1
|
Chang S, Yang Q, Liu J, Yin L, Han J, Zong L, Pu X. The Increased Dissolution and Oral Absorption of Itraconazole by Nanocrystals with an Endogenous Small-Molecule Surfactant as a Stabilizer. Molecules 2024; 29:1769. [PMID: 38675589 PMCID: PMC11052100 DOI: 10.3390/molecules29081769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to develop cholic-acid-stabilized itraconazole nanosuspensions (ITZ-Nanos) with the objective of enhancing drug dissolution and oral absorption. A laboratory-scale microprecipitation-high-pressure homogenization method was employed for the preparation of the ITZ-Nanos, while dynamic light scattering, transmission electron microscope analysis, X-ray diffraction, differential scanning calorimetry, and high-performance liquid chromatography analysis were utilized to evaluate their physicochemical properties. The absorption and bioavailability of the ITZ-Nanos were assessed using Caco-2 cells and rats, with Sporanox® pellets as a comparison. Prior to lyophilization, the particle size of the ITZ-Nanos measured approximately 225.7 nm. Both X-ray diffraction and differential scanning calorimetry confirmed that the ITZ remained crystalline within the nanocrystals. Compared to the pellets, the ITZ-Nanos exhibited significantly higher levels of supersaturation dissolution and demonstrated enhanced drug uptake by the Caco-2 cells. The AUC(0-t) value for the ITZ-Nanos in rats was 1.33-fold higher than that observed for the pellets. These findings suggest that cholic acid holds promise as a stabilizer for ITZ nanocrystals, as well as potentially other nanocrystals.
Collapse
Affiliation(s)
- Sheng Chang
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Qiang Yang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China (L.Z.)
| | - Jiahuan Liu
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Li Yin
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China (L.Z.)
| | - Jihong Han
- School of Pharmacy and Bioengineering, Keele University, Kiel ST5 5BG, UK;
| | - Lanlan Zong
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China (L.Z.)
| | - Xiaohui Pu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China (L.Z.)
| |
Collapse
|
2
|
Profiling of Urinary Glucuronidated Bile Acids across Age Groups. Metabolites 2022; 12:metabo12121230. [PMID: 36557268 PMCID: PMC9780789 DOI: 10.3390/metabo12121230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
We investigated the age-dependent changes in urinary excretion of glucuronidated bile acids at the C-3 position. Bile acid 3-glucuronides accounted for 0.5% of urinary bile acids in neonates, and the proportion of bile acid 3-glucuronides plateaued at 1-3 years of age. The 3-glucuronides of secondary bile acids were first secreted at 3 months of age, the same time as the establishment of the gut bacterial flora in infants. A considerable portion of bile acid 3-glucuronides were present as non-amidated forms. Our results indicate dynamic hepatic enzyme activity in which the levels of uridine 5'-diphospho-glucuronosyltransferases (UGTs) differ by age group, with higher glucuronidation activity of UGTs towards nonamidated bile acids than amidated bile acids.
Collapse
|
3
|
Zhao X, Liu Z, Sun F, Yao L, Yang G, Wang K. Bile Acid Detection Techniques and Bile Acid-Related Diseases. Front Physiol 2022; 13:826740. [PMID: 35370774 PMCID: PMC8967486 DOI: 10.3389/fphys.2022.826740] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2022] [Indexed: 12/23/2022] Open
Abstract
Bile acid is a derivative of cholinergic acid (steroidal parent nucleus) that plays an important role in digestion, absorption, and metabolism. In recent years, bile acids have been identified as signaling molecules that regulate self-metabolism, lipid metabolism, energy balance, and glucose metabolism. The detection of fine changes in bile acids caused by metabolism, disease, or individual differences has become a research hotspot. At present, there are many related techniques, such as enzyme analysis, immunoassays, and chromatography, that are used for bile acid detection. These methods have been applied in clinical practice and laboratory research to varying degrees. However, mainstream detection technology is constantly updated and replaced with the passage of time, proffering new detection technologies. Previously, gas chromatography (GS) and gas chromatography-mass spectrometry (GC-MS) were the most commonly used for bile acid detection. In recent years, high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) has developed rapidly and has gradually become the mainstream bile acid sample separation and detection technology. In this review, the basic principles, development and progress of technology, applicability, advantages, and disadvantages of various detection techniques are discussed and the changes in bile acids caused by related diseases are summarized.
Collapse
Affiliation(s)
- Xiang Zhao
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zitian Liu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fuyun Sun
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lunjin Yao
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangwei Yang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kexin Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Kexin Wang,
| |
Collapse
|
4
|
Dutta M, Cai J, Gui W, Patterson AD. A review of analytical platforms for accurate bile acid measurement. Anal Bioanal Chem 2019; 411:4541-4549. [PMID: 31127337 DOI: 10.1007/s00216-019-01890-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 12/23/2022]
Abstract
Bile acids are acidic steroids which help in lipid absorption, act as signaling molecules, and are key intermediate molecules between host and gut microbial metabolism. Perturbations in the circulating bile acid pool can lead to dysregulated metabolic and immunological function which may be associated with liver and intestinal disease. Bile acids have chemically diverse structures and are present in a broad range of concentrations in a wide variety of samples with complex biological matrices. Advanced analytical methods are therefore required to identify and accurately quantify individual bile acids. Though enzymatic determination of total bile acid is most popular in clinical laboratories, these methods provide limited information about individual bile acids. Advanced analytical methods such as gas chromatography- and liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy are highly informative techniques which help in identification and quantification of individual bile acids in complex biological matrices. Here, we review the detection technologies currently used for bile acid identification and quantification. We further discuss the advantages and disadvantages of these analytical techniques with respect to sensitivity, specificity, robustness, and ease of use. Graphical abstract.
Collapse
Affiliation(s)
- Mainak Dutta
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani, Dubai Campus, Dubai International Academic City, Dubai, UAE
| | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 322 Life Sciences Building, University Park, State College, PA, 16802, USA
| | - Wei Gui
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 322 Life Sciences Building, University Park, State College, PA, 16802, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 322 Life Sciences Building, University Park, State College, PA, 16802, USA.
| |
Collapse
|
5
|
MANO N, MAEKAWA M, YAMAGUCHI H. Clinical Chemistry Based on Highly Accurate Separation Analysis Technology. CHROMATOGRAPHY 2018. [DOI: 10.15583/jpchrom.2018.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Nariyasu MANO
- Department of Pharmaceutical Sciences, Tohoku University Hospital
| | | | | |
Collapse
|
6
|
TAKEI H, MURAI T, KUROSAWA T, IIDA T, NITTONO H, FUJISHIRO M, LEE XP, SATO J, SATO K. Transition of Urinary Ursodeoxycholic Acid 7β-N-acetylglucosaminide and 3α-sulfate from Neonates to Adolescents Using LC/ESI-MS/MS Analysis. ACTA ACUST UNITED AC 2017. [DOI: 10.15369/sujms.29.391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hajime TAKEI
- Junshin Clinic Bile Acid Institute
- Department of Legal Medicine, Showa University School of Medicine
| | - Tsuyoshi MURAI
- School of Pharmacetical Science, Health Science University of Hokkaido
| | - Takao KUROSAWA
- School of Pharmacetical Science, Health Science University of Hokkaido
| | - Takashi IIDA
- Department of Chemistry, Colleage of Humanities & Science, Nihon University
| | - Hiroshi NITTONO
- Junshin Clinic Bile Acid Institute
- Department of Legal Medicine, Showa University School of Medicine
| | - Masaya FUJISHIRO
- Department of Legal Medicine, Showa University School of Medicine
| | | | - Junichi SATO
- Department of Legal Medicine, Showa University School of Medicine
| | - Keizo SATO
- Department of Legal Medicine, Showa University School of Medicine
| |
Collapse
|
7
|
Maekawa M, Shimada M, Iida T, Goto J, Mano N. Tandem mass spectrometric characterization of bile acids and steroid conjugates based on low-energy collision-induced dissociation. Steroids 2014; 80:80-91. [PMID: 24296272 DOI: 10.1016/j.steroids.2013.11.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 11/14/2013] [Accepted: 11/20/2013] [Indexed: 11/15/2022]
Abstract
We examined the characteristics of several bile acids and some steroid conjugates under low-energy-collision-induced dissociation conditions using a triple quadrupole tandem mass spectrometer. According to conjugation types, we observed characteristic product ions and/or neutral losses in the product ion spectra. Amino acid conjugates afforded specific product ions. For example, glycine-conjugated metabolites routinely produced a product ion at m/z 74, and taurine-conjugated metabolites produced product ions at m/z 124, 107, and 80. When a strong peak appeared at m/z 97, the molecule contained a sulfate group. In contrast to amino acid conjugates, carbohydrate conjugates required a combination of product ions and neutral losses for identification. We could discriminate a glucoside from an acyl galactoside according to the presence or absence of a product ion at m/z 161 and a neutral loss of 180 Da. Discrimination among esters, aliphatic ethers, and phenolic ether types of glucuronides was based upon differences in the intensities of a product ion at m/z 175 and a neutral loss of 176 Da. Furthermore, N-acetylglucosamine conjugates showed a characteristic product ion at m/z 202 and a neutral loss of 203 Da, and the appearance of a product ion at m/z 202 revealed the existence of N-acetylglucosamine conjugated to an aliphatic hydroxyl group without a double bond in the immediate vicinity. Together, the data presented here will help to enable the identification of unknown conjugated cholesterol metabolites by using low-energy collision-induced dissociation.
Collapse
Affiliation(s)
- Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Miki Shimada
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Takashi Iida
- Department of Chemistry, College of Humanities and Sciences, Nihon University, Sakurajousui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Junichi Goto
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| |
Collapse
|
8
|
Gouveia MJ, Brindley PJ, Santos LL, da Costa JMC, Gomes P, Vale N. Mass spectrometry techniques in the survey of steroid metabolites as potential disease biomarkers: a review. Metabolism 2013; 62:1206-17. [PMID: 23664145 PMCID: PMC3755027 DOI: 10.1016/j.metabol.2013.04.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/13/2013] [Accepted: 04/02/2013] [Indexed: 01/31/2023]
Abstract
Mass spectrometric approaches have been fundamental to the identification of metabolites associated with steroid hormones, yet this topic has not been reviewed in depth in recent years. To this end, and given the increasing relevance of liquid chromatography-mass spectrometry (LC-MS) studies on steroid hormones and their metabolites, the present review addresses this subject. This review provides a timely summary of the use of various mass spectrometry-based analytical techniques during the evaluation of steroidal biomarkers in a range of human disease settings. The sensitivity and specificity of these technologies are clearly providing valuable new insights into breast cancer and cardiovascular disease. We aim to contribute to an enhanced understanding of steroid metabolism and how it can be profiled by LC-MS techniques.
Collapse
Affiliation(s)
- Maria João Gouveia
- Center for the Study of Animal Science, ICETA, University of Porto
- INSA, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Paul J. Brindley
- George Washington University School of Medicine & Health Sciences – Department of Microbiology, Immunology and Tropical Medicine, Ross Hali, 20037 Washington, DC, USA
| | - Lúcio Lara Santos
- Experimental Therapeutics and Pathology Research Group - IPO-Porto, Portuguese Institute of Oncology Francisco Gentil, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - José Manuel Correia da Costa
- Center for the Study of Animal Science, ICETA, University of Porto
- INSA, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Paula Gomes
- CIQUP, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Nuno Vale
- CIQUP, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua Campo Alegre, 687, 4169-007 Porto, Portugal
- Corresponding author: CIQUP, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, P-4169-007 Porto, Portugal Tel.: +351 220402567; fax: + 351 220402563,
| |
Collapse
|
9
|
Ikegawa S. [Detailed characterization of bile acid and glucocorticoid world by mass spectrometry]. YAKUGAKU ZASSHI 2013; 133:661-79. [PMID: 23728093 DOI: 10.1248/yakushi.13-00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Nobel Prize in Chemistry for 2002 was shared by John B. Fenn and Koichi Tanaka "for their development of soft desorption methods for mass spectrometric analyses of biological macromolecules". Indeed, electrospray ionization and soft laser desorption ionization have proved to be of great value in "omics", such as metabolomics, transcriptomics and proteomics in providing a systematic and quantitative approach to the study of biological systems and networks. Moreover, these techniques have made great contributions to metabolic studies that are used for development of new drugs, as well as to the diagnosis of diseases including cancer based on the specific and sensitive detection of molecular biomarkers. In this article, we describe our recent results on characterization of bile acid metabolism in hepatobiliary disease as well as measurement of conjugated urinary tetrahydrocorticosteroids for assessment of altered corticoid metabolism in endocrine disease and the metabolic syndrome.
Collapse
Affiliation(s)
- Shigeo Ikegawa
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
| |
Collapse
|
10
|
Verreault M, Kaeding J, Caron P, Trottier J, Grosse L, Houssin E, Pâquet S, Perreault M, Barbier O. Regulation of endobiotics glucuronidation by ligand-activated transcription factors: physiological function and therapeutic potential. Drug Metab Rev 2010; 42:110-22. [PMID: 19831728 DOI: 10.3109/03602530903219220] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent progresses in molecular pharmacology approaches have allowed the identification and characterization of a series of nuclear receptors (NR) which efficiently control the level UDP-glucuronosyltransferase (UGT) genes expression. These regulatory processes ensure optimized UGT expression in response to specific endogenous and/or exogenous stimuli. Interestingly, numerous endogenous activators of these NRs are conjugated by the UGT enzymes they regulate. In such a case, the NR-dependent regulation of UGT genes corresponds to a feedforward/feedback mechanism by which a bioactive molecule controls its own concentrations. In the present review, we will discuss i) how bilirubin reduces its circulating levels by activating AhR in the liver; ii) how bile acids modulate their hepatic glucuronidation via PXR- and FXR-dependent processes in enterohepatic tissues; and iii) how androgens inhibit their cellular metabolism in prostate cancer cells through an AR-dependent mechanism. Subsequently, with further discussion of the same examples (bilirubin and bile acids), we will illustrate how NR-dependent regulation of UGT enzymes may contribute to the beneficial effects of pharmacological activators of nuclear receptors, such as CAR and PPARa.
Collapse
Affiliation(s)
- Mélanie Verreault
- Laboratory of Molecular Pharmacology, CHUQ Research Center and Faculty of Pharmacy, Laval University, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Mitamura K, Watanabe S, Sakai T, Okihara R, Sogabe M, Wakamiya T, Hofmann AF, Ikegawa S. Chemical synthesis of N-acetylcysteine conjugates of bile acids and in vivo formation in cholestatic rats as shown by liquid chromatography/electrospray ionization-linear ion trap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2630-8. [DOI: 10.1016/j.jchromb.2009.03.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 03/07/2009] [Accepted: 03/20/2009] [Indexed: 02/07/2023]
|
13
|
Kakiyama G, Muto A, Shimada M, Mano N, Goto J, Hofmann AF, Iida T. Chemical synthesis of 3beta-sulfooxy-7beta-hydroxy-24-nor-5-cholenoic acid: an internal standard for mass spectrometric analysis of the abnormal delta5-bile acids occurring in Niemann-Pick disease. Steroids 2009; 74:766-72. [PMID: 19394355 DOI: 10.1016/j.steroids.2009.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Revised: 04/08/2009] [Accepted: 04/15/2009] [Indexed: 11/27/2022]
Abstract
In Niemann-Pick disease, type C1, increased amounts of 3beta,7beta-dihydroxy-5-cholenoic acid are reported to be present in urinary bile acids. The compound occurs as a tri-conjugate, sulfated at C-3, N-acetylglucosamidated at C-7, and N-acylamidated with taurine or glycine at C-24. For sensitive LC-MS/MS analysis of this bile acid, a suitable internal standard is needed. We report here the synthesis of a satisfactory internal standard, 3beta-sulfooxy-7beta-hydroxy-24-nor-5-cholenoic acid (as the disodium salt). The key reactions involved were (1) the so-called "second order" Beckmann rearrangement (one-carbon degradation at C-24) of hyodeoxycholic acid (HDCA) 3,6-diformate with sodium nitrite in a mixture of trifluoroacetic anhydride and trifluoroacetic acid, (2) simultaneous inversion at C-3 and elimination at C-6 of the ditosylate derivatives of the resulting 3alpha,6alpha-dihydroxy-24-nor-5beta-cholanoic acid with potassium acetate in aqueous N,N-dimethylformamide, and (3) regioselective sulfation at C-3 of an intermediary 3beta,7beta-dihydroxy-24-nor-Delta(5) derivative using sulfur trioxide-trimethylamine complex. Overall yield of the desired compound was 1.8% in 12 steps from HDCA.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Chemistry, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Lipid-activated transcription factors control bile acid glucuronidation. Mol Cell Biochem 2009; 326:3-8. [PMID: 19130183 DOI: 10.1007/s11010-008-0001-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022]
Abstract
Bile acids subserve important physiological functions in the control of cholesterol homeostasis. Indeed, hepatic bile acid synthesis and biliary excretion constitute the main route for cholesterol removal from the human body. On the other hand, bile acids serve as natural detergents for the intestinal absorption of dietary cholesterol. However, due to their detergent properties, bile acids are inherently cytotoxic, and their cellular level may be tightly controlled to avoid pathological situations such as cholestasis. Recent investigations have illustrated the crucial roles that a series of ligand-activated transcription factors has in the control of hepatic bile acids synthesis, transport and metabolism. Thus, the lipid-activated nuclear receptors, farnesoid X-receptor (FXR), liver X-receptor (LXR), pregnane X-receptor (PXR) and peroxisome proliferator-activated receptor alpha (PPAR alpha), modulate the expression and activity of genes controlling bile acid homeostasis in the liver. Several members of the UDP-glucuronosyltransferase (UGT) enzymes family are among the bile acid metabolizing enzymes regulated by these receptors. UGTs catalyze glucuronidation, a major phase II metabolic reaction, which converts hydrophobic bile acids into polar and urinary excretable metabolites. This article summarizes our recent observations on the regulation of bile acid conjugating UGTs upon pharmacological activation of lipid-activated receptors, with a particular interest for the role of PPAR alpha and LXRalpha in controlling human UGT1A3 expression.
Collapse
|
15
|
Griffiths WJ, Wang Y. Sterol lipidomics in health and disease: Methodologies and applications. EUR J LIPID SCI TECH 2009. [DOI: 10.1002/ejlt.200800116] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Mackenzie PI, Rogers A, Treloar J, Jorgensen BR, Miners JO, Meech R. Identification of UDP glycosyltransferase 3A1 as a UDP N-acetylglucosaminyltransferase. J Biol Chem 2008; 283:36205-10. [PMID: 18981171 DOI: 10.1074/jbc.m807961200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The UDP glycosyltransferases (UGT) attach sugar residues to small lipophilic chemicals to alter their biological properties and enhance elimination. Of the four families present in mammals, two families, UGT1 and UGT2, use UDP glucuronic acid to glucuronidate bilirubin, steroids, bile acids, drugs, and many other endogenous chemicals and xenobiotics. UGT8, in contrast, uses UDP galactose to galactosidate ceramide, an important step in the synthesis of glycosphingolipids and cerebrosides. The function of the fourth family, UGT3, is unknown. Here we report the cloning, expression, and functional characterization of UGT3A1. This enzyme catalyzes the transfer of N-acetylglucosamine from UDP N-acetylglucosamine to ursodeoxycholic acid (3alpha, 7beta-dihydroxy-5beta-cholanoic acid). The enzyme uses ursodeoxycholic acid and UDP N-acetylglucosamine in preference to other primary and secondary bile acids, and other UDP sugars such as UDP glucose, UDP glucuronic acid, UDP galactose, and UDP xylose. In addition to ursodeoxycholic acid, UGT3A1 has activity toward 17alpha-estradiol, 17beta-estradiol, and the prototypic substrates of the UGT1 and UGT2 forms, 4-nitrophenol and 1-naphthol. A polymorphic UGT3A1 variant containing a C121G substitution was catalytically inactive. UGT3A1 is found in the liver and kidney, and to a lesser, in the gastrointestinal tract. These data describe the first characterization of a member of the UGT3 family. Its activity and distribution suggest that UGT3A1 may have an important role in the metabolism and elimination of ursodeoxycholic acid in therapies for ameliorating the symptoms of cholestasis or for dissolving gallstones.
Collapse
Affiliation(s)
- Peter I Mackenzie
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia.
| | | | | | | | | | | |
Collapse
|
17
|
Ikegawa S, Yamamoto T, Ito H, Ishiwata S, Sakai T, Mitamura K, Maeda M. Immunoprecipitation and MALDI-MS identification of lithocholic acid-tagged proteins in liver of bile duct-ligated rats. J Lipid Res 2008; 49:2463-2473. [DOI: 10.1194/jlr.m800350-jlr200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
18
|
Mitamura K, Watanabe S, Mitsumoto Y, Sakai T, Sogabe M, Wakamiya T, Ikegawa S. Formation and biliary excretion of glutathione conjugates of bile acids in the rat as shown by liquid chromatography/electrospray ionization-linear ion trap mass spectrometry. Anal Biochem 2008; 384:224-30. [PMID: 18938128 DOI: 10.1016/j.ab.2008.09.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 09/13/2008] [Accepted: 09/26/2008] [Indexed: 11/29/2022]
Abstract
Acyl-adenylates and acyl-CoA thioesters of bile acids (BAs) are reactive acyl-linked metabolites that have been shown to undergo transacylation-type reactions with the thiol group of glutathione (GSH), leading to the formation of thioester-linked GSH conjugates. In the current study, we examined the transformation of cholyl-adenylate (CA-AMP) and cholyl-coenzyme A thioester (CA-CoA) into a cholyl-S-acyl GSH (CA-GSH) conjugate by rat hepatic glutathione S-transferase (GST). The reaction product was analyzed by liquid chromatography (LC)/electrospray ionization (ESI)-linear ion trap mass spectrometry (MS). The GST-catalyzed formation of CA-GSH occurred with both CA-AMP and CA-CoA. Ursodeoxycholic acid, lithocholic acid, and 2,2,4,4-(2)H4-labeled lithocholic acid were administered orally to biliary fistula rats, and their corresponding GSH conjugates were identified in bile by LC/ESI-MS2. These in vitro and in vivo studies confirm a new mode of BA conjugation in which BAs are transformed into their GSH conjugates via their acyl-linked intermediary metabolites by the catalytic action of GST in the liver, and the GSH conjugates are then excreted into the bile.
Collapse
Affiliation(s)
- Kuniko Mitamura
- Faculty of Pharmaceutical Sciences, Kinki University, Higashi-Osaka 577-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Higashi T, Tobiyama M, Horita F, Sajimoto M, Shimada K, Tanaka K, Honjo H. DETERMINATION OF ESTRIOL-3-SULFATE-16-GLUCURONIDE IN PREGNANCY SERUM USING LC/TANDEM MS. J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-100103389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- T. Higashi
- a Faculty.of Pharmaceutical Sciences , Kanazawa University , 13-1 Takara-machi, Kanazawa, 920-0934, Japan
| | - M. Tobiyama
- a Faculty.of Pharmaceutical Sciences , Kanazawa University , 13-1 Takara-machi, Kanazawa, 920-0934, Japan
| | - F. Horita
- a Faculty.of Pharmaceutical Sciences , Kanazawa University , 13-1 Takara-machi, Kanazawa, 920-0934, Japan
| | - M. Sajimoto
- a Faculty.of Pharmaceutical Sciences , Kanazawa University , 13-1 Takara-machi, Kanazawa, 920-0934, Japan
| | - K. Shimada
- b Faculty of Pharmaceutical Sciences , Kanazawa University , 13-1 Takara-machi, Kanazawa, 920-0934, Japan
| | - K. Tanaka
- c Department of Obsterics and Gynecology , Kyoto Prefectural University of Medicine , Hirokoji, Kawaramachi, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - H. Honjo
- c Department of Obsterics and Gynecology , Kyoto Prefectural University of Medicine , Hirokoji, Kawaramachi, Kamigyo-ku, Kyoto, 602-0841, Japan
| |
Collapse
|
20
|
Mitamura K, Sogabe M, Sakanashi H, Watanabe S, Sakai T, Yamaguchi Y, Wakamiya T, Ikegawa S. Analysis of bile acid glutathione thioesters by liquid chromatography/electrospray ionization-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 855:88-97. [PMID: 17331817 DOI: 10.1016/j.jchromb.2007.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 12/16/2006] [Accepted: 02/05/2007] [Indexed: 11/25/2022]
Abstract
The formation of thioester-linked glutathione (GSH) conjugates of bile acids (BAs) is presumed to occur via trans-acylation reactions between GSH and reactive acyl-linked metabolites of BAs. The present study examines the chemical reactivity of cholyl-adenylate and cholyl-CoA thioester, acyl-linked metabolites of cholic acid (CA), with GSH to form CA-GSH conjugate in vitro. The authentic specimen of CA-GSH was synthesized along with GSH conjugates of four common BAs found in the human body. Their structures were confirmed by proton-nuclear magnetic resonance spectroscopy and electrospray ionization (ESI)-tandem mass spectrometry in positive- and negative-ion modes. Incubation of cholyl-adenylate or cholyl-CoA thioester with GSH was carried out at pH 7.5 and 37 degrees C for 30 min, with analysis of the reaction mixture by liquid chromatography/ESI-tandem mass spectrometry, where CA-GSH was detected on the product ion mass chromatograms monitored with stable and abundant dehydrated positive-ion [M+HH(2)O](+) at m/z 680.3 and fragmented negative-ion [GSHH](-) at m/z 306.0, and was definitely identified by CID spectra by comparison with those of the authentic sample. The results show that both cholyl-adenylate and cholyl-CoA thioester are able to acylate GSH in vitro.
Collapse
Affiliation(s)
- Kuniko Mitamura
- Faculty of Pharmaceutical Sciences, Kinki University, Higashi, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Goto T, Myint KT, Sato K, Wada O, Kakiyama G, Iida T, Hishinuma T, Mano N, Goto J. LC/ESI-tandem mass spectrometric determination of bile acid 3-sulfates in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 846:69-77. [PMID: 16949895 DOI: 10.1016/j.jchromb.2006.08.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 07/31/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
Abstract
We developed a highly sensitive and quantitative method to detect bile acid 3-sulfates in human urine employing liquid chromatography/electrospray ionization-tandem mass spectrometry. This method allows simultaneous analysis of bile acid 3-sulfates, including nonamidated, glycine-, and taurine-conjugated bile acids, cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), ursodeoxycholic acid (UDCA), and lithocholic acid (LCA), using selected reaction monitoring (SRM) analysis. The method was applied to analyze bile acid 3-sulfates in human urine from healthy volunteers. The results indicated an unknown compound with the nonamidated common bile acid 3-sulfates on the chromatogram obtained by the selected reaction monitoring analysis. By comparison of the retention behavior and MS/MS spectrum of the unknown peak with the authentic specimen, the unknown compound was identified as 3beta,12alpha-dihydroxy-5beta-cholanoic acid 3-sulfate.
Collapse
Affiliation(s)
- Takaaki Goto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Trottier J, Verreault M, Grepper S, Monté D, Bélanger J, Kaeding J, Caron P, Inaba TT, Barbier O. Human UDP-glucuronosyltransferase (UGT)1A3 enzyme conjugates chenodeoxycholic acid in the liver. Hepatology 2006; 44:1158-70. [PMID: 17058234 DOI: 10.1002/hep.21362] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chenodeoxycholic acid (CDCA) is a liver-formed detergent and plays an important role in the control of cholesterol homeostasis. During cholestasis, toxic bile acids (BA) accumulate in hepatocytes causing damage and consequent impairment of their function. Glucuronidation, a conjugation reaction catalyzed by UDP-glucuronosyltransferase (UGT) enzymes, is considered an important metabolic pathway for hepatic BA. This study identifies the human UGT1A3 enzyme as the major enzyme responsible for the hepatic formation of the acyl CDCA-24glucuronide (CDCA-24G). Kinetic analyses revealed that human liver and UGT1A3 catalyze the formation of CDCA-24G with similar K(m) values of 10.6 to 18.6 mumol/L, respectively. In addition, electrophoretic mobility shift assays and transient transfection experiments revealed that glucuronidation reduces the ability of CDCA to act as an activator of the nuclear farnesoid X-receptor (FXR). Finally, we observed that treatment of human hepatocytes with fibrates increases the expression and activity of UGT1A3, whereas CDCA has no effect. In conclusion, UGT1A3 is the main UGT enzyme for the hepatic formation of CDCA-24G and glucuronidation inhibits the ability of CDCA to act as an FXR activator. In vitro data also suggest that fibrates may favor the formation of bile acid glucuronides in cholestatic patients.
Collapse
Affiliation(s)
- Jocelyn Trottier
- Molecular Endocrinology and Oncology Research Center, CHUL Research Center and the faculty of pharmacy, Laval University, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Verreault M, Senekeo-Effenberger K, Trottier J, Bonzo JA, Bélanger J, Kaeding J, Staels B, Caron P, Tukey RH, Barbier O. The liver X-receptor alpha controls hepatic expression of the human bile acid-glucuronidating UGT1A3 enzyme in human cells and transgenic mice. Hepatology 2006; 44:368-78. [PMID: 16871576 DOI: 10.1002/hep.21259] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Glucuronidation, an important bile acid detoxification pathway, is catalyzed by enzymes belonging to the UDP-glucuronosyltransferase (UGT) family. Among UGT enzymes, UGT1A3 is considered the major human enzyme for the hepatic C24-glucuronidation of the primary chenodeoxycholic (CDCA) and secondary lithocholic (LCA) bile acids. We identify UGT1A3 as a positively regulated target gene of the oxysterol-activated nuclear receptor liver X-receptor alpha (LXRalpha). In human hepatic cells and human UGT1A transgenic mice, LXRalpha activators induce UGT1A3 mRNA levels and the formation of CDCA-24glucuronide (24G) and LCA-24G. Furthermore, a functional LXR response element (LXRE) was identified in the UGT1A3 promoter by site-directed mutagenesis, electrophoretic mobility shift assays and chromatin immunoprecipitation experiment. In addition, LXRalpha is found to interact with the SRC-1alpha and NCoR cofactors to regulate the UGT1A3 gene, but not with PGC-1beta. In conclusion, these observations establish LXRalpha as a crucial regulator of bile acid glucuronidation in humans and suggest that accumulation of oxysterols in hepatocytes during cholestasis favors bile acid detoxification as glucuronide conjugates. LXR agonists may be useful for stimulating both bile acid detoxification and cholesterol removal in cholestatic or hypercholesterolemic patients, respectively.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cells, Cultured
- Chromatin Immunoprecipitation
- DNA-Binding Proteins/drug effects
- DNA-Binding Proteins/metabolism
- Gene Expression
- Glucuronosyltransferase/drug effects
- Glucuronosyltransferase/genetics
- Glucuronosyltransferase/metabolism
- Hepatocytes/cytology
- Hepatocytes/metabolism
- Humans
- Hydrocarbons, Fluorinated
- In Vitro Techniques
- Liver X Receptors
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Orphan Nuclear Receptors
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sulfonamides/pharmacology
Collapse
Affiliation(s)
- Mélanie Verreault
- Molecular Endocrinology and Oncology Research Center, CHUL Research Center and the Faculty of Pharmacy, Laval University, Québec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gowda GAN, Somashekar BS, Ijare OB, Sharma A, Kapoor VK, Khetrapal CL. One-step analysis of major bile components in human bile using 1H NMR spectroscopy. Lipids 2006; 41:577-89. [PMID: 16981436 DOI: 10.1007/s11745-006-5007-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human gallbladder bile dissolved in dimethylsulfoxide provides sharp and resolved signals for major bile components in 1H NMR spectra. Characteristic well-resolved marker signals that invariably appear in 1H NMR spectra of bile were identified for cholesterol (H18 methyl signal at 0.643 ppm), lipids (glycerol CH signal at 5.064 ppm), total bile acids (H18 signals in the range 0.520-0.626 ppm), total glycine conjugated bile acids (NH signal at 6.958 ppm), total taurine conjugated bile acids (NH signal at 7.646 ppm), and urea (NH2 signal near 5.48 ppm), which enabled their rapid and accurate analysis. Excellent linearity and precision of quantitative analysis was observed for all the identified bile components (R2 > 0.99 for all). The method was demonstrated on gallbladder bile from 19 patients with gallbladder diseases. Urea in bile was identified by NMR for the first time and its quantitative analysis, along with several other bile components, is presented. The majority of the bile components could be analyzed in a single step. Accurate and rapid quantification of several bile components noninvasively by using the method presented herein may have far-reaching implications in the study of bile acid metabolism and pathophysiology of various hepatobiliary and gastrointestinal diseases.
Collapse
Affiliation(s)
- G A Nagana Gowda
- Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow-226 014, India.
| | | | | | | | | | | |
Collapse
|
25
|
Ando M, Kaneko T, Watanabe R, Kikuchi S, Goto T, Iida T, Hishinuma T, Mano N, Goto J. High sensitive analysis of rat serum bile acids by liquid chromatography/electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal 2005; 40:1179-86. [PMID: 16242877 DOI: 10.1016/j.jpba.2005.09.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 08/30/2005] [Accepted: 09/04/2005] [Indexed: 01/09/2023]
Abstract
Sensitive liquid chromatography (LC)/electrospray ionization (ESI) tandem mass spectrometry (MS) can be used to analyze the bile acid composition of rat serum. This method can analyze eight common bile acids and their glycine and taurine conjugates in 100 microl rodent serum by gradient elution on a reversed-phase column using a mixture of 20mM ammonium acetate buffer (pH 8.0), acetonitrile and methanol as a mobile phase. Selected reaction monitoring analysis under negative ion detection mode allowed the achievement of a high sensitive assay with a simple solid phase extraction using an ODS cartridge column. We used this method to investigate the effect of a one-day fast on the concentration and composition of serum bile acids in rats. The results suggested that the method described here is useful for the dynamic analysis of serum bile acids in rats.
Collapse
Affiliation(s)
- Masayuki Ando
- Niigata University of Pharmacy and Applied Life Sciences, 5-13-2 Kamishinei-cho, Niigata 950-2081, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ijare OB, Somashekar BS, Jadegoud Y, Nagana Gowda GA. 1H and 13C NMR characterization and stereochemical assignments of bile acids in aqueous media. Lipids 2005; 40:1031-41. [PMID: 16382575 DOI: 10.1007/s11745-005-1466-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The unconjugated bile acids cholic acid, deoxycholic acid, and chenodeoxycholic acid; their glycine and taurine conjugates glycocholic acid, glycodeoxycholic acid, glycochenodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, and taurochenodeoxycholic acid; and a taurine conjugated ursodeoxycholic acid, tauroursodeoxycholic acid, were characterized through 1H and 13C NMR in aqueous media under the physiological pH region (7.4 +/- 0.1). Assignments of 1H and 13C signals of all the bile acids were made using a combination of several one- and two-dimensional, homonuclear (1H-1H) and heteronuclear (1H-13C) correlations as well as spectral editing NMR methods. Stereochemical assignment of the five-membered ring of the bile acids is reported here for the first time. The complete characterization of various bile acids in aqueous media presented here may have implications in the study of the pathophysiology of biliary diseases through human biliary fluids using NMR spectroscopy.
Collapse
Affiliation(s)
- Omkar B Ijare
- Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Post-graduate Institute of Medical Sciences, Lucknow, India
| | | | | | | |
Collapse
|
27
|
Ijare OB, Somashekar BS, Gowda GAN, Sharma A, Kapoor VK, Khetrapal CL. Quantification of glycine and taurine conjugated bile acids in human bile using 1H NMR spectroscopy. Magn Reson Med 2005; 53:1441-6. [PMID: 15906301 DOI: 10.1002/mrm.20513] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A simple method for quantification of conjugated bile acids in human bile using (1)H NMR spectroscopy is presented. Bile acids in human bile are essentially conjugated with either glycine or taurine. The amide NH resonances from the conjugated bile acids are invariably devoid of interfering signals in (1)H NMR spectra. Under physiologic conditions of human bile (pH approximately 7.0 to 7.7), amide signal intensities are attenuated due to the chemical exchange and hence quantitative estimation is precluded. In the present study, the quantity of total glycine and taurine conjugated bile acids could be obtained accurately by suppressing the amide exchange by reducing the pH slightly lower than physiologic value (6.0 +/- 0.5). Further, the quantity of glycine conjugated bile acids can be calculated accurately by subtracting the quantity of taurine conjugated bile acids from the total conjugated bile acids as determined from the present method.
Collapse
Affiliation(s)
- Omkar B Ijare
- Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Post-graduate Institute of Medical Sciences, Lucknow 226 014, India
| | | | | | | | | | | |
Collapse
|
28
|
Kakiyama G, Sadakiyo S, Iida T, Mushiake K, Goto T, Mano N, Goto J, Nambara T. Chemical synthesis of 24-β-d-galactopyranosides of bile acids: a new type of bile acid conjugates in human urine. Chem Phys Lipids 2005; 134:141-50. [PMID: 15784232 DOI: 10.1016/j.chemphyslip.2005.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 12/14/2004] [Accepted: 01/04/2005] [Indexed: 10/25/2022]
Abstract
A method is reported for the preparation of the C-24 carboxyl-linked beta-D-galactopyranosides of lithocholic, deoxycholic, chenodeoxycholic, ursodeoxycholic, and cholic acids, two of which were recently identified as a novel type of the metabolites of bile acids excreted in human urine. Direct esterification (galactosidation) of the unprotected bile acids with 2,3,4,6-tetra-O-benzyl-D-galactopyranose in the presence of 2-chloro-1,3,5-trinitrobenzene as a coupling agent and subsequent hydrogenolysis of the resulting benzyloxy-protected bile acid 24-beta-D-galactopyranosides over 10% palladium on charcoal under atmospheric pressure afforded the title compounds. The structures of the bile acid acyl galactosides were confirmed by measuring several (1)H-(1)H and (1)H-(13)C shift correlated 2D NMR.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Chemistry, College of Humanities and Sciences, Nihon University, Sakurajousui, Setagaya, Tokyo 156-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kobayashi N, Ohtoyo M, Wada E, Kato Y, Mano N, Goto J. Generation of a single-chain Fv fragment for the monitoring of deoxycholic acid residues anchored on endogenous proteins. Steroids 2005; 70:285-94. [PMID: 15784283 DOI: 10.1016/j.steroids.2004.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 11/15/2004] [Accepted: 11/19/2004] [Indexed: 11/20/2022]
Abstract
A subset of lipophillic bile acids, including deoxycholic acid (DCA) and lithocholic acid (LCA), are thought to be biologically transformed into reactive intermediates forming covalently modified, "tissue-bound" bile acids that can exert several toxic effects. We have generated a single-chain Fv fragment (scFv) as a probe to monitor DCA residues anchored on proteins. DNA fragments encoding the variable heavy (V(H)) and light (V(L)) domains of a mouse antibody raised against a DCA hapten (Ab #88) were cloned by rapid amplification of cDNA 5'-ends. These sequences were combined via a common linker sequence coding (Gly(4)Ser)(3) to construct a single scFv gene with the gene segments in the following order: 5'-V(H)-linker-V(L)-3'. This construct was subcloned into an antibody-expression vector, pEXmide 5; soluble scFv protein was then expressed in the bacterial periplasm of the XLOLR Escherichia coli strain. In a competitive enzyme-linked immunosorbent assay using DCA-coated microtiter plates, the scFv provided a dose-response curve for free DCA ranging between 2 and 5000 pg/assay. The scFv reacts similarly with the l-lysine adduct of DCA (cross-reactivity, 72%), while bile acids having a modified DCA steroid skeleton were well-discriminated (cross-reactivity, <1%). This scFv could also monitor trace amounts of DCA residues anchored on a protein through DCA acyl adenylate reactions, the likely reactive intermediate. The present scFv may be a useful tool for trace characterization of tissue-bound bile acids; this usefulness may be significantly enhanced by fusion with signal-generating proteins, such as alkaline phosphatase or green fluorescent protein.
Collapse
Affiliation(s)
- Norihiro Kobayashi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Goto T, Shibata A, Sasaki D, Suzuki N, Hishinuma T, Kakiyama G, Iida T, Mano N, Goto J. Identification of a novel conjugate in human urine: bile acid acyl galactosides. Steroids 2005; 70:185-92. [PMID: 15763597 DOI: 10.1016/j.steroids.2004.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 11/19/2004] [Accepted: 12/02/2004] [Indexed: 11/26/2022]
Abstract
We report a novel conjugate, bile acid acyl galactosides, which exist in the urine of healthy volunteers. To identify the two unknown peaks obtained in urine specimens from healthy subjects, the specimens were subjected to solid phase extraction and then to liquid chromatographic separation. The eluate corresponding to the unknown peaks on the chromatogram was collected. Following alkaline hydrolysis and liquid chromatography (LC)/electrospray ionization (ESI)-mass spectrometric (MS) analysis, cholic acid (CA) and deoxycholic acid (DCA) were identified as liberated bile acids. When a portion of the alkaline hydrolyzate was subjected to a derivatization reaction with 1-phenyl-3-methyl-5-pyrazolone, a derivative of galactose was detected by LC/ESI-MS. Finally, the liquid chromatographic and mass spectrometric properties of these unknown compounds in urine specimens were compared to those of authentic specimens and the structures were confirmed as CA 24-galactoside and DCA 24-galactoside. These results strongly imply that bile acid 24-galactosides, a novel conjugate, were synthesized in the human body.
Collapse
Affiliation(s)
- Takaaki Goto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Iida T, Ogawa S, Kakiyama G, Goto T, Mano N, Goto J, Nambara T. Capillary gas chromatographic separation of bile acid acyl glycosides without thermal decomposition and isomerization. J Chromatogr A 2004; 1057:171-6. [PMID: 15584236 DOI: 10.1016/j.chroma.2004.09.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A direct method for the capillary gas chromatographic (cGC) separation of the acyl glycosides of bile acids was successfully attained. The free acyl glycosides were derivatized to their complete trifluoroacetyl (TFA) derivatives with N-methyl-bis(trifluoroacetamide). The highly volatile TFA derivatives were chromatographed on a short-length (10 m), narrow-bore (0.1 mm) capillary column coated with a thin film (0.1 microm) of 5% phenyl polysilphenylene-siloxane at a column temperature below 280 degrees C. Each exhibited a single, well-separated peak of the theoretical shape without any accompanying peaks due to the thermal decomposition and isomerization. The bile acid 24alpha-glucosides were always eluted faster than the corresponding 24beta-glucosides, which eluted before the corresponding 24beta-galactosides. The method could be usefully applied to biosynthetic and metabolic studies of bile acid acyl glycosides in biological materials.
Collapse
Affiliation(s)
- Takashi Iida
- Department of Chemistry, College of Humanities and Sciences, Nihon University, Sakurajousui, Setagaya, Tokyo 156-8550, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Mano N, Nishijima A, Saito S, Ikegawa S, Goto J. Synthesis and characterization of deoxycholyl 2-deoxyglucuronide: A water-soluble affinity labeling reagent. Lipids 2003; 38:873-9. [PMID: 14577667 DOI: 10.1007/s11745-003-1138-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Acyl glucuronides, which are biosynthesized by the action of glucuronosyltransferases to material for detoxification, are water-soluble and chemically active; they produce irreversible protein adducts via both the transacylation mechanism and the imine mechanism. The acyl group at the C-1 position migrates from the anomeric carbon to the C-2 position of the glucuronic acid moiety, producing the aldehyde group at the C-1 position, where the protein easily condenses through a Schiff's base, in the open-chain aldose form. The elimination of the hydroxyl group at the C-2 position therefore may prevent a protein-bound adduct via the imine mechanism. In this paper, we describe the synthesis and characterization of an acyl 2-deoxyglucuronide of deoxycholic acid as a model compound to investigate its possible utility as a water-soluble affinity labeling reagent for lipophilic carboxylic acids. The solubility of deoxycholyl 2-deoxyglucuronide in an aqueous solution was sufficient under physiological conditions, and the desired material reacted with model peptides to produce covalently bound adducts only via the transacylation mechanism.
Collapse
Affiliation(s)
- Nariyasu Mano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | |
Collapse
|
33
|
Criado A, Cárdenas S, Gallego M, Valcárcel M. Direct screening of lyophilised biological fluids for bile acids using an evaporative light scattering detector. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 792:299-305. [PMID: 12860037 DOI: 10.1016/s1570-0232(03)00315-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The usefulness of lyophilisation for the direct screening of biological fluids for bile acids was investigated. Human serum and urine were lyophilised without losses of the target compounds and further extracted with n-hexane in acidic medium under magnetic stirring. An integrated flow injection-liquid chromatographic system coupled to an evaporative light scattering detector (ELSD) was used for automated screening/confirmation. The continuous module allows sequential filtration of the organic phase, solvent changeover and solid-phase extraction for clean-up and preconcentration purposes. Retained bile acids were eluted with an acetonitrile-methanol (65:35, v/v) stream. For screening purposes, the effluent was directly introduced in the ELSD detector and the total bile acid content of the sample determined. For confirmatory analysis, another aliquot of the sample was processed in the screening module but the effluent was directed to the chromatographic columns, which provided the free bile acid profile of the sample. Fasting serum and urine samples obtained from healthy individuals were lyophilised and processed. Good agreement was obtained in the analysis of the two matrices assayed following the screening and confirmatory methods.
Collapse
Affiliation(s)
- Andrés Criado
- Department of Analytical Chemistry, Campus de Rabanales, University of Córdoba, E-14071, Córdoba, Spain
| | | | | | | |
Collapse
|
34
|
Abstract
This review focuses on biological and biomedical mass spectrometry, and covers a selection of publications in this area included in the MEDLINE database for the period 1987-2001. Over the last 15 years, biological and biomedical mass spectrometry has progressed out of all recognition. The development of soft ionization methods, such as electrospray ionization and matrix-assisted laser desorption ionization, has mainly contributed to the remarkable progress, because they can easily produce gas-phase ions of large, polar, and thermally labile biomolecules, such as proteins, peptides, nucleic acids and others. The innovations of ionization methods have led to remarkable progress in mass spectrometric technology and in biochemistry, biotechnology and molecular biology research. In addition, mass spectrometry is one of the powerful and effective technologies for drug discovery and development. It is applicable to studies on structural determination, drug metabolism, including pharmacokinetics and toxicokinetics, and de novo drug discovery by applying post-genomic approarches. In the present review, the innovative soft ionization methods are first discussed along with their features. Also, the characteristics of the mass spectrometers which are active in the biological and biomedical research fields are also described. In addition, examples of the applications of biological and biomedical mass spectrometry are provided.
Collapse
Affiliation(s)
- Nariyasu Mano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan.
| | | |
Collapse
|
35
|
Iida T, Yabuta R, Goto J, Nambara T. Direct capillary gas chromatographic analysis and thermal stability of bile acid esters of glucose. Chromatographia 2002. [DOI: 10.1007/bf02492014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Abstract
Recent studies have suggested that bile acid acyl glucuronides form covalently bound protein adducts which may cause hypersensitivity reactions and increased morbidity in patients. Although the preferential biosynthesis of the acyl glucuronides has been known, the characterization of hepatic bile acid acyl glucuronosyltransferase has not yet been clearly elucidated. We have investigated the substrate specificity of the hepatic bile acid acyl glucuronosyltransferase using five common bile acids as substrates. The glucuronidation rate was dependent on the number of the hydroxy group on the steroid nucleus and mono-hydroxylated lithocholic acid, the more lipophilic common bile acid, was most effectively metabolized into its acyl glucuronide. The tri-hydroxylated cholic acid, the more water-soluble common bile acid, barely transformed into its glucuronide. Results showed decreasing of the initial velocity of the acyl glucuronidation with increasing of the concentration of substrate, lithocholic acid, owing to the substrate inhibition of the hepatic bile acid acyl glucuronosyltransferase. The substrate analogues, glycine and taurine conjugated bile acids, which exist in the body fluids in high concentrations, also inhibited the enzyme's activity. In addition, enzymatic reaction products, bile acid acyl glucuronides, also inhibited the activity. These inhibitory mechanisms may be responsible for the low concentration of bile acid acyl glucuronides in urine and may be an important detoxification system in the body.
Collapse
Affiliation(s)
- Nariyasu Mano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | |
Collapse
|
37
|
Mano N, Narui T, Nikaido A, Goto J. Separation and Determination of Diastereomeric Flurbiprofen Acyl Glucuronides in Human Urine by LC/ESI-MS with a Simple Column-Switching Technique. Drug Metab Pharmacokinet 2002; 17:142-9. [PMID: 15618663 DOI: 10.2133/dmpk.17.142] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endogenous and exogenous compounds having a carboxyl group, such as alpha-arylpropionic acid derivatives, undergo a phase II metabolic reaction to produce an amino acid conjugate through the acyl CoA thioester as well as the acyl glucuronide. It was previously shown that flurbiprofen, one of the nonsteroidal anti-inflammatory drugs, is not subjected to activation of the carboxyl group by the CoA thioester ligase, suggesting that acyl glucuronidation is the main phase II metabolic pathway. Recent observations, however, have demonstrated that the nonenzymatic formation of a covalently protein-bound drug, which is produced by the action of the acyl glucuronide, may cause hypersensitive reactions. Accordingly, a reliable method to measure diastereomeric flurbiprofen glucuronides in human biological fluids is required. In this study, we describe a liquid chromatographic/mass spectrometric method with a simple column switching technique to determine diastereomeric flurbiprofen acyl glucuronides in human urine specimens. The optimal conditions for the electrospray ionization were established based on the effects of orifice and ring lens voltages as well as mobile phase additives. The proposed method applied to urine specimens demonstrates high accuracy and reproducibility for the determination of flurbiprofen glucuronides in a quantitative range from 0.74 to 146.5 microg/mL, with a detection limit of 7.4 pg (17.6 fmol)/injection of S-flurbiprofen glucuronide, at a signal-to-noise ratio of 10 under the selected ion-monitoring mode. The urinary concentration of R-flurbiprofen glucuronides in healthy subjects determined by the proposed method were 6.8-29.4 microg/mL, and those values were slightly higher than that of S-flurbiprofen glucuronides (3.9-18.0 microg/mL).
Collapse
Affiliation(s)
- Nariyasu Mano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
38
|
Biological fluid screening and confirmation of bile acids by use of an integrated flow-injection-LC-evaporative light-scattering system. Chromatographia 2002. [DOI: 10.1007/bf02492314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Lida T, Nakamori R, Yabuta R, Yada S, Takagi Y, Mano N, Ikegawa S, Goto J, Nambara T. Potential bile acid metabolites. 24. An efficient synthesis of carboxyl-linked glucosides and their chemical properties. Lipids 2002; 37:101-10. [PMID: 11876257 DOI: 10.1007/s11745-002-0869-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A facile and efficient synthesis of the carboxyl-linked glucosides of bile acids is described. Direct esterification of unprotected bile acids with 2,3,4,6-tetra-O-benzyl-D-glucopyranose in pyridine in the presence of 2-chloro-1,3,5-trinitrobenzene as a coupling agent afforded a mixture of the alpha- and beta-anomers (ca. 1:3) of the 1-O-acyl-D-glucoside benzyl ethers of bile acids, which was separated effectively on a C18 reversed-phase chromatography column (isolated yields of alpha- and beta-anomers are 4-9% and 12-19%, respectively). Subsequent hydrogenolysis of the alpha- and beta-acyl glucoside benzyl ethers on a 10% Pd-C catalyst in acetic acid/methanol/EtOAc (1:2:2, by vol) at 35 degrees C under atmospheric pressure gave the corresponding free esters in good yields (79-89%). Chemical specificities such as facile hydrolysis and transesterification of the acyl glucosides in various solvents were also discussed.
Collapse
Affiliation(s)
- Takashi Lida
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Setagaya, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ikegawa S, Oohashi J, Murao N, Goto J. A method for the determination of the hepatic enzyme activity catalyzing bile acid acyl glucuronide formation by high-performance liquid chromatography with pulsed amperometric detection. Biomed Chromatogr 2000; 14:144-50. [PMID: 10850616 DOI: 10.1002/1099-0801(200005)14:3<144::aid-bmc939>3.0.co;2-k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A method for the determination of the activity of hepatic glucuronyltransferase catalyzing formation of bile acid 24-glucuronides using high-performance liquid chromatography (HPLC) with pulsed amperometric detection (PAD) has been developed. Bile acid 24-glucuronides were simultaneously separated on a semimicrobore column, Capcell Pak C18UG120, using 20 mM ammonium phosphate (pH 6.0)-acetonitrile (27:10 and 16:10) as the mobile phase in the stepwise gradient elution mode. A 1 M potassium hydroxide solution for the hydrolysis of the 24-glucuronides, which liberates the corresponding bile acids and glucuronic acid, was mixed with the mobile phase in a post-column mode, and the resulting eluant was heated at 90 degrees C, the 24-glucuronides being monitored using a pulsed amperometric detector; the limit of detection was 10 ng. The proposed method was applied to the determination of the hepatic enzyme activity catalyzing bile acid 24-glucuronide formation and the result exhibited the efficient 24-glucuronide formation of the monohydroxylated bile acid, lithocholic acid.
Collapse
Affiliation(s)
- S Ikegawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai, Japan
| | | | | | | |
Collapse
|
41
|
KOBAYASHI N, KATAYAMA H, NAGATA M, GOTO J. Production of a Monoclonal Antibody for Sensitive Monitoring of Deoxycholic Acid Residues Anchored on Endogenous Proteins. ANAL SCI 2000. [DOI: 10.2116/analsci.16.1133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | | | - Masanori NAGATA
- Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Junichi GOTO
- Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|