1
|
Yang M, Lin Z, Zhuang L, Pan L, Wang R, Chen H, Hu Z, Shen W, Zhuo J, Yang X, Li H, He C, Yang Z, Xie Q, Dong S, Chen J, Su R, Wei X, Yin J, Zheng S, Lu D, Xu X. An inflammatory liquid fingerprint predicting tumor recurrence after liver transplantation for hepatocellular carcinoma. MedComm (Beijing) 2024; 5:e678. [PMID: 39188937 PMCID: PMC11345533 DOI: 10.1002/mco2.678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024] Open
Abstract
Tumor recurrence is a life-threatening complication after liver transplantation (LT) for hepatocellular carcinoma (HCC). Precise recurrence risk stratification before transplantation is essential for the management of recipients. Here, we aimed to establish an inflammation-related prediction model for posttransplant HCC recurrence based on pretransplant peripheral cytokine profiling. Two hundred and ninety-three patients who underwent LT in two independent medical centers were enrolled, and their pretransplant plasma samples were sent for cytokine profiling. We identified four independent risk factors, including alpha-fetoprotein, systemic immune-inflammation index, interleukin 6, and osteocalcin in the training cohort (n = 190) by COX regression analysis. A prediction model named inflammatory fingerprint (IFP) was established based on the above factors. The IFP effectively predicted posttransplant recurrence (area under the receiver operating characteristic curve [AUROC]: 0.792, C-index: 0.736). The high IFP group recipients had significantly worse 3-year recurrence-free survival rates (37.9 vs. 86.9%, p < 0.001). Simultaneous T-cell profiling revealed that recipients with high IFP were characterized by impaired T cell function. The IFP also performed well in the validation cohort (n = 103, AUROC: 0.807, C-index: 0.681). In conclusion, the IFP efficiently predicted posttransplant HCC recurrence and helped to refine pretransplant risk stratification. Impaired T cell function might be the intrinsic mechanism for the high recurrence risk of recipients in the high IFP group.
Collapse
Affiliation(s)
- Modan Yang
- Department of Breast SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- NHC Key Laboratory of Combined Multi‐Organ TransplantationZhejiang UniversityHangzhouChina
| | - Zuyuan Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceAffiliated Hangzhou First People's Hospital, School of Medicine, Westlake UniversityHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
| | - Li Zhuang
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouChina
| | - Linhui Pan
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhouChina
| | - Rui Wang
- Zhejiang University School of MedicineHangzhouChina
| | - Hao Chen
- Zhejiang University School of MedicineHangzhouChina
| | - Zhihang Hu
- Zhejiang University School of MedicineHangzhouChina
| | - Wei Shen
- Zhejiang University School of MedicineHangzhouChina
| | - Jianyong Zhuo
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhouChina
| | - Xinyu Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceAffiliated Hangzhou First People's Hospital, School of Medicine, Westlake UniversityHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
| | - Huigang Li
- Zhejiang University School of MedicineHangzhouChina
| | - Chiyu He
- Zhejiang University School of MedicineHangzhouChina
| | - Zhe Yang
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouChina
| | - Qinfen Xie
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouChina
| | - Siyi Dong
- National Center for Healthcare Quality Management in Liver TransplantHangzhouChina
| | - Junli Chen
- National Center for Healthcare Quality Management in Liver TransplantHangzhouChina
| | - Renyi Su
- Zhejiang University School of MedicineHangzhouChina
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceAffiliated Hangzhou First People's Hospital, School of Medicine, Westlake UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhouChina
| | - Junjie Yin
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhouChina
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi‐Organ TransplantationZhejiang UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouChina
- National Center for Healthcare Quality Management in Liver TransplantHangzhouChina
| | - Di Lu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital)School of Clinical MedicineHangzhou Medical CollegeHangzhouChina
| | - Xiao Xu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital)School of Clinical MedicineHangzhou Medical CollegeHangzhouChina
- Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
2
|
Hu X, Chen G, Huang Y, Cheng Q, Zhuo J, Su R, He C, Wu Y, Liu Z, Yang B, Wang S, Meng L, Zheng S, Lu D, Wei Q, Yang J, Wei X, Chen R, Xu X. Integrated Multiomics Reveals Silencing of has_circ_0006646 Promotes TRIM21-Mediated NCL Ubiquitination to Inhibit Hepatocellular Carcinoma Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306915. [PMID: 38357830 PMCID: PMC11040345 DOI: 10.1002/advs.202306915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Recent studies suggest that circular RNA (circRNA)-mediated post-translational modification of RNA-binding proteins (RBP) plays a pivotal role in metastasis of hepatocellular carcinoma (HCC). However, the specific mechanism and potential clinical therapeutic significance remain vague. This study attempts to profile the regulatory networks of circRNA and RBP using a multi-omics approach. Has_circ_0006646 (circ0006646) is an unreported circRNA in HCC and is associated with a poor prognosis. Silencing of circ0006646 significantly hinders metastasis in vivo. Mechanistically, circ0006646 prevents the interaction between nucleolin (NCL) and the E3 ligase tripartite motif-containing 21 to reduce the proteasome-mediated degradation of NCL via K48-linked polyubiquitylation. Furthermore, the change of NCL expression is proven to affect the phosphorylation levels of multiple proteins and inhibit p53 translation. Moreover, patient-derived tumor xenograft and lentivirus injection, which is conducted to simulate clinical treatment confirmed the potential therapeutic value. Overall, this study describes the integrated multi-omics landscape of circRNA-mediated NCL ubiquitination degradation in HCC metastasis and provides a novel therapeutic target.
Collapse
Affiliation(s)
- Xin Hu
- Zhejiang University School of MedicineHangzhou310058China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- NHC Key Laboratory of Combined Multi‐organ TransplantationHangzhou310003China
| | - Guanrong Chen
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhou310053China
| | - Yingchen Huang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhou310053China
| | - Qiyang Cheng
- Department of Hepatobiliary SurgeryBeijing Chaoyang Hospital affiliated to Capital Medical UniversityBeijing100020China
| | - Jianyong Zhuo
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Renyi Su
- Zhejiang University School of MedicineHangzhou310058China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
| | - Chiyu He
- Zhejiang University School of MedicineHangzhou310058China
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhou310022China
| | - Yichao Wu
- Zhejiang University School of MedicineHangzhou310058China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
| | - Zhikun Liu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Beng Yang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310006China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Lijun Meng
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi‐organ TransplantationHangzhou310003China
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhou310022China
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310006China
| | - Di Lu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Qiang Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Jiayin Yang
- Department of Liver SurgeryLiver Transplantation CenterWest China Hospital of Sichuan UniversityChengdu332001China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Ronggao Chen
- NHC Key Laboratory of Combined Multi‐organ TransplantationHangzhou310003China
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310006China
| | - Xiao Xu
- Zhejiang University School of MedicineHangzhou310058China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- NHC Key Laboratory of Combined Multi‐organ TransplantationHangzhou310003China
| |
Collapse
|
3
|
Lee J, Lee G, Park HS, Jeong BK, Gong G, Jeong JH, Lee HJ. Factors associated with engraftment success of patient-derived xenografts of breast cancer. Breast Cancer Res 2024; 26:49. [PMID: 38515107 PMCID: PMC10956311 DOI: 10.1186/s13058-024-01794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Patient-derived xenograft (PDX) models serve as a valuable tool for the preclinical evaluation of novel therapies. They closely replicate the genetic, phenotypic, and histopathological characteristics of primary breast tumors. Despite their promise, the rate of successful PDX engraftment is various in the literature. This study aimed to identify the key factors associated with successful PDX engraftment of primary breast cancer. METHODS We integrated clinicopathological data with morphological attributes quantified using a trained artificial intelligence (AI) model to identify the principal factors affecting PDX engraftment. RESULTS Multivariate logistic regression analyses demonstrated that several factors, including a high Ki-67 labeling index (Ki-67LI) (p < 0.001), younger age at diagnosis (p = 0.032), post neoadjuvant chemotherapy (NAC) (p = 0.006), higher histologic grade (p = 0.039), larger tumor size (p = 0.029), and AI-assessed higher intratumoral necrosis (p = 0.027) and intratumoral invasive carcinoma (p = 0.040) proportions, were significant factors for successful PDX engraftment (area under the curve [AUC] 0.905). In the NAC group, a higher Ki-67LI (p < 0.001), lower Miller-Payne grade (p < 0.001), and reduced proportion of intratumoral normal breast glands as assessed by AI (p = 0.06) collectively provided excellent prediction accuracy for successful PDX engraftment (AUC 0.89). CONCLUSIONS We found that high Ki-67LI, younger age, post-NAC status, higher histologic grade, larger tumor size, and specific morphological attributes were significant factors for predicting successful PDX engraftment of primary breast cancer.
Collapse
Affiliation(s)
- Jongwon Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - GunHee Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | | | - Byung-Kwan Jeong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Jae Ho Jeong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
- NeogenTC Corp., Seoul, South Korea.
| |
Collapse
|
4
|
Wang K, Qiu X, Zhang Z, Xu H, Tan Y, Su R, Gao F, Zhuo J, Li W, Lian Z, He H, Xu X. ATRA sensitized the response of hepatocellular carcinoma to Sorafenib by downregulation of p21-activated kinase 1. Cell Commun Signal 2023; 21:193. [PMID: 37537668 PMCID: PMC10399044 DOI: 10.1186/s12964-023-01194-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/10/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Sorafenib resistance greatly reduces the efficacy of treatments in advanced hepatocellular carcinoma (HCC) patients, but the underlying mechanisms are not thoroughly understood. All-trans retinoic acid (ATRA), an anti-leukaemia agent, has attracted considerable attention due to its role in sensitizing cells to other anticancer treatments. We aimed to investigate the combined effect of ATRA and Sorafenib on HCC and the underlying mechanisms. METHODS CCK-8, cell sphere formation, trans-well migration, and wound-healing assays were used to analyse the biological behaviours of HCC cells in vitro. Western blotting and qRT-PCR analysis were conducted to measure the expression of p21 activated kinase 1 (PAK1) and phospho-p21 activated kinase 1 (pPAK1). Xenograft models were established to confirm the synergistic effects of ATRA and Sorafenib in vivo. TUNEL assays and immunohistochemistry were utilized to determine apoptosis, proliferation, PAK1 and pPAK1 levels in tumour tissues. RESULTS We observed that PAK1 was overexpressed in HCC, and its expression was negatively correlated with the survival of patients. PAK1 promoted the proliferation, self-renewal and epithelial-mesenchymal transition of HCC cells. Correlation analysis indicated that the IC50 of Sorafenib was positively correlated with the level of pPAK1 in HCC cell lines. ATRA inhibited the progression of HCC and sensitized HCC response to Sorafenib by downregulation of PAK1, as shown by the calculated coefficient of drug interaction and the data obtained from xenograft models. CONCLUSIONS Our findings indicated that instead of treatment with Sorafenib alone, the combination of ATRA and Sorafenib provides a more effective treatment for HCC patients. Video Abstract.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, People's Republic of China
| | - Xun Qiu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China
- Zhejiang University School of Medicine, Hangzhou, 310058, People's Republic of China
| | - Zhensheng Zhang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China
- Zhejiang University School of Medicine, Hangzhou, 310058, People's Republic of China
| | - Hanzhi Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China
- Zhejiang University School of Medicine, Hangzhou, 310058, People's Republic of China
| | - Yawen Tan
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China
- Zhejiang University School of Medicine, Hangzhou, 310058, People's Republic of China
| | - Renyi Su
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China
- Zhejiang University School of Medicine, Hangzhou, 310058, People's Republic of China
| | - Fengqiang Gao
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China
- Zhejiang University School of Medicine, Hangzhou, 310058, People's Republic of China
| | - Jianyong Zhuo
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China
| | - Wangyao Li
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China
| | - Zhengxing Lian
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China
| | - Hong He
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia.
| | - Xiao Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, People's Republic of China.
- Zhejiang University School of Medicine, Hangzhou, 310058, People's Republic of China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, People's Republic of China.
| |
Collapse
|
5
|
Lin C, He Y, Liu M, Wu A, Zhang J, Li S, Li S, Cao Q, Liu F. Vessels That Encapsulate Tumor Clusters (VETC) Predict cTACE Response in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:383-397. [PMID: 36915392 PMCID: PMC10007987 DOI: 10.2147/jhc.s395903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/19/2023] [Indexed: 03/09/2023] Open
Abstract
Background To investigate the correlation between hepatocellular carcinoma (HCC) pathological types and conventional transarterial chemoembolization (cTACE), and to evaluate the predictive value of the pathological types for efficacy of cTACE. Methods We investigated 186 naive HCC patients from 2 hospitals, including 63 patients with recurrence after surgical resection, and 123 unresectable cases, who underwent at least one cTACE procedure as the first treatment. All patients were histologically diagnosed with HCC by surgical resection and/or liver biopsy. Lipiodol deposition rate, ORR (objective response rate), PFS (progression-free survival), OS (overall survival) were compared among different HCC pathological types. Results This study evaluated 186 naive HCC patients and 189 tumor nodules. Vessels that encapsulate tumor clusters (VETC), macrotrabecular-massive (MTM), CK19-positive types were identified in 38% (72/189), 40% (76/189), and 28% (53/189) of the whole cohort, respectively. VETC, MTM and CK19-negative HCCs derived significantly better lipiodol deposition rate and ORR. cTACE prolonged the PFS of VETC and CK19-negative HCCs compared with non-VETC and CK19-positive HCCs in the recurrence, liver biopsy and combining whole cohorts, whereas the OSs of different pathological types were not significantly different. Multivariate analysis showed that VETC (OR, 4.671, 95% CI [1.954, 11.166], P<0.001) and CK19-positive type (OR, 0.127, 95% CI [0.044, 0.362], P<0.001) were independent predictive factors for the first cTACE response. However, only VETC type was significantly associated with the second cTACE response in multivariate analysis (OR, 3.31, 95% CI [1.24, 8.83], P=0.017), suggesting that VETC might be a more useful predictor of cTACE response. Conclusion Our study suggests that VETC is an effective predictor of cTACE response in patients with HCC.
Collapse
Affiliation(s)
- Chunyu Lin
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Department of Liver Tumor Center, Nanfang Hospital, Southern Medical University, Guangzhou, 51051, People's Republic of China.,Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 51051, People's Republic of China
| | - Yuan He
- Department of Radiotherapy, The First Affiliated Hospital of University of Science and Technology of China, Hefei, 23000, People's Republic of China
| | - Mengnan Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Department of Liver Tumor Center, Nanfang Hospital, Southern Medical University, Guangzhou, 51051, People's Republic of China.,Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, 51051, People's Republic of China
| | - Aihua Wu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Department of Liver Tumor Center, Nanfang Hospital, Southern Medical University, Guangzhou, 51051, People's Republic of China
| | - Jing Zhang
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, 51051, People's Republic of China
| | - Shurong Li
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 51008, People's Republic of China
| | - Shuqi Li
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 51008, People's Republic of China
| | - Qinghua Cao
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 51008, People's Republic of China
| | - Fang Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Department of Liver Tumor Center, Nanfang Hospital, Southern Medical University, Guangzhou, 51051, People's Republic of China.,Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 51051, People's Republic of China
| |
Collapse
|
6
|
Yu X, Chen Y, Lu J, He K, Chen Y, Ding Y, Jin K, Wang H, Zhang H, Wang H, Teng L. Patient-derived xenograft models for gastrointestinal tumors: A single-center retrospective study. Front Oncol 2022; 12:985154. [PMID: 36465411 PMCID: PMC9716308 DOI: 10.3389/fonc.2022.985154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Patient-derived xenograft (PDX) models have shown a great efficiency in preclinical and translational applications. Gastrointestinal (GI) tumors have a strong heterogeneity, and the engraftment rate of PDX models remarkably vary. However, the clinicopathological and molecular characteristics affecting the engraftment rate still remain elusive. METHODS A total of 312 fresh tumor tissue samples from patients with GI cancer were implanted into immunodeficient mice. The median follow-up time of patients was 37 months. Patients' characteristics were compared in terms of PDX growth and overall survival. PDX models of 3-6 generations were used for drug evaluation. RESULTS In total, 171 (54.8%, 171/312) PDX models were established, including 85 PDX models of colorectal cancer, 21 PDX models of esophageal cancer, and 65 PDX models of gastric cancer. Other than tumor site, histology, differentiation degree, and serum alpha-fetoprotein (AFP) level, no significant differences were found between transplantation of xenografts and patients' characteristics. For patients who had undergone neoadjuvant therapy, the incidence of tumor formation was higher in those with progressive disease (PD) or stable disease (SD). In gastric cancer, the results showed a higher transplantation rate in deficient mismatch repair (dMMR) tumors, and Ki-67 could be an important factor affecting the engraftment rate. The gene mutation status of RAS and BRAF, two important molecular markers in colorectal cancer, showed a high degree of consistency between patients' tumors and PDXs. However, no significant effects of these two mutations on PDX engraftment rate were observed. More importantly, in this study although KRAS mutations were detected in two clinical cases, evident tumor inhibition was still observed after cetuximab treatment in both PDX models and patients. CONCLUSION A large-scale PDX model including 171 cases was successfully established for GI tumors in our center. The relationship between clinicopathological and molecular features and engraftment rates were clarified. Furthermore, this resource provides us with profound insights into tumor heterogeneity, making these models valuable for PDX-guided treatment decisions, and offering the PDX model as a great tool for personalized treatment and translation research.
Collapse
Affiliation(s)
- Xiongfei Yu
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Lu
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kuifeng He
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanyan Chen
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haibin Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haohao Wang
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Pan B, Wei X, Xu X. Patient-derived xenograft models in hepatopancreatobiliary cancer. Cancer Cell Int 2022; 22:41. [PMID: 35090441 PMCID: PMC8796540 DOI: 10.1186/s12935-022-02454-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/04/2022] [Indexed: 12/20/2022] Open
Abstract
Animal models are crucial tools for evaluating the biological progress of human cancers and for the preclinical investigation of anticancer drugs and cancer prevention. Various animals are widely used in hepatopancreatobiliary cancer research, and mouse models are the most popular. Generally, genetic tools, graft transplantation, and chemical and physical measures are adopted to generate sundry mouse models of hepatopancreatobiliary cancer. Graft transplantation is commonly used to study tumour progression. Over the past few decades, subcutaneous or orthotopic cell-derived tumour xenograft models (CDX models) have been developed to simulate distinct tumours in patients. However, two major limitations exist in CDX models. One model poorly simulates the microenvironment of tumours in humans, such as the vascular, lymphatic and immune environments. The other model loses genetic heterogeneity compared with the corresponding primary tumour. Increased efforts have focused on developing better models for hepatopancreatobiliary cancer research. Hepatopancreatobiliary cancer is considered a tumour with high molecular heterogeneity, making precision medicine challenging in cancer treatment. Developing a new animal model that can better mimic tumour tissue and more accurately predict the efficacy of anticancer treatments is urgent. For the past several years, the patient-derived xenograft model (PDX model) has emerged as a promising tool for translational research. It can retain the genetic and histological stability of their originating tumour at limited passages and shed light on precision cancer medicine. In this review, we summarize the methodology, advantages/disadvantages and applications of PDX models in hepatopancreatobiliary cancer research.
Collapse
|
8
|
Zhuo J, Lu D, Lin Z, Yang X, Yang M, Wang J, Tao Y, Wen X, Li H, Lian Z, Cen B, Dong S, Wei X, Xie H, Zheng S, Shen Y, Xu X. The distinct responsiveness of cytokeratin 19-positive hepatocellular carcinoma to regorafenib. Cell Death Dis 2021; 12:1084. [PMID: 34785656 PMCID: PMC8595883 DOI: 10.1038/s41419-021-04320-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023]
Abstract
Cytokeratin 19-positive (CK19+) hepatocellular carcinoma (HCC) is an aggressive subtype characterized by early recurrence and chemotherapy tolerance. However, there is no specific therapeutic option for CK19+ HCC. The correlation between tumor recurrence and expression status of CK19 were studied in 206 patients undergoing liver transplantation for HCC. CK19-/+ HCC cells were isolated to screen effective antitumor drugs. The therapeutic effects of regorafenib were evaluated in patient-derived xenograft (PDX) models from 10 HCC patients. The mechanism of regorafenib on CK19+ HCC was investigated. CK19 positiveness indicated aggressiveness of tumor and higher recurrence risk of HCC after liver transplantation. The isolated CK19+ HCC cells had more aggressive behaviors than CK19- cells. Regorafenib preferentially increased the growth inhibition and apoptosis of CK19+ cells in vitro, whereas sorafenib, apatinib, and 5-fluorouracil did not. In PDX models from CK19-/+ HCC patients, the tumor control rate of regorafenib achieved 80% for CK19+ HCCs, whereas 0% for CK19- HCCs. RNA-sequencing revealed that CK19+ cells had elevated expression of mitochondrial ribosomal proteins, which are essential for mitochondrial function. Further experiments confirmed that regorafenib attenuated the mitochondrial respiratory capacity in CK19+ cells. However, the mitochondrial respiration in CK19- cells were faint and hardly repressed by regorafenib. The mitochondrial respiration was regulated by the phosphorylation of signal transducer and activator of transcription 3 (STAT3), which was inhibited by regorafenib in CK19+ cells. Hence, CK19 could be a potential marker of the therapeutic benefit of regorafenib, which facilitates the individualized therapy for HCC. STAT3/mitochondria axis determines the distinct response of CK19+ cells to regorafenib treatment.
Collapse
Affiliation(s)
- Jianyong Zhuo
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Organ Transplantation, Zhejiang University School of Medicine, Hangzhou, China
| | - Di Lu
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zuyuan Lin
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyu Yang
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Modan Yang
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianguo Wang
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaoye Tao
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Wen
- Department of Pathology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huihui Li
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengxing Lian
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beini Cen
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyi Dong
- National Center for Healthcare Quality Management in Liver Transplant, Hangzhou, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyang Xie
- Institute of Organ Transplantation, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Shusen Zheng
- Institute of Organ Transplantation, Zhejiang University School of Medicine, Hangzhou, China
- National Center for Healthcare Quality Management in Liver Transplant, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Organ Transplantation, Zhejiang University School of Medicine, Hangzhou, China.
- National Center for Healthcare Quality Management in Liver Transplant, Hangzhou, China.
| |
Collapse
|