierre Croisille
- Université de Lyon, Lyon, France.,Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France.,Université Jean Monnet, Saint-Étienne, France.,CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Étienne, France.,Institut National des Sciences Appliquées de Lyon, Villeurbanne, France
| |
Collapse
|
26
|
Reátegui-Zirena EG, Salice CJ. Parental diet affects embryogenesis of the great pond snail (Lymnaea stagnalis) exposed to cadmium, pyraclostrobin, and tributyltin. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2428-2438. [PMID: 29900568 DOI: 10.1002/etc.4202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/11/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Diet quality has a strong impact on life-history traits, but it is not usually considered as a factor in toxicity tests. The purpose of the present study was to evaluate how diets differing in nutritional content affect sensitivity to cadmium, pyraclostrobin, and tributyltin in Lymnaea stagnalis offspring. Three groups were fed a different diet each: lettuce, high-caloric pellets, or a combination of both. Snails fed pellets and both diets had similar growth; however, snails fed lettuce showed lower growth until the fourth month. Egg masses were collected from adult snails fed each diet and exposed to 3 concentrations of either cadmium, pyraclostrobin, or tributyltin. We quantified time to hatch, hatching success, and the developmental stages of embryos. We measured fecundity in adults and total lipids, carbohydrates, and proteins in adult snails and egg masses. Adult snails fed different diets produced a similar number of egg masses, but the number of eggs per egg mass in snails fed pellets was lower than for snails fed the other 2 diets. We found that adult snails fed pellets had a higher lipid content compared to snails fed the other 2 diets. However, egg masses from parental snails fed pellets did not hatch, including those from the controls. Interestingly, egg masses exposed to the lowest concentration of tributyltin had low hatching success. These observations on offspring performance suggest that there are important diet effects that can strongly influence responses that could be diet- and chemical-dependent. Environ Toxicol Chem 2018;37:2428-2438. © 2018 SETAC.
Collapse
Affiliation(s)
- Evelyn G Reátegui-Zirena
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, USA
| | - Christopher J Salice
- Department of Biological Sciences, Environmental Science and Studies, Towson University, Towson, Maryland, USA
| |
Collapse
|
27
|
Hormesis: Decoding Two Sides of the Same Coin. Pharmaceuticals (Basel) 2015; 8:865-83. [PMID: 26694419 PMCID: PMC4695814 DOI: 10.3390/ph8040865] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 12/13/2022] Open
Abstract
In the paradigm of drug administration, determining the correct dosage of a therapeutic is often a challenge. Several drugs have been noted to demonstrate contradictory effects per se at high and low doses. This duality in function of a drug at different concentrations is known as hormesis. Therefore, it becomes necessary to study these biphasic functions in order to understand the mechanistic basis of their effects. In this article, we focus on different molecules and pathways associated with diseases that possess a duality in their function and thus prove to be the seat of hormesis. In particular, we have highlighted the pathways and factors involved in the progression of cancer and how the biphasic behavior of the molecules involved can alter the manifestations of cancer. Because of the pragmatic role that it exhibits, the imminent need is to draw attention to the concept of hormesis. Herein, we also discuss different stressors that trigger hormesis and how stress-mediated responses increase the overall adaptive response of an individual to stress stimulus. We talk about common pathways through which cancer progresses (such as nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 (Nrf2-Keap1), sirtuin-forkhead box O (SIRT-FOXO) and others), analyzing how diverse molecules associated with these pathways conform to hormesis.
Collapse
|
28
|
Shushimita S, Grefhorst A, Steenbergen J, de Bruin RWF, Ijzermans JNM, Themmen APN, Dor FJMF. Protection against renal ischemia-reperfusion injury through hormesis? Dietary intervention versus cold exposure. Life Sci 2015; 144:69-79. [PMID: 26616751 DOI: 10.1016/j.lfs.2015.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/29/2015] [Accepted: 11/21/2015] [Indexed: 10/22/2022]
Abstract
AIM Dietary restriction (DR) and fasting (FA) induce robust protection against the detrimental effects of renal ischemia-reperfusion injury (I/RI). Several mechanisms of protection have been proposed, such as hormesis. Hormesis is defined as a life-supporting beneficial effect resulting from the cellular responses to single or multiple rounds of (mild) stress. The cold exposure (CE) model is a stress model similar to DR, and has been shown to have hormetic effects and has proved to increase longevity. CE is considered to be the most robust method to increase metabolism through activation of brown adipocytes. BAT has been considered important in etiology of obesity and its metabolic consequences. MATERIALS AND METHODS Since DR, FA, and CE models are proposed to work through hormesis, we investigated physiology of adipose tissue and effect on BAT in these models and compared them to ad libitum (AL) fed mice. We also studied the differential effect of these stress models on immunological changes, and effect of CE on renal I/RI. KEY FINDINGS We show similar physiological changes in adiposity in male C57Bl/6 mice due to DR, FA and CE, but the CE mice were not protected against renal I/RI. The immunophenotypic changes observed in the CE mice were similar to the AL animals, in contrast to FA mice, that showed major immunophenotypic changes in the B and T cell development stages in primary and secondary lymphoid organs. SIGNIFICANCE Our findings thus demonstrate that DR, FA and CE are hormetic stress models. DR and FA protect against renal I/IR, whereas CE could not.
Collapse
Affiliation(s)
- Shushimita Shushimita
- Department of Surgery, Division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Aldo Grefhorst
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jacobie Steenbergen
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ron W F de Bruin
- Department of Surgery, Division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jan N M Ijzermans
- Department of Surgery, Division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Axel P N Themmen
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Frank J M F Dor
- Department of Surgery, Division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
29
|
Seeking potential anticonvulsant agents that target GABAA receptors using experimental and theoretical procedures. J Comput Aided Mol Des 2014; 28:1217-32. [PMID: 25298123 DOI: 10.1007/s10822-014-9798-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/27/2014] [Indexed: 12/27/2022]
Abstract
The aim of this study was to identify compounds that possess anticonvulsant activity by using a pentylenetetrazol (PTZ)-induced seizure model. Theoretical studies of a set of ligands, explored the binding affinities of the ligands for the GABA(A) receptor (GABA(A)R), including some benzodiazepines. The ligands satisfy the Lipinski rules and contain a pharmacophore core that has been previously reported to be a GABA(A)R activator. To select the ligands with the best physicochemical properties, all of the compounds were analyzed by quantum mechanics and the energies of the highest occupied molecular orbital and lowest unoccupied molecular orbital were determined. Docking calculations between the ligands and the GABA(A)R were used to identify the complexes with the highest Gibbs binding energies. The identified compound D1 (dibenzo(b,f)(1,4)diazocine-6,11(5H,12H)-dione) was synthesized, experimentally tested, and the GABA(A)R-D1 complex was submitted to 12-ns-long molecular dynamics (MD) simulations to corroborate the binding conformation obtained by docking techniques. MD simulations were also used to analyze the decomposition of the Gibbs binding energy of the residues involved in the stabilization of the complex. To validate our theoretical results, molecular docking and MD simulations were also performed for three reference compounds that are currently in commercial use: clonazepam (CLZ), zolpidem and eszopiclone. The theoretical results show that the GABA(A)R-D1, and GABA(A)R-CLZ complexes bind to the benzodiazepine binding site, share a similar map of binding residues, and have similar Gibbs binding energies and entropic components. Experimental studies using a PTZ-induced seizure model showed that D1 possesses similar activity to CLZ, which corroborates the predicted binding free energy identified by theoretical calculations.
Collapse
|
30
|
Lettieri Barbato D, Aquilano K, Ciriolo MR. FoxO1 at the nexus between fat catabolism and longevity pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1555-1560. [DOI: 10.1016/j.bbalip.2014.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/24/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023]
|
31
|
Higashimoto M, Isoyama N, Ishibashi S, Ogawa N, Takiguchi M, Suzuki S, Ohnishi Y, Sato M. Preventive effects of metallothionein against DNA and lipid metabolic damages in dyslipidemic mice under repeated mild stress. THE JOURNAL OF MEDICAL INVESTIGATION 2014; 60:240-8. [PMID: 24190042 DOI: 10.2152/jmi.60.240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The effects of repeated mild stress on DNA and lipid metabolic damages in multiple organs of dyslipidemic mice, and the preventive role of metallothionein (MT) were investigated. Female adult wild-type and MT-null mice fed high-fat diet (HFD) or standard diet (STD) were repeatedly subjected to fasting or restraint for three weeks. The liver, pancreas, spleen, bone marrow and serum samples were taken for evaluating DNA damage, MT, glutathione (GSH), corticosterone, carnitine and adiponectin. Body weights of restraint groups were reduced with the intensity of stress increased, even if the energy intakes were higher than those of STD group. Hepatic GSH levels were reduced in HFD control group and were further reduced in stress groups, especially in restraint groups, while the hepatic MT and serum corticosterone levels were increased in concert with the intensity of stress. Cellular DNA damages were generally increased by the restraint stress, especially in MT-null mice. Hepatic carnitine levels of MT-null mice were markedly lower than those of wild-type mice. The data suggest that MT plays a preventive role by acting as an antioxidant in corporation with GSH decreased by repeated stress and that MT may be an essential factor for inducing carnitine under the stress.
Collapse
|
32
|
Wang Y, Zhou WD, Yang Y, Ma L, Zhao Y, Bai Z, Ge RL. Telomeres are elongated in rats exposed to moderate altitude. J Physiol Anthropol 2014; 33:19. [PMID: 24996852 PMCID: PMC4088304 DOI: 10.1186/1880-6805-33-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/20/2014] [Indexed: 12/01/2022] Open
Abstract
Background Leukocyte telomere length has been shown to be associated with life span. Hypoxia-associated changes of telomere length have been detected in cell cultures, but no in vivo studies have reported the changes of telomere length under different hypoxic conditions. This study aimed to evaluate the effects of altitude on telomere length in rat leukocytes. Methods One hundred and ten male Wistar rats were randomized into 3 groups and maintained at sea-level (altitude of 10 m) (SL group, n = 10), moderate altitude (2,260 m) (MA group, n = 50), or simulated high altitude (5,000 m (SHA group, n = 50). The last two groups were further divided into 5 subgroups and exposed to hypoxia for 1, 3, 7, 15, or 30 days (n = 10). The leukocyte telomere length, hemoglobin concentration, red blood cell count, hematocrit, and plasma levels of telomerase reverse transcriptase (TERT), hypoxia-inducible factor 1α (HIF-1α), malondialdehyde (MDA) and superoxide dismutase (SOD) were measured. Results Leukocyte telomere length was significantly longer in the MA group than in the SL or SHA groups, and the TERT expression changed in a similar manner as the leukocyte telomere length. However, HIF-1α level was significantly higher in both MA and SHA groups than the SL group. SOD level was decreased and MDA level was elevated in SHA group. Conclusions The telomere length of blood leukocytes is elongated at a moderate altitude, but not at a high altitude. A mild hypoxic state may increase telomere length.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ri-Li Ge
- Research Center for High Altitude Medical Sciences, University School of Medicine, 810001 Xining, Qinghai, China.
| |
Collapse
|
33
|
Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, Jing Z, Chen J, Zigmond MJ, Gao Y. Preconditioning provides neuroprotection in models of CNS disease: paradigms and clinical significance. Prog Neurobiol 2014; 114:58-83. [PMID: 24389580 PMCID: PMC3937258 DOI: 10.1016/j.pneurobio.2013.11.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 12/14/2022]
Abstract
Preconditioning is a phenomenon in which brief episodes of a sublethal insult induce robust protection against subsequent lethal injuries. Preconditioning has been observed in multiple organisms and can occur in the brain as well as other tissues. Extensive animal studies suggest that the brain can be preconditioned to resist acute injuries, such as ischemic stroke, neonatal hypoxia/ischemia, surgical brain injury, trauma, and agents that are used in models of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Effective preconditioning stimuli are numerous and diverse, ranging from transient ischemia, hypoxia, hyperbaric oxygen, hypothermia and hyperthermia, to exposure to neurotoxins and pharmacological agents. The phenomenon of "cross-tolerance," in which a sublethal stress protects against a different type of injury, suggests that different preconditioning stimuli may confer protection against a wide range of injuries. Research conducted over the past few decades indicates that brain preconditioning is complex, involving multiple effectors such as metabolic inhibition, activation of extra- and intracellular defense mechanisms, a shift in the neuronal excitatory/inhibitory balance, and reduction in inflammatory sequelae. An improved understanding of brain preconditioning should help us identify innovative therapeutic strategies that prevent or at least reduce neuronal damage in susceptible patients. In this review, we focus on the experimental evidence of preconditioning in the brain and systematically survey the models used to develop paradigms for neuroprotection, and then discuss the clinical potential of brain preconditioning.
Collapse
Affiliation(s)
- R Anne Stetler
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Yu Gan
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Peiying Li
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Feng Zhang
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Xiaoming Hu
- Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Zheng Jing
- Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Jun Chen
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Michael J Zigmond
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China.
| |
Collapse
|
34
|
Kincaid B, Bossy-Wetzel E. Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Front Aging Neurosci 2013; 5:48. [PMID: 24046746 PMCID: PMC3764375 DOI: 10.3389/fnagi.2013.00048] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/21/2013] [Indexed: 12/12/2022] Open
Abstract
Caloric restriction (CR), fasting, and exercise have long been recognized for their neuroprotective and lifespan-extending properties; however, the underlying mechanisms of these phenomena remain elusive. Such extraordinary benefits might be linked to the activation of sirtuins. In mammals, the sirtuin family has seven members (SIRT1–7), which diverge in tissue distribution, subcellular localization, enzymatic activity, and targets. SIRT1, SIRT2, and SIRT3 have deacetylase activity. Their dependence on NAD+ directly links their activity to the metabolic status of the cell. High NAD+ levels convey neuroprotective effects, possibly via activation of sirtuin family members. Mitochondrial sirtuin 3 (SIRT3) has received much attention for its role in metabolism and aging. Specific small nucleotide polymorphisms in Sirt3 are linked to increased human lifespan. SIRT3 mediates the adaptation of increased energy demand during CR, fasting, and exercise to increased production of energy equivalents. SIRT3 deacetylates and activates mitochondrial enzymes involved in fatty acid β-oxidation, amino acid metabolism, the electron transport chain, and antioxidant defenses. As a result, the mitochondrial energy metabolism increases. In addition, SIRT3 prevents apoptosis by lowering reactive oxygen species and inhibiting components of the mitochondrial permeability transition pore. Mitochondrial deficits associated with aging and neurodegeneration might therefore be slowed or even prevented by SIRT3 activation. In addition, upregulating SIRT3 activity by dietary supplementation of sirtuin activating compounds might promote the beneficial effects of this enzyme. The goal of this review is to summarize emerging data supporting a neuroprotective action of SIRT3 against Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Brad Kincaid
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | | |
Collapse
|
35
|
Li C, Ostermann T, Hardt M, Lüdtke R, Broecker-Preuss M, Dobos G, Michalsen A. Metabolic and psychological response to 7-day fasting in obese patients with and without metabolic syndrome. ACTA ACUST UNITED AC 2013; 20:413-20. [PMID: 24434755 DOI: 10.1159/000353672] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Extended modified fasting is a frequently practiced tradition in Europe. It is claimed to improve the cardiometabolic state and physical and psychological well-being by an evolutionary co-developed adaptation response. We aimed to investigate the cardiometabolic and psychological effects of a 7-day fast and differences of these responses between patients with or without metabolic syndrome (MetS). METHODS We investigated 30 female subjects (49.0 ± 8.1 years, BMI 30.4 ± 6.7 kg/m(2)) with (n = 12) and without (n = 18) MetS. All subjects participated in a 7-day fast according to Buchinger with a nutritional energy intake of 300 kcal/day and stepwise reintroduction of solid food thereafter. Outcomes were assessed baseline and after fasting and included measures of metabolic and glucoregulatory control, adipokines as well as psychological well-being as assessed by Profile of Mood States (POMS) and Hospital Anxiety and Depression Scale (HADS). RESULTS Mean weight decreased from 85.4 ± 18.8 kg to 79.7 ± 18.2 kg accompanied by systolic/diastolic blood pressure (BP) reduction of -16.2 mm Hg (95% CI: -9.1; -23.3 mm Hg) and -6.0 mm Hg (95% CI: -1.8; -10.3 mm Hg), each p < 0.001 and p = 0.005. Fasting led to marked decreases of levels of LDL-cholesterol, leptin, and insulin and increases of levels of adiponectin, leptin receptors, and resistin. Fasting-induced mood enhancement was reflected by decreased anxiety, depression, fatigue, and improved vigor. Patients with MetS showed some greater changes in B P, LDL-cholesterol, triglycerides, adiponectin, leptin, and sleep quality. Fasting was well-tolerated. CONCLUSIONS Our results point to marked beneficial responses to 7-day modified fasting and a potential role in the prevention of the MetS. Randomized trials with longer observation periods should test the clinical effectiveness of fasting in metabolic diseases.
Collapse
Affiliation(s)
- Chenying Li
- Department of Traditional Chinese Medicine, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Mao L, Franke J. Hormesis in aging and neurodegeneration-a prodigy awaiting dissection. Int J Mol Sci 2013; 14:13109-28. [PMID: 23799363 PMCID: PMC3742177 DOI: 10.3390/ijms140713109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 12/17/2022] Open
Abstract
Hormesis describes the drug action of low dose stimulation and high dose inhibition. The hormesis phenomenon has been observed in a wide range of biological systems. Although known in its descriptive context, the underlying mode-of-action of hormesis is largely unexplored. Recently, the hormesis concept has been receiving increasing attention in the field of aging research. It has been proposed that within a certain concentration window, reactive oxygen species (ROS) or reactive nitrogen species (RNS) could act as major mediators of anti-aging and neuroprotective processes. Such hormetic phenomena could have potential therapeutic applications, if properly employed. Here, we review the current theories of hormetic phenomena in regard to aging and neurodegeneration, with the focus on its underlying mechanism. Facilitated by a simple mathematical model, we show for the first time that ROS-mediated hormesis can be explained by the addition of different biomolecular reactions including oxidative damage, MAPK signaling and autophagy stimulation. Due to their divergent scales, the optimal hormetic window is sensitive to each kinetic parameter, which may vary between individuals. Therefore, therapeutic utilization of hormesis requires quantitative characterizations in order to access the optimal hormetic window for each individual. This calls for a personalized medicine approach for a longer human healthspan.
Collapse
Affiliation(s)
- Lei Mao
- Department of Life Science Engineering, HTW Berlin, University of Applied Sciences, Wilhelminenhofstraße 75A, Berlin 12459, Germany; E-Mail:
- Institute of Medical Genetics and Human Genetics, Charité—Universitätsmedizin Berlin, Augustenbruger Platz 1, Berlin 13353, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-30-5019-3616; Fax: +49-30-5019-3648
| | - Jacqueline Franke
- Department of Life Science Engineering, HTW Berlin, University of Applied Sciences, Wilhelminenhofstraße 75A, Berlin 12459, Germany; E-Mail:
| |
Collapse
|
37
|
Menendez JA, Joven J, Aragonès G, Barrajón-Catalán E, Beltrán-Debón R, Borrás-Linares I, Camps J, Corominas-Faja B, Cufí S, Fernández-Arroyo S, Garcia-Heredia A, Hernández-Aguilera A, Herranz-López M, Jiménez-Sánchez C, López-Bonet E, Lozano-Sánchez J, Luciano-Mateo F, Martin-Castillo B, Martin-Paredero V, Pérez-Sánchez A, Oliveras-Ferraros C, Riera-Borrull M, Rodríguez-Gallego E, Quirantes-Piné R, Rull A, Tomás-Menor L, Vazquez-Martin A, Alonso-Villaverde C, Micol V, Segura-Carretero A. Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil: a new family of gerosuppressant agents. Cell Cycle 2013; 12:555-78. [PMID: 23370395 DOI: 10.4161/cc.23756] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aging can be viewed as a quasi-programmed phenomenon driven by the overactivation of the nutrient-sensing mTOR gerogene. mTOR-driven aging can be triggered or accelerated by a decline or loss of responsiveness to activation of the energy-sensing protein AMPK, a critical gerosuppressor of mTOR. The occurrence of age-related diseases, therefore, reflects the synergistic interaction between our evolutionary path to sedentarism, which chronically increases a number of mTOR activating gero-promoters (e.g., food, growth factors, cytokines and insulin) and the "defective design" of central metabolic integrators such as mTOR and AMPK. Our laboratories at the Bioactive Food Component Platform in Spain have initiated a systematic approach to molecularly elucidate and clinically explore whether the "xenohormesis hypothesis," which states that stress-induced synthesis of plant polyphenols and many other phytochemicals provides an environmental chemical signature that upregulates stress-resistance pathways in plant consumers, can be explained in terms of the reactivity of the AMPK/mTOR-axis to so-called xenohormetins. Here, we explore the AMPK/mTOR-xenohormetic nature of complex polyphenols naturally present in extra virgin olive oil (EVOO), a pivotal component of the Mediterranean style diet that has been repeatedly associated with a reduction in age-related morbid conditions and longer life expectancy. Using crude EVOO phenolic extracts highly enriched in the secoiridoids oleuropein aglycon and decarboxymethyl oleuropein aglycon, we show for the first time that (1) the anticancer activity of EVOO secoiridoids is related to the activation of anti-aging/cellular stress-like gene signatures, including endoplasmic reticulum (ER) stress and the unfolded protein response, spermidine and polyamine metabolism, sirtuin-1 (SIRT1) and NRF2 signaling; (2) EVOO secoiridoids activate AMPK and suppress crucial genes involved in the Warburg effect and the self-renewal capacity of "immortal" cancer stem cells; (3) EVOO secoiridoids prevent age-related changes in the cell size, morphological heterogeneity, arrayed cell arrangement and senescence-associated β-galactosidase staining of normal diploid human fibroblasts at the end of their proliferative lifespans. EVOO secoiridoids, which provide an effective defense against plant attack by herbivores and pathogens, are bona fide xenohormetins that are able to activate the gerosuppressor AMPK and trigger numerous resveratrol-like anti-aging transcriptomic signatures. As such, EVOO secoiridoids constitute a new family of plant-produced gerosuppressant agents that molecularly "repair" the aimless (and harmful) AMPK/mTOR-driven quasi-program that leads to aging and aging-related diseases, including cancer.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Grünwald S, Stellzig J, Adam IV, Weber K, Binger S, Boll M, Knorr E, Twyman RM, Vilcinskas A, Wenzel U. Longevity in the red flour beetle Tribolium castaneum is enhanced by broccoli and depends on nrf-2, jnk-1 and foxo-1 homologous genes. GENES AND NUTRITION 2013; 8:439-48. [PMID: 23321956 DOI: 10.1007/s12263-012-0330-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/31/2012] [Indexed: 12/20/2022]
Abstract
Diet is generally believed to affect the aging process. The effects of complex foods on life span can be investigated using simple models that produce rapid results and allow the identification of food-gene interactions. Here, we show that 1 % lyophilized broccoli, added to flour as a dietary source, significantly increases the life span of the red flour beetle (Tribolium castaneum) under physiological conditions (32 °C) and under heat stress (42 °C). The beneficial effects of broccoli could also be reproduced by supplementing flour with the isothiocyanate sulforaphane at concentrations found in the broccoli-supplemented diet. We identified stress-resistant genes responsible for these effects on longevity by microinjecting pupae with double-stranded RNA to induce RNA interference (RNAi). The knockdown of transcripts encoding homologs of Nrf-2, Jnk-1 and Foxo-1 reduced the life span of beetles and abrogated the beneficial effects of broccoli, whereas the knockdown of Sirt-1 and Sirt-3 had no impact in either scenario. In conclusion, T. castaneum is a suitable model organism to investigate food-gene interactions that affect stress resistance and longevity, and RNAi can be used to identify functionally relevant genes. As a proof of principle, we have shown here that broccoli increases the longevity of beetles and mediates its effect through signaling pathways that include key stress-resistant factors such as Nrf-2, Jnk-1 and Foxo-1.
Collapse
Affiliation(s)
- Stefanie Grünwald
- Molecular Nutrition Research, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Detoxification Combining Fasting with Fluid Therapy for Refractory Cases of Severe Atopic Dermatitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:561290. [PMID: 23986784 PMCID: PMC3748731 DOI: 10.1155/2013/561290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/14/2013] [Indexed: 11/18/2022]
Abstract
To introduce and determine the clinical benefits of a detoxification program that combines fasting with fluid therapy for refractory cases of severe atopic dermatitis (AD), we performed a retrospective chart review of inpatients with AD from March 2010 to February 2012 at the Department of Ophthalmology, Otorhinolaryngology and Dermatology of Korean Medicine in the Kyung Hee Medical Center. Patients were treated with the detoxification program, which combined fasting with fluid therapy, and herbal medicine, herbal wet wrap dressings, or acupuncture treatment when clinically necessary. The primary outcome was the SCORAD total index. The secondary outcome was the pruritus visual analogue scale (VAS) score in SCORAD as evaluated by a trained dermatology specialist. Among the 130 inpatients that have done detoxification, 7 patients met the inclusion criteria. The mean total SCORAD scores significantly decreased from 64.67 ± 11.72 to 26.26 ± 11.01 (P = 0.018) after the detoxification program. There was also a significant decrease in VAS score for pruritus from 8.00 ± 1.16 to 2.57 ± 0.98 (P = 0.016) between admission and discharge. We suggest that fasting with fluid therapy as a complementary and alternative treatment method may provide some benefits for patients with refractory cases of severe atopic dermatitis.
Collapse
|
40
|
Michalsen A, Li C. Fasting Therapy for Treating and Preventing Disease - Current State of Evidence. ACTA ACUST UNITED AC 2013; 20:444-53. [DOI: 10.1159/000357765] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Lipoic acid increases glutamate uptake, glutamine synthetase activity and glutathione content in C6 astrocyte cell line. Int J Dev Neurosci 2012; 31:165-70. [DOI: 10.1016/j.ijdevneu.2012.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 12/23/2022] Open
|
42
|
Abstract
Frequently, low doses of toxins and other stressors not only are harmless but also activate an adaptive stress response that raise the resistance of the organism against high doses of the same agent. This phenomenon, which is known as "hormesis", is best represented by ischemic preconditioning, the situation in which short ischemic episodes protect the brain and the heart against prolonged shortage of oxygen and nutrients. Many molecules that cause cell death also elicit autophagy, a cytoprotective mechanism relying on the digestion of potentially harmful intracellular structures, notably mitochondria. When high doses of these agents are employed, cells undergo mitochondrial outer membrane permeabilization and die. In contrast, low doses of such cytotoxic agents can activate hormesis in several paradigms, and this may explain the lifespan-prolonging potential of autophagy inducers including resveratrol and caloric restriction.
Collapse
|
43
|
Yang G, Zhong L, Jiang L, Geng C, Cao J, Sun X, Liu X, Chen M, Ma Y. 6-gingerol prevents patulin-induced genotoxicity in HepG2 cells. Phytother Res 2011; 25:1480-5. [PMID: 21953711 DOI: 10.1002/ptr.3446] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 01/12/2011] [Accepted: 01/20/2011] [Indexed: 01/27/2023]
Abstract
Patulin (PAT) is a mycotoxin produced by several Penicillium, Aspergillus and Byssochlamys species. Since PAT is a potent genotoxic compound, and PAT contamination is common in fruits and fruit products, the search for newer, better agents for protection against genotoxicity of PAT is required. In this study, the chemoprotective effect of 6-gingerol against PAT-induced genotoxicity in HepG2 cells was investigated. The comet assay and micronucleus test (MNT) were used to monitor genotoxic effects. To further elucidate the underlying mechanisms, the intracellular generation of reactive oxygen species (ROS) and level of reduced glutathione (GSH) were tested. In addition, the level of oxidative DNA damage was evaluated by immunocytochemical analysis of 8-hydroxydeoxyguanosine (8-OHdG). The results showed that 6-gingerol significantly reduced the DNA strand breaks and micronuclei formation caused by PAT. Moreover, 6-gingerol effectively suppressed PAT-induced intracellular ROS formation and 8-OHdG level. The GSH depletion induced by PAT in HepG2 cells was also attenuated by 6-gingerol pretreatment. These findings suggest that 6-gingerol has a strong protective ability against the genotoxicity caused by PAT, and the antioxidant activity of 6-gingerol may play an important part in attenuating the genotoxicity of PAT.
Collapse
Affiliation(s)
- Guang Yang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Quincozes-Santos A, Gottfried C. Resveratrol modulates astroglial functions: neuroprotective hypothesis. Ann N Y Acad Sci 2011; 1215:72-8. [PMID: 21261643 DOI: 10.1111/j.1749-6632.2010.05857.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Resveratrol, a redox active compound present in grapes and wine, has a wide range of biological effects, including cardioprotective, chemopreventive, and anti-inflammatory activities. The central nervous system is a target of resveratrol, which can pass the blood-brain barrier and induce neuroprotective effects. Astrocytes are one of the most functionally diverse groups of cells in the nervous system, intimately associated with glutamatergic metabolism, transmission, synaptic plasticity, and neuroprotection. In this review, we focus on the resveratrol properties and response to oxidative insult on important astroglial parameters involved in brain plasticity, such as glutamate uptake, glutamine synthetase activity, glutathione content, and secretion of the trophic factor S100B.
Collapse
Affiliation(s)
- André Quincozes-Santos
- Department of Biochemistry, Institute of Health's Basic Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | |
Collapse
|