1
|
Kundu SK, Bandyopadhyay A, Sarkar R. Tryptophan-specific modification and diversification of peptides and proteins. Org Biomol Chem 2025. [PMID: 39831339 DOI: 10.1039/d4ob02015d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
In spite of being the second-lowest abundant proteinogenic amino acid, approximately 90% of proteins contain at least one tryptophan residue. Hence, the chemoselective functionalization of tryptophan residue can provide access to site-selective bioconjugation of almost all known proteins. With the increase in the utility of bioconjugated proteins and peptides as drugs and therapeutic agents, the development of smart protocols to fabricate and modulate biomolecules has flourished. This review provides a comprehensive summary of the latest advances in tryptophan-specific modification and diversification of peptides and proteins that exhibit significant applications in proteomics, protein engineering, living cell imaging, drug discovery, etc. The article also highlights literature gaps and new opportunities for the sake of future innovation in the field.
Collapse
Affiliation(s)
- Sudipta K Kundu
- Department of Chemistry, Muragachha Government College, Nadia 741154, West Bengal, India.
- Department of Higher Education, Government of West Bengal, India
| | - Ayan Bandyopadhyay
- Department of Higher Education, Government of West Bengal, India
- Department of Chemistry, Chapra Government College, Nadia 741123, West Bengal, India
| | - Rajib Sarkar
- Department of Chemistry, Muragachha Government College, Nadia 741154, West Bengal, India.
- Department of Higher Education, Government of West Bengal, India
| |
Collapse
|
2
|
Abbas SJ, Yesmin S, Vittala SK, Sepay N, Xia F, Ali SI, Chang WC, Hung YC, Ma WL. Target Bioconjugation of Protein Through Chemical, Molecular Dynamics, and Artificial Intelligence Approaches. Metabolites 2024; 14:668. [PMID: 39728449 DOI: 10.3390/metabo14120668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Covalent modification of proteins at specific, predetermined sites is essential for advancing biological and biopharmaceutical applications. Site-selective labeling techniques for protein modification allow us to effectively track biological function, intracellular dynamics, and localization. Despite numerous reports on modifying target proteins with functional chemical probes, unique organic reactions that achieve site-selective integration without compromising native functional properties remain a significant challenge. In this review, we delve into site-selective protein modification using synthetic probes, highlighting both chemical and computational methodologies for chemo- and regioselective modifications of naturally occurring amino acids, as well as proximity-driven protein-selective chemical modifications. We also underline recent traceless affinity labeling strategies that involve exchange/cleavage reactions and catalyst tethering modifications. The rapid development of computational infrastructure and methods has made the bioconjugation of proteins more accessible, enabling precise predictions of structural changes due to protein modifications. Hence, we discuss bioconjugational computational approaches, including molecular dynamics and artificial intelligence, underscoring their potential applications in enhancing our understanding of cellular biology and addressing current challenges in the field.
Collapse
Affiliation(s)
- Sk Jahir Abbas
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Obstetrics and Gynecology, Asia University Hospital, Taichung 41354, Taiwan
| | - Sabina Yesmin
- Institute of Chemistry, Academia Sinica, Taipei 115201, Taiwan
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
| | - Sandeepa K Vittala
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata 700017, India
| | - Fangfang Xia
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| | - Wei-Chun Chang
- Ph.D. Program for Health Science and Industry, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yao-Ching Hung
- Department of Obstetrics and Gynecology, Asia University Hospital, Taichung 41354, Taiwan
| | - Wen-Lung Ma
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
3
|
Chatterjee J, Bandyopadhyay A, Pattabiraman M, Sarkar R. Discovery and development of tyrosine-click (Y-click) reaction for the site-selective labelling of proteins. Chem Commun (Camb) 2024; 60:8978-8996. [PMID: 38913168 DOI: 10.1039/d4cc01997k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
With the versatile utility of bio-conjugated peptides and proteins in the fields of agriculture, food, cosmetics and pharmaceutical industry, the design of smart protocols to conjugate and modulate biomolecules becomes highly desirable. During this process, the most important consideration for biochemists is the retention of configurational integrity of the biomolecules. Moreover, this type of bioconjugation of peptide and protein becomes frivolous if the reaction is not performed with precise amino acid residues. Hence, chemo-selective, as well as site-selective reactions, that are biocompatible and possess an appropriate level of reactivity are necessary. Based on click chemistry, there are so many tyrosine (Y) conjugation strategies, such as sulfur-fluoride exchange (SuFEx), sulfur-triazole exchange (SuTEx), coupling with π-allyl palladium complexes, diazonium salts, diazodicarboxyamide-based reagents etc. Among these techniques, diazodicarboxyamide-based Y-conjugation, which is commonly known as the "tyrosine-click (Y-click) reaction", has met the expectations of synthetic and biochemists for the tyrosine-specific functionalization of biomolecules. Over the past one and a half decades, significant progress has been made in the classical organic synthesis approach, as well as its biochemical, photochemical, and electrochemical variants. Despite such progress and increasing importance, the Y-click reaction has not been reviewed to document variations in its methodology, applications, and broad utility. The present article aims to provide a summary of the approaches for the modulation of biomolecules at the hotspot of tyrosine residue by employing the Y-click reaction. The article also highlights its application for the mapping of proteins, imaging of living cells, and in the fields of analytical and medicinal chemistry.
Collapse
Affiliation(s)
| | - Ayan Bandyopadhyay
- Department of Chemistry, Chapra Government College, Nadia-741123, West Bengal, India
- Department of Higher Education, Government of West Bengal, India.
| | | | - Rajib Sarkar
- Department of Higher Education, Government of West Bengal, India.
- Department of Chemistry, Muragachha Government College, Nadia-741154, West Bengal, India
| |
Collapse
|
4
|
Mori T, Sumida S, Sakata K, Shirakawa S. Efficient synthetic methods for α,β-dehydroamino acids as useful and environmentally benign building blocks in biological and materials science. Org Biomol Chem 2024; 22:4625-4636. [PMID: 38804977 DOI: 10.1039/d4ob00507d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Both natural and unnatural amino acids, peptides, and proteins are widely recognized as green and sustainable organic chemicals, not only in the field of biological sciences but also in materials science. It has been discovered that artificially designed unnatural peptides and proteins exhibit advanced properties in medical and materials science. In this context, the development of precise chemical modification methods for amino acids and peptides is acknowledged as an important research project in the field of organic synthesis. While a wide variety of modification methods for amino acid residues have been developed to artificially modify peptides and proteins, the representative methods for modifying amino acid residues have traditionally relied on the nucleophilic properties of the functionalities on the residues. In this context, the development of different modification methods using an umpolung-like approach by utilizing the electrophilic nature of amino acid derivatives appears to be very attractive. One of the promising electrophilic amino acid compounds for realizing important modification methods of amino acid derivatives is α,β-dehydroamino acids, which possess an α,β-unsaturated carbonyl structure. This review article summarizes methods for the preparation of α,β-dehydroamino acids derived from natural and unnatural amino acid derivatives. The utilities of α,β-dehydroamino acid derivatives, including peptides and proteins containing dehydroalanine units, in bioconjugations are also discussed.
Collapse
Affiliation(s)
- Taiki Mori
- Institute of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Sao Sumida
- Institute of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Kazuki Sakata
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Seiji Shirakawa
- Institute of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
5
|
Nong K, Zhao YL, Yi S, Zhang X, Wei S, Yao ZJ. 3-Acyl-4-Pyranone as a Lysine Residue-Selective Bioconjugation Reagent for Peptide and Protein Modification. Bioconjug Chem 2024; 35:286-299. [PMID: 38451202 DOI: 10.1021/acs.bioconjchem.3c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Chemoselective protein modification plays extremely important roles in various biological, medical, and pharmaceutical investigations. Mimicking the mechanism of the chemoselective reaction between natural azaphilones and primary amines, this work successfully simplified the azaphilone scaffold into much simpler 3-acyl-4-pyranones. Examinations confirmed that these slim-size mimics perfectly kept the unique reactivity for selective conjugation with the primary amines including lysine residues of peptides and proteins. The newly developed pyranone tool presents remarkably increased aqueous solubility and compatible second-order rate constant by comparison with the original azaphilone. Additional advantages also include the ease of biorthogonal combinative use with a copper-catalyzed azide-alkyne Click reaction, which was conveniently applied to decorate lysozyme with neutral-, positive- and negative-charged functionalities in parallel. Moderate-degree modification of lysozyme with positively charged quaternary ammoniums was revealed to increase the enzymatic activities.
Collapse
Affiliation(s)
- Keyi Nong
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yi-Lu Zhao
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Shandong Yi
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Xuchun Zhang
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Siyuan Wei
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Zhu-Jun Yao
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| |
Collapse
|
6
|
Bandyopadhyay A, Biswas P, Kundu SK, Sarkar R. Electrochemistry-enabled residue-specific modification of peptides and proteins. Org Biomol Chem 2024; 22:1085-1101. [PMID: 38231504 DOI: 10.1039/d3ob01857a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Selective chemical reactions at precise amino acid residues of peptides and proteins have become an exploding field of research in the last few decades. With the emerging utility of bioconjugated peptides and proteins as drug leads and therapeutic agents, the design of smart protocols to modulate and conjugate biomolecules has become necessary. During this modification, the most important concern of biochemists is to keep intact the structural integrity of the biomolecules. Hence, a soft and selective biocompatible reaction environment is necessary. Electrochemistry, a mild and elegant tunable reaction platform to synthesize complex molecules while avoiding harsh and toxic chemicals, can provide such a reaction condition. However, this strategy is yet to be fully exploited in the field of selective modification of polypeptides. With this possibility, the use of electrochemistry as a reaction toolbox in peptide and protein chemistry is flourishing day by day. Unfortunately, there is no suitable review article summarizing the residue-specific modification of biomolecules. The present review provides a comprehensive summary of the latest manifested electrochemical approaches for the modulation of five redox-active amino acid residues, namely cysteine, tyrosine, tryptophan, histidine and methionine, found in peptides and proteins. The article also highlights the incredible potential of electrochemistry for the regio- as well as chemoselective bioconjugation strategy of biomolecules.
Collapse
Affiliation(s)
- Ayan Bandyopadhyay
- Department of Chemistry, Chapra Government College, Nadia-741123, West Bengal, India
| | - Pranay Biswas
- Department of Physics, Dinabandhu Mahavidyalaya, 24 Parganas (N), 743235, West Bengal, India
| | - Sudipta K Kundu
- Department of Chemistry, Muragachha Government College, Nadia-741154, West Bengal, India.
| | - Rajib Sarkar
- Department of Chemistry, Muragachha Government College, Nadia-741154, West Bengal, India.
| |
Collapse
|
7
|
Peerapen P, Boonmark W, Thongboonkerd V. Characterizations of annexin A1-interacting proteins in apical membrane and cytosolic compartments of renal tubular epithelial cells. Comput Struct Biotechnol J 2023; 21:3796-3809. [PMID: 37560129 PMCID: PMC10407547 DOI: 10.1016/j.csbj.2023.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Annexin A1 (ANXA1) is a multifunctional calcium-binding protein that can bind to membrane phospholipids. Under high-calcium condition, ANXA1 expression increases on renal epithelial cell surface, leading to enhanced adhesion of calcium oxalate (CaOx) crystal (stone material) onto the cells. To regulate various cellular processes, ANXA1 interacts with many other intracellular protein partners. However, components of the ANXA1-interacting protein complex remain unclear. Herein, we characterized the interacting complexes of apical membrane (ApANXA1) and cytosolic (cyANXA1) forms of ANXA1 in apical membrane and cytosolic compartments, respectively, of renal epithelial cells under high-calcium condition using proteomic and bioinformatic approaches. After fractionation, the ApANXA1- and CyANXA1-interacting partners were identified by immunoprecipitation followed by nanoLC‑ESI‑Qq-TOF tandem mass spectrometry (IP-MS/MS). The ANXA1-interacting partners that were common in both apical membrane and cytosolic compartments and those unique in each compartment were then analyzed for their physico-chemical properties (molecular weight, isoelectric point, amino acid contents, instability index, aliphatic index, and grand average of hydropathicity), secondary structure (α-helix, β-turn, random coil, and extended strand), molecular functions, biological processes, reactome pathways and KEGG pathways. The data demonstrated that each set of these interacting proteins exhibited common and unique characteristics and properties. The knowledge from this study may lead to better understanding of the ApANXA1 and CyAXNA1 biochemistry and functions as well as the pathophysiology of CaOx kidney stone formation induced by high-calcium condition.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanida Boonmark
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
8
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
9
|
Ahmad R, Tyryshkin AM, Xie L, Hansen WA, Yachnin BJ, Emge TJ, Mashrai A, Khare SD, Knapp S. A Bis(imidazole)-based cysteine labeling tool for metalloprotein assembly. J Inorg Biochem 2023; 244:112206. [PMID: 37030124 DOI: 10.1016/j.jinorgbio.2023.112206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Precise metal-protein coordination by design remains a considerable challenge. Polydentate, high-metal-affinity protein modifications, both chemical and recombinant, can enable metal localization. However, these constructs are often bulky, conformationally and stereochemically ill-defined, or coordinately saturated. Here, we expand the biomolecular metal-coordination toolbox with the irreversible attachment to cysteine of bis(1-methylimidazol-2-yl)ethene ("BMIE"), which generates a compact imidazole-based metal-coordinating ligand. Conjugate additions of small-molecule thiols (thiocresol and N-Boc-Cys) with BMIE confirm general thiol reactivity. The BMIE adducts are shown to complex the divalent metal ions Cu++ and Zn++ in bidentate (N2) and tridentate (N2S*) coordination geometries. Cysteine-targeted BMIE modification (>90% yield at pH 8.0) of a model protein, the S203C variant of carboxypeptidase G2 (CPG2), measured with ESI-MS, confirms its utility as a site-selective bioconjugation method. ICP-MS analysis confirms mono-metallation of the BMIE-modified CPG2 protein with Zn++, Cu++, and Co++. EPR characterization of the BMIE-modified CPG2 protein reveals the structural details of the site selective 1:1 BMIE-Cu++ coordination and symmetric tetragonal geometry under physiological conditions and in the presence of various competing and exchangeable ligands (H2O/HO-, tris, and phenanthroline). An X-ray protein crystal structure of BMIE-modified CPG2-S203C demonstrates that the BMIE modification is minimally disruptive to the overall protein structure, including the carboxypeptidase active sites, although Zn++ metalation could not be conclusively discerned at the resolution obtained. The carboxypeptidase catalytic activity of BMIE-modified CPG2-S203C was also assayed and found to be minimally affected. These features, combined with ease of attachment, define the new BMIE-based ligation as a versatile metalloprotein design tool, and enable future catalytic and structural applications.
Collapse
Affiliation(s)
- Raheel Ahmad
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America
| | - Alexei M Tyryshkin
- Department of Marine and Coastal Sciences, Rutgers The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ 08901, United States of America
| | - Lingjun Xie
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America
| | - William A Hansen
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America; Rutgers Center for Integrative Proteomics Research, 174 Frelinghuysen Rd, Piscataway, NJ 08854, United States of America
| | - Brahm J Yachnin
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America; Rutgers Center for Integrative Proteomics Research, 174 Frelinghuysen Rd, Piscataway, NJ 08854, United States of America
| | - Thomas J Emge
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America
| | - Ashraf Mashrai
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America; Rutgers Center for Integrative Proteomics Research, 174 Frelinghuysen Rd, Piscataway, NJ 08854, United States of America
| | - Sagar D Khare
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America; Rutgers Center for Integrative Proteomics Research, 174 Frelinghuysen Rd, Piscataway, NJ 08854, United States of America
| | - Spencer Knapp
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America.
| |
Collapse
|
10
|
Ono S, Koga M, Arimura Y, Hatakeyama T, Kobayashi M, Sagara JI, Nakai T, Horino Y, Kuroda H, Oyama H, Arima K. Site-Selective Incorporation of a Functional Group into Lys175 in the Vicinity of the Active Site of Chymotrypsin by Using Peptidyl α-Aminoalkylphosphonate Diphenyl Ester-Derivatives. Molecules 2023; 28:molecules28073150. [PMID: 37049913 PMCID: PMC10096113 DOI: 10.3390/molecules28073150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
We previously reported that Lys175 in the region of the active site of chymotrypsin (Csin) could be site-selectively modified by using an N-hydroxy succinimide (NHS) ester of the peptidyl derivative containing 1-amino-2-ethylphenylphosphonate diphenyl ester [NHS-Suc-Ala-Ala-PheP(OPh)2]. In this study, the Lys175-selective modification method was expanded to incorporate functional groups into Lys 175 in Csin. Two types of peptidyl phosphonate derivatives with the dansyl group (Dan) as a functional molecule, Dan-β-Ala-[Asp(NHS) or Glu(NHS)]-Ala-Ala-(R)-PheP(OPh)2 (DanD and DanE, respectively), were synthesized, and their action was evaluated when modifying Lys175 in Csin. Ion-exchange chromatography (IEC), fluorescence spectroscopy, and LC-MS/MS were used to analyze the products from the reaction of Csin with DanD or DanE. By IEC and LC-MS/MS, the results showed that DanE reacted with Csin more effectively than DanD to produce the modified Csin (DanMCsin) bearing Dan at Lys175. DanMCsin exhibited an enzymatic activity corresponding to 1/120 of Csin against Suc-Ala-Ala-Phe-pNA. In addition, an effect of Lys175 modification on the access of the proteinaceous Bowman–Birk inhibitor to the active site of DanMCsin was investigated. In conclusion, by using a peptidyl derivative containing 1-amino-2-ethylphenylphosphonate diphenyl ester, we demonstrated that a functional group could be incorporated into Lys175 in Csin.
Collapse
Affiliation(s)
- Shin Ono
- Applied Chemistry, Kanazawa Institute of Technology, Hakusan 924-0838, Ishikawa, Japan
| | - Masato Koga
- Applied Chemistry, Kanazawa Institute of Technology, Hakusan 924-0838, Ishikawa, Japan
| | - Yuya Arimura
- Applied Chemistry, Kanazawa Institute of Technology, Hakusan 924-0838, Ishikawa, Japan
| | - Takahiro Hatakeyama
- Applied Chemistry, Kanazawa Institute of Technology, Hakusan 924-0838, Ishikawa, Japan
| | - Mai Kobayashi
- Applied Chemistry, Kanazawa Institute of Technology, Hakusan 924-0838, Ishikawa, Japan
| | - Jun-ichi Sagara
- Applied Bioengineering, Kanazawa Institute of Technology, Hakusan 924-0838, Ishikawa, Japan
| | - Takahiko Nakai
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Toyama, Japan
| | - Yoshikazu Horino
- Department of Applied Chemistry and Bioscience, Chitose Institute of Science and Technology, Chitose 066-8655, Hokkaido, Japan
| | - Hirofumi Kuroda
- Department of General Education, National Institute of Technology, Ishikawa College, Tsubata 929-0392, Ishikawa, Japan
| | - Hiroshi Oyama
- Faculty of Science and Engineering, Setsunan University, Hirakata 572-8508, Osaka, Japan
| | - Kazunari Arima
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Kagoshima, Japan
| |
Collapse
|
11
|
Himiyama T, Hamaguchi T, Yonekura K, Nakamura T. Unnaturally Distorted Hexagonal Protein Ring Alternatingly Reorganized from Two Distinct Chemically Modified Proteins. Bioconjug Chem 2023. [PMID: 36888722 DOI: 10.1021/acs.bioconjchem.3c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
In this study, we constructed a semiartificial protein assembly of alternating ring type, which was modified from the natural assembly state via incorporation of a synthetic component at the protein interface. For the redesign of a natural protein assembly, a scrap-and-build approach employing chemical modification was used. Two different protein dimer units were designed based on peroxiredoxin from Thermococcus kodakaraensis, which originally forms a dodecameric hexagonal ring with six homodimers. The two dimeric mutants were reorganized into a ring by reconstructing the protein-protein interactions via synthetic naphthalene moieties introduced by chemical modification. Cryo-electron microscopy revealed the formation of a uniquely shaped dodecameric hexagonal protein ring with broken symmetry, distorted from the regular hexagon of the wild-type protein. The artificially installed naphthalene moieties were arranged at the interfaces of dimer units, forming two distinct protein-protein interactions, one of which is highly unnatural. This study deciphered the potential of the chemical modification technique that constructs semiartificial protein structures and assembly hardly accessible by conventional amino acid mutations.
Collapse
Affiliation(s)
- Tomoki Himiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31, Ikeda, Osaka 563-8577, Japan
| | - Tasuku Hamaguchi
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 1-1-1, Sayo, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Sendai, Miyagi 980-8577, Japan
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 1-1-1, Sayo, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Sendai, Miyagi 980-8577, Japan
- Advanced Electron Microscope Development Unit, RIKEN-JEOL Collaboration Center, RIKEN Baton Zone Program, 1-1-1, Sayo, Hyogo 679-5148, Japan
| | - Tsutomu Nakamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31, Ikeda, Osaka 563-8577, Japan
| |
Collapse
|
12
|
Fujita M, Nakashima N, Wanibuchi S, Yamamoto Y, Kojima H, Ono A, Kasahara T. Assessment of commercial polymers with and without reactive groups using amino acid derivative reactivity assay based on both molar concentration approach and gravimetric approach. J Appl Toxicol 2023; 43:446-457. [PMID: 36101970 DOI: 10.1002/jat.4395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022]
Abstract
The amino acid derivative reactivity assay (ADRA), an alternative method for testing skin sensitization, has been established based on the molar concentration approach. However, the additional development of gravimetric concentration and fluorescence detection methods has expanded its range of application to mixtures, which cannot be evaluated using the conventional testing method, the direct peptide reactivity assay (DPRA). Although polymers are generally treated as mixtures, there have been no reports of actual polymer evaluations using alternative methods owing to their insolubility. Therefore, in this study, we evaluated skin sensitization potential of polymers, which is difficult to predict, using ADRA. As polymers have molecular weights ranging from several thousand to more than several tens of thousand Daltons, they are unlikely to cause skin sensitization due to their extremely low penetration into the skin, according to the 500-Da rule. However, if highly reactive functional groups remain at the ends or side chains of polymers, relatively low-molecular-weight polymer components may penetrate the skin to cause sensitization. Polymers can be roughly classified into three major types based on the features of their constituent monomers; we investigated the sensitization capacity of each type of polymer. Polymers with alert sensitization structures at their ends were classified as skin sensitizers, whereas those with no residual reactive groups were classified as nonsensitizers. Although polymers with a glycidyl group need to be evaluated carefully, we concluded that ADRA (0.5 mg/ml) is generally sufficient for polymer hazard assessment.
Collapse
Affiliation(s)
- Masaharu Fujita
- Safety Evaluation Center, FUJIFILM Corporation, Minamiashigara, Japan
| | - Natsumi Nakashima
- Safety Evaluation Center, FUJIFILM Corporation, Minamiashigara, Japan
| | - Sayaka Wanibuchi
- Safety Evaluation Center, FUJIFILM Corporation, Minamiashigara, Japan
| | - Yusuke Yamamoto
- Safety Evaluation Center, FUJIFILM Corporation, Minamiashigara, Japan
| | - Hajime Kojima
- Biological Safety Research Center, Division of Risk Assessment, National Institute of Health Sciences, Kawasaki, Japan
| | - Atsushi Ono
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | |
Collapse
|
13
|
Sakamoto S, Hamachi I. Ligand‐Directed Chemistry for Protein Labeling for Affinity‐Based Protein Analysis. Isr J Chem 2023. [DOI: 10.1002/ijch.202200077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Seiji Sakamoto
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku 615-8510 Kyoto Japan
- JST-ERATO Hamachi Innovative Molecular Technology for Neuroscience 615-8530 Kyoto Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku 615-8510 Kyoto Japan
- JST-ERATO Hamachi Innovative Molecular Technology for Neuroscience 615-8530 Kyoto Japan
| |
Collapse
|
14
|
Tantipanjaporn A, Wong MK. Development and Recent Advances in Lysine and N-Terminal Bioconjugation for Peptides and Proteins. Molecules 2023; 28:molecules28031083. [PMID: 36770752 PMCID: PMC9953373 DOI: 10.3390/molecules28031083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The demand for creation of protein diversity and regulation of protein function through native protein modification and post-translational modification has ignited the development of selective chemical modification methods for peptides and proteins. Chemical bioconjugation offers selective functionalization providing bioconjugates with desired properties and functions for diverse applications in chemical biology, medicine, and biomaterials. The amino group existing at the lysine residue and N-terminus of peptides and proteins has been extensively studied in bioconjugation because of its good nucleophilicity and high surface exposure. Herein, we review the development of chemical methods for modification of the amino groups on lysine residue and N-terminus featuring excellent selectivity, mild reaction conditions, short reaction time, high conversion, biocompatibility, and preservation of protein integrity. This review is organized based on the chemoselectivity and site-selectivity of the chemical bioconjugation reagents to the amino acid residues aiming to provide guidance for the selection of appropriate bioconjugation methods.
Collapse
|
15
|
Kumarswamyreddy N, Nakagawa A, Endo H, Shimotohno A, Torii KU, Bode JW, Oishi S. Chemical synthesis of the EPF-family of plant cysteine-rich proteins and late-stage dye attachment by chemoselective amide-forming ligations. RSC Chem Biol 2022; 3:1422-1431. [PMID: 36544577 PMCID: PMC9709926 DOI: 10.1039/d2cb00155a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Chemical protein synthesis can provide well-defined modified proteins. Herein, we report the chemical synthesis of plant-derived cysteine-rich secretory proteins and late-stage derivatization of the synthetic proteins. The syntheses were achieved with distinct chemoselective amide bond forming reactions - EPF2 by native chemical ligation (NCL), epidermal patterning factor (EPF) 1 by the α-ketoacid-hydroxylamine (KAHA) ligation, and fluorescent functionalization of their folded variants by potassium acyltrifluoroborate (KAT) ligation. The chemically synthesized EPFs exhibit bioactivity on stomatal development in Arabidopsis thaliana. Comprehensive synthesis of EPF derivatives allowed us to identify suitable fluorescent variants for bioimaging of the subcellar localization of EPFs.
Collapse
Affiliation(s)
- Nandarapu Kumarswamyreddy
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya UniversityChikusa Nagoya 464-8602Japan,Department of Chemistry, Indian Institute of Technology TirupatiTirupati517619Andhra PradeshIndia
| | - Ayami Nakagawa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya UniversityChikusa Nagoya 464-8602Japan
| | - Hitoshi Endo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya UniversityChikusa Nagoya 464-8602Japan
| | - Akie Shimotohno
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya UniversityChikusa Nagoya 464-8602Japan
| | - Keiko U. Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya UniversityChikusa Nagoya 464-8602Japan,Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at AustinAustinTX 78712USA
| | - Jeffrey W. Bode
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya UniversityChikusa Nagoya 464-8602Japan,Department of Chemistry and Applied Biosciences, ETH ZürichZürich 8093Switzerland
| | - Shunsuke Oishi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya UniversityChikusa Nagoya 464-8602Japan
| |
Collapse
|
16
|
Stieger CE, Park Y, de Geus MAR, Kim D, Huhn C, Slenczka JS, Ochtrop P, Müchler JM, Süssmuth RD, Broichhagen J, Baik M, Hackenberger CPR. DFT-Guided Discovery of Ethynyl-Triazolyl-Phosphinates as Modular Electrophiles for Chemoselective Cysteine Bioconjugation and Profiling. Angew Chem Int Ed Engl 2022; 61:e202205348. [PMID: 35792701 PMCID: PMC9804898 DOI: 10.1002/anie.202205348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 01/09/2023]
Abstract
We report the density functional theory (DFT) guided discovery of ethynyl-triazolyl-phosphinates (ETPs) as a new class of electrophilic warheads for cysteine selective bioconjugation. By using CuI -catalysed azide alkyne cycloaddition (CuAAC) in aqueous buffer, we were able to access a variety of functional electrophilic building blocks, including proteins, from diethynyl-phosphinate. ETP-reagents were used to obtain fluorescent peptide-conjugates for receptor labelling on live cells and a stable and a biologically active antibody-drug-conjugate. Moreover, we were able to incorporate ETP-electrophiles into an azide-containing ubiquitin under native conditions and demonstrate their potential in protein-protein conjugation. Finally, we showcase the excellent cysteine-selectivity of this new class of electrophile in mass spectrometry based, proteome-wide cysteine profiling, underscoring the applicability in homogeneous bioconjugation strategies to connect two complex biomolecules.
Collapse
Affiliation(s)
- Christian E. Stieger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
- Department of ChemistryHumboldt Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Yerin Park
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS)Daejeon34141Republic of Korea
| | - Mark A. R. de Geus
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
| | - Dongju Kim
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS)Daejeon34141Republic of Korea
| | - Christiane Huhn
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
- Department of ChemistryHumboldt Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - J. Sophia Slenczka
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 12410623BerlinGermany
| | - Philipp Ochtrop
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
- Department of ChemistryHumboldt Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Judith M. Müchler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
- Department of ChemistryHumboldt Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Roderich D. Süssmuth
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 12410623BerlinGermany
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
| | - Mu‐Hyun Baik
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS)Daejeon34141Republic of Korea
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
- Department of ChemistryHumboldt Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| |
Collapse
|
17
|
Ma X, Wei B, Wang E. Efficient incorporation of p-azido-l-phenylalanine into the protein using organic solvents. Protein Expr Purif 2022; 200:106158. [PMID: 36007861 DOI: 10.1016/j.pep.2022.106158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Abstract
Azide, the most used photo-crosslinking group, facilitates the analysis of protein structure and function. This group is particularly useful when photochemically label antibodies and examine protein-protein interactions. The use of the expanded genetic code technique allows the special labeling of the functional azide group in proteins by adding the unnatural amino acid (UAA), p-azido-l-phenylalanine (AzF), in response to the amber codon during translation. However, a low UAA uptake rate due to mass transfer resistance in the cell membrane may lead to the early termination of the full-length protein. This study reports a general method for the efficient in vivo incorporation of AzF into the target protein by improving cell permeability using organic solvents. As expected, the yield of the full-length protein was significantly increased, which indicated that the AzF uptake was greatly improved due to the addition of organic solvents. Our method can serve as a good reference for improving the genetic incorporation of other kinds of UAAs into proteins.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Department of Gynecology and Obstetrics, The Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Bing Wei
- Department of Gynecology and Obstetrics, The Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Enlin Wang
- The College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
18
|
Ting CY, Kolbeck PT, Colombo R, Chakiath C, Rice M, Marelli M, Christie RJ. Cyclopentadiene as a Multifunctional Reagent for Normal- and Inverse-Electron Demand Diels-Alder Bioconjugation. Bioconjug Chem 2022; 33:1609-1619. [PMID: 35943835 DOI: 10.1021/acs.bioconjchem.2c00222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Optimizing the Diels-Alder (DA) reaction for aqueous coupling has resulted in practical methods to link molecules such as drugs and diagnostic agents to proteins. Both normal electron demand (NED) and inverse electron demand (IED) DA coupling schemes have been employed, but neither mechanism entails a common multipurpose reactive group. This report focuses on expanding the bioconjugation toolbox for cyclopentadiene through the identification of reactive groups that couple through NED or IED mechanisms in aqueous solution. Dienophiles and tetrazine derivatives were screened for reactivity and selectivity toward antibodies bearing cyclopentadiene amino acids to yield bioconjugates. Twelve NED dienophiles and four tetrazine-based IED substrates were identified as capable of practical biocoupling. Furthermore, tetrazine ligation to cyclopentadiene occurred at a rate of 3.3 ± 0.5 M-1 s-1 and was capable of bioorthogonal transformations, as evidenced by the selective protein labeling in serum. Finally, an antibody-drug conjugate (ADC)-bearing monomethyl auristatin E was prepared via tetrazine conjugation to cyclopentadiene. The resulting ADC was stable and demonstrated potent activity in vitro. These findings expand the utility of cyclopentadiene as a tool to couple entities to proteins via dual DA addition mechanisms.
Collapse
Affiliation(s)
- Cheng-Yueh Ting
- AstraZeneca R&D, Biologics Engineering, Gaithersburg, Maryland 20878, United States
| | - Paul T Kolbeck
- AstraZeneca R&D, Biologics Engineering, Gaithersburg, Maryland 20878, United States
| | - Raffaele Colombo
- AstraZeneca R&D, Biologics Engineering, Gaithersburg, Maryland 20878, United States
| | - Chacko Chakiath
- AstraZeneca R&D, Biologics Engineering, Gaithersburg, Maryland 20878, United States
| | - Megan Rice
- AstraZeneca R&D, Biologics Engineering, Gaithersburg, Maryland 20878, United States
| | - Marcello Marelli
- AstraZeneca R&D, Biologics Engineering, Gaithersburg, Maryland 20878, United States
| | - R James Christie
- AstraZeneca R&D, Biologics Engineering, Gaithersburg, Maryland 20878, United States
| |
Collapse
|
19
|
Stieger CE, Park Y, de Geus MAR, Kim D, Huhn C, Slenczka JS, Ochtrop P, Müchler JM, Süssmuth R, Broichhagen J, Baik MH, Hackenberger C. DFT‐Guided Discovery of Ethynyl‐Triazolyl‐Phosphinates as Modular Electrophiles for Chemoselective Cysteine Bioconjugation and Profiling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christian Ewald Stieger
- Leibniz Institute for Molecular Pharmacology: Leibniz-Forschungsinstitut fur Molekulare Pharmakologie im Forschungsverbund Berlin eV Chemical Biology GERMANY
| | - Yerin Park
- KAIST: Korea Advanced Institute of Science and Technology Department of Chemistry KOREA, REPUBLIC OF
| | - Mark A. R. de Geus
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin eV: Leibniz-Forschungsinstitut fur Molekulare Pharmakologie im Forschungsverbund Berlin eV Chemical Biology GERMANY
| | - Dongju Kim
- KAIST: Korea Advanced Institute of Science and Technology Department of Chemistry KOREA, REPUBLIC OF
| | - Christiane Huhn
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin eV: Leibniz-Forschungsinstitut fur Molekulare Pharmakologie im Forschungsverbund Berlin eV Chem Bio Probes GERMANY
| | - Julie Sophia Slenczka
- Technische Universität Berlin: Technische Universitat Berlin Institut für Chemie GERMANY
| | - Philipp Ochtrop
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin eV: Leibniz-Forschungsinstitut fur Molekulare Pharmakologie im Forschungsverbund Berlin eV Chemical Biology GERMANY
| | - Judith Maria Müchler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin eV: Leibniz-Forschungsinstitut fur Molekulare Pharmakologie im Forschungsverbund Berlin eV Chemical Biology GERMANY
| | - Roderich Süssmuth
- Technische Universität Berlin: Technische Universitat Berlin Institut für Chemie GERMANY
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin eV: Leibniz-Forschungsinstitut fur Molekulare Pharmakologie im Forschungsverbund Berlin eV Chem Bio Probes GERMANY
| | - Mu-Hyun Baik
- KAIST: Korea Advanced Institute of Science and Technology Department of Chemistry KOREA, REPUBLIC OF
| | - Christian Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie Deptm. of Chemical Biology Robert-Roessle Str. 10 13125 Berlin GERMANY
| |
Collapse
|
20
|
Negi S, Hamori M, Sato A, Shimizu K, Kawahara-Nakagawa Y, Manabe T, Shibata N, Kitagishi H, Mashimo M, Sugiura Y. Transpeptidation reaction mediated by ligand- and metal cofactor-substituted Sortase A from Staphylococcus aureus. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shigeru Negi
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Mami Hamori
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Ayaka Sato
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Kyoko Shimizu
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Yuka Kawahara-Nakagawa
- Graduate School of Faculty of Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297
| | - Takayuki Manabe
- Clinical Research Support Center, Asahikawa Medical University Hospital, 2-1-1-1 Midorigaoka Higashi, Asahikawa 078-8510
| | - Nobuhito Shibata
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321
| | - Masato Mashimo
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| | - Yukio Sugiura
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo, Kyotanabe, Kyoto 610-0395
| |
Collapse
|
21
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
22
|
Toyobe M, Yakushiji F. Synthetic modifications of histones and their functional evaluation. Chem Asian J 2022; 17:e202200197. [PMID: 35489041 DOI: 10.1002/asia.202200197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Indexed: 11/07/2022]
Abstract
Post-transrational modifications (PTMs) of histones play a key role in epigenetic regulation. Unraveling the roles of each epigenetic mark can provide new insights into their biological mechanisms. On the other hand, it is generally difficult to prepare homogeneously-modified histones/nucleosomes to investigate their specific functions. Therefore, synthetic approaches to acquire precisely mimicked histones/nucleosomes are in great demand, and further development of this research field is anticipated. In this review, synthetic strategies to modify histones/nucleosomes, including cysteine modifications, transformations of dehydroalanine residues and lysine acylation using a catalyst system, are cited. In addition, the functional evaluation of synthetically modified histones/nucleosomes is described.
Collapse
Affiliation(s)
- Moe Toyobe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Fumika Yakushiji
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
23
|
Yu H, Feng J, Zhong F, Wu Y. Chemical Modification for the "off-/on" Regulation of Enzyme Activity. Macromol Rapid Commun 2022; 43:e2200195. [PMID: 35482602 DOI: 10.1002/marc.202200195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Indexed: 11/07/2022]
Abstract
Enzymes with excellent catalytic performance play important roles in living organisms. Advances in strategies for enzyme chemical modification have enabled powerful strategies for exploring and manipulating enzyme functions and activities. Based on the development of chemical enzyme modifications, incorporating external stimuli-responsive features-for example, responsivity to light, voltage, magnetic force, pH, temperature, redox activity, and small molecules-into a target enzyme to turn "on" and "off" its activity has attracted much attention. The ability to precisely control enzyme activity using different approaches would greatly expand the chemical biology toolbox for clarification and detection of signal transduction and in vivo enzyme function and significantly promote enzyme-based disease therapy. This review summarizes the methods available for chemical enzyme modification mainly for the off-/on control of enzyme activity and particularly highlights the recent progress regarding the applications of this strategy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Huaibin Yu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Jiayi Feng
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Fangrui Zhong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Yuzhou Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
24
|
Zhang Q, Olberg A, Sioud M. Structural Requirements for the Binding of a Peptide to Prohibitins on the Cell Surface of Monocytes/Macrophages. Int J Mol Sci 2022; 23:ijms23084282. [PMID: 35457098 PMCID: PMC9029656 DOI: 10.3390/ijms23084282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/16/2022] Open
Abstract
The screening of phage peptide libraries resulted in the identification of a sequence (named NW peptide, NWYLPWLGTNDW) that specifically binds to human monocytes and macrophages. Although the NW peptide can be used for the targeted delivery of therapeutics without knowledge of its receptor(s), the identification of-its binding partners will support future clinical applications-Here, we used the biotinylated NW peptide for cross-linking cell surface receptor(s) on live cells or as bait in pull-down assays with membrane proteins isolated from monocytes or human THP-1 cells differentiated into macrophages. Proteomic analysis of the captured proteins identified cell surface prohibitins (PHB1 and PHB2) and modified albumin as binding partners. Using flow cytometry and pull-down methods, we demonstrated that PHB1 and PHB2 interact directly with the NW peptide. Confocal imaging showed co-localization of the peptide with PHB1 on the surface of monocytes. Single replacement of either tryptophan or leucine with alanine completely inhibited binding, whereas the replacement of asparagine at position 1 or 10 and aspartic acid at position 11 with alanine did not affect the binding of the peptide variants. Neutral amino acid replacement of tryptophan at positions 2, 6, and 12 with tyrosine or phenylalanine also abolished the binding, implying that the indole ring of tryptophan is indispensable for the NW peptide to bind. Overall, the data suggest that membrane-associated prohibitins might be a useful target for the delivery of therapeutics to monocytes/macrophages and that tryptophan and leucine are key residues for peptide binding.
Collapse
Affiliation(s)
- Qindong Zhang
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, University of Oslo, Ullernchausseen 70, 0379 Oslo, Norway; (Q.Z.); (A.O.)
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box. 1068, Blindern, 0316 Oslo, Norway
| | - Anniken Olberg
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, University of Oslo, Ullernchausseen 70, 0379 Oslo, Norway; (Q.Z.); (A.O.)
| | - Mouldy Sioud
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, University of Oslo, Ullernchausseen 70, 0379 Oslo, Norway; (Q.Z.); (A.O.)
- Correspondence:
| |
Collapse
|
25
|
Production of Jet Biofuels by Catalytic Hydroprocessing of Esters and Fatty Acids: A Review. Catalysts 2022. [DOI: 10.3390/catal12020237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The transition from fossil to bio-based fuels is a requisite for reducing CO2 emissions in the aviation sector. Jet biofuels are alternative aviation fuels with similar chemical composition and performance of fossil jet fuels. In this context, the Hydroprocessing of Esters and Fatty Acids (HEFA) presents the most consolidated pathway for producing jet biofuels. The process for converting esters and/or fatty acids into hydrocarbons may involve hydrodeoxygenation, hydrocracking and hydroisomerization, depending on the chemical composition of the selected feedstock and the desired fuel properties. Furthermore, the HEFA process is usually performed under high H2 pressures and temperatures, with reactions mediated by a heterogeneous catalyst. In this framework, supported noble metals have been preferably employed in the HEFA process; however, some efforts were reported to utilize non-noble metals, achieving a similar performance of noble metals. Besides the metallic site, the acidic site of the catalyst is crucial for product selectivity. Bifunctional catalysts have been employed for the complete process of jet biofuel production with standardized properties, with a special remark for using zeolites as support. The proper design of heterogeneous catalysts may also reduce the consumption of hydrogen. Finally, the potential of enzymes as catalysts for intermediate products of the HEFA pathway is highlighted.
Collapse
|
26
|
Sato S. Protein Chemical Modification Using Highly Reactive Species and Spatial Control of Catalytic Reactions. Chem Pharm Bull (Tokyo) 2022; 70:95-105. [PMID: 35110442 DOI: 10.1248/cpb.c21-00915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein bioconjugation has become an increasingly important research method for introducing artificial functions in to protein with various applications, including therapeutics and biomaterials. Due to its amphiphilic nature, only a few tyrosine residues are exposed on the protein surface. Therefore, tyrosine residue has attracted attention as suitable targets for site-specific modification, and it is the most studied amino acid residue for modification reactions other than lysine and cysteine residues. In this review, we present the progress of our tyrosine chemical modification studies over the past decade. We have developed several different catalytic approaches to selectively modify tyrosine residues using peroxidase, laccase, hemin, and ruthenium photocatalysts. In addition to modifying tyrosine residues by generating radical species through single-electron transfer, we have developed a histidine modification method that utilizes singlet oxygen generated by photosensitizers. These highly reactive chemical species selectively modify proteins in close proximity to the enzyme/catalyst. Taking advantage of the spatially controllable reaction fields, we have developed novel methods for site-specific antibody modification, detecting hotspots of oxidative stress, and target identification of bioactive molecules.
Collapse
Affiliation(s)
- Shinichi Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
| |
Collapse
|
27
|
Jensen KB, Mikkelsen JH, Jensen SP, Kidal S, Friberg G, Skrydstrup T, Gustafsson MBF. New Phenol Esters for Efficient pH-Controlled Amine Acylation of Peptides, Proteins, and Sepharose Beads in Aqueous Media. Bioconjug Chem 2022; 33:172-179. [PMID: 34962390 DOI: 10.1021/acs.bioconjchem.1c00528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This paper describes the discovery, synthesis, and use of novel water-soluble acylation reagents for efficient and selective modification, cross-linking, and labeling of proteins and peptides, as well as for their use in the effective modification of sepharose beads under pH control in aqueous media. The reagents are based on a 2,4-dichloro-6-sulfonic acid phenol ester core combined with a variety of linker structures. The combination of these motifs leads to an ideal balance between hydrolytic stability and reactivity. At high pH, good to excellent conversions (up to 95%) and regioselectivity (up to 99:1 Nε/Nα amine ratio) in the acylation were realized, exemplified by the chemical modification of incretin peptides and insulin. At neutral pH, an unusually high preference toward the N-terminal phenylalanine in an insulin derivative was observed (>99:1 Nα/Nε), which is up until now unprecedented in the literature for more elaborate reagents. In addition, the unusually high hydrolytic stability of these reagents and their ability to efficiently react at low concentrations (28 μM or 0.1 mg/mL) are exemplified with a hydroxy linker-based reagent and are a unique feature of this work.
Collapse
Affiliation(s)
- Kim B Jensen
- Global Research Technologies, Novo Nordisk Research Park, Måløv 2760, Denmark
| | - Jesper H Mikkelsen
- Global Research Technologies, Novo Nordisk Research Park, Måløv 2760, Denmark
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus C 8000, Denmark
| | - Simon P Jensen
- CMC API Development, Novo Nordisk A/S, Smørmosevej 17-19, Bagsværd 2880, Denmark
| | - Steffen Kidal
- CMC API Development, Novo Nordisk A/S, Smørmosevej 17-19, Bagsværd 2880, Denmark
| | - Gitte Friberg
- Global Research Technologies, Novo Nordisk Research Park, Måløv 2760, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus C 8000, Denmark
| | | |
Collapse
|
28
|
Mackay AS, Payne RJ, Malins LR. Electrochemistry for the Chemoselective Modification of Peptides and Proteins. J Am Chem Soc 2022; 144:23-41. [PMID: 34968405 DOI: 10.1021/jacs.1c11185] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although electrochemical strategies for small-molecule synthesis are flourishing, this technology has yet to be fully exploited for the mild and chemoselective modification of peptides and proteins. With the growing number of diverse peptide natural products being identified and the emergence of modified proteins as therapeutic and diagnostic agents, methods for electrochemical modification stand as alluring prospects for harnessing the reactivity of polypeptides to build molecular complexity. As a mild and inherently tunable reaction platform, electrochemistry is arguably well-suited to overcome the chemo- and regioselectivity issues which limit existing bioconjugation strategies. This Perspective will showcase recently developed electrochemical approaches to peptide and protein modification. The article also highlights the wealth of untapped opportunities for the production of homogeneously modified biomolecules, with an eye toward realizing the enormous potential of electrochemistry for chemoselective bioconjugation chemistry.
Collapse
Affiliation(s)
- Angus S Mackay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Lara R Malins
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
29
|
Sornay C, Vaur V, Wagner A, Chaubet G. An overview of chemo- and site-selectivity aspects in the chemical conjugation of proteins. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211563. [PMID: 35116160 PMCID: PMC8790347 DOI: 10.1098/rsos.211563] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/20/2021] [Indexed: 05/03/2023]
Abstract
The bioconjugation of proteins-that is, the creation of a covalent link between a protein and any other molecule-has been studied for decades, partly because of the numerous applications of protein conjugates, but also due to the technical challenge it represents. Indeed, proteins possess inner physico-chemical properties-they are sensitive and polynucleophilic macromolecules-that make them complex substrates in conjugation reactions. This complexity arises from the mild conditions imposed by their sensitivity but also from selectivity issues, viz the precise control of the conjugation site on the protein. After decades of research, strategies and reagents have been developed to address two aspects of this selectivity: chemoselectivity-harnessing the reacting chemical functionality-and site-selectivity-controlling the reacting amino acid residue-most notably thanks to the participation of synthetic chemistry in this effort. This review offers an overview of these chemical bioconjugation strategies, insisting on those employing native proteins as substrates, and shows that the field is active and exciting, especially for synthetic chemists seeking new challenges.
Collapse
Affiliation(s)
- Charlotte Sornay
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Valentine Vaur
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| |
Collapse
|
30
|
Zhang T, Luo P, Lai C, Liu Z, Jin Y, Wang F. Catalyst-free Photochemical Bromination of Unprotected Aromatic Amino Acid Derivatives by Using a Rotating Ultraviolet Photoreactor. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Protein Modifications: From Chemoselective Probes to Novel Biocatalysts. Catalysts 2021. [DOI: 10.3390/catal11121466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chemical reactions can be performed to covalently modify specific residues in proteins. When applied to native enzymes, these chemical modifications can greatly expand the available set of building blocks for the development of biocatalysts. Nucleophilic canonical amino acid sidechains are the most readily accessible targets for such endeavors. A rich history of attempts to design enhanced or novel enzymes, from various protein scaffolds, has paved the way for a rapidly developing field with growing scientific, industrial, and biomedical applications. A major challenge is to devise reactions that are compatible with native proteins and can selectively modify specific residues. Cysteine, lysine, N-terminus, and carboxylate residues comprise the most widespread naturally occurring targets for enzyme modifications. In this review, chemical methods for selective modification of enzymes will be discussed, alongside with examples of reported applications. We aim to highlight the potential of such strategies to enhance enzyme function and create novel semisynthetic biocatalysts, as well as provide a perspective in a fast-evolving topic.
Collapse
|
32
|
Giri P, Pagar AD, Patil MD, Yun H. Chemical modification of enzymes to improve biocatalytic performance. Biotechnol Adv 2021; 53:107868. [PMID: 34774927 DOI: 10.1016/j.biotechadv.2021.107868] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/23/2022]
Abstract
Improvement in intrinsic enzymatic features is in many instances a prerequisite for the scalable applicability of many industrially important biocatalysts. To this end, various strategies of chemical modification of enzymes are maturing and now considered as a distinct way to improve biocatalytic properties. Traditional chemical modification methods utilize reactivities of amine, carboxylic, thiol and other side chains originating from canonical amino acids. On the other hand, noncanonical amino acid- mediated 'click' (bioorthogoal) chemistry and dehydroalanine (Dha)-mediated modifications have emerged as an alternate and promising ways to modify enzymes for functional enhancement. This review discusses the applications of various chemical modification tools that have been directed towards the improvement of functional properties and/or stability of diverse array of biocatalysts.
Collapse
Affiliation(s)
- Pritam Giri
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Mahesh D Patil
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, PO Manauli, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
33
|
Tange A, Higashi A, Kishikawa N, Kuroda N. Simple Fluorescence Assay for Triethylamine Based on the Palladium Catalytic Dimerization of Benzofuran-2-boronic Acid. ANAL SCI 2021; 37:1465-1467. [PMID: 33746139 DOI: 10.2116/analsci.21n007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Although benzofuran-2-boronic acid hardly emits fluorescence, it can be rapidly converted to a highly fluorescent benzofuran dimer after mixing with a palladium catalyst and amine. We found that a fluorescence enhancement accompanying dimerization was quantitatively promoted upon increasing the concentration of amine. In the present study, we developed a simple fluorescence assay for amines based on the promotive effect. As the result of a fluorescence measurement of the reaction mixture of 19 kinds of typical amines, it was found that tertiary amines including triethylamine (TEA) provided a significant fluorescence enhancement. Finally, the fluorogenic reaction could be applied to develop a high-throughput fluorescent microplate assay for TEA with the limit of detection (blank + 3SD) of 0.091 μM.
Collapse
Affiliation(s)
- Akari Tange
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University
| | - Azumi Higashi
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University
| | - Naoya Kishikawa
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University
| | - Naotaka Kuroda
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University
| |
Collapse
|
34
|
Hou C, Xu H, Jiang X, Li Y, Deng S, Zang M, Xu J, Liu J. Virus-Based Supramolecular Structure and Materials: Concept and Prospects. ACS APPLIED BIO MATERIALS 2021; 4:5961-5974. [PMID: 35006905 DOI: 10.1021/acsabm.1c00633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rodlike and spherelike viruses are various monodisperse nanoparticles that can display small molecules or polymers with unique distribution following chemical modifications. Because of the monodisperse property, aggregates in synthetic protein-polymer nanoparticles could be eliminated, thus improving the probability for application in protein-polymer drug. In addition, the monodisperse virus could direct the growth of metal materials or inorganic materials, finding applications in hydrogel, drug delivery, and optoelectronic and catalysis materials. Benefiting from the advantages, the virus or viruslike particles have been widely explored in the field of supramolecular chemistry. In this review, we describe the modification and application of virus and viruslike particles in surpramolecular structures and biomedical research.
Collapse
Affiliation(s)
- Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hanxin Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xiaojia Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yijia Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Shengchao Deng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Mingsong Zang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
35
|
Pagar AD, Patil MD, Flood DT, Yoo TH, Dawson PE, Yun H. Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chem Rev 2021; 121:6173-6245. [PMID: 33886302 DOI: 10.1021/acs.chemrev.0c01201] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two main strategies for enzyme engineering, directed evolution and rational design, have found widespread applications in improving the intrinsic activities of proteins. Although numerous advances have been achieved using these ground-breaking methods, the limited chemical diversity of the biopolymers, restricted to the 20 canonical amino acids, hampers creation of novel enzymes that Nature has never made thus far. To address this, much research has been devoted to expanding the protein sequence space via chemical modifications and/or incorporation of noncanonical amino acids (ncAAs). This review provides a balanced discussion and critical evaluation of the applications, recent advances, and technical breakthroughs in biocatalysis for three approaches: (i) chemical modification of cAAs, (ii) incorporation of ncAAs, and (iii) chemical modification of incorporated ncAAs. Furthermore, the applications of these approaches and the result on the functional properties and mechanistic study of the enzymes are extensively reviewed. We also discuss the design of artificial enzymes and directed evolution strategies for enzymes with ncAAs incorporated. Finally, we discuss the current challenges and future perspectives for biocatalysis using the expanded amino acid alphabet.
Collapse
Affiliation(s)
- Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Dillon T Flood
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
36
|
Naowarojna N, Cheng R, Lopez J, Wong C, Qiao L, Liu P. Chemical modifications of proteins and their applications in metalloenzyme studies. Synth Syst Biotechnol 2021; 6:32-49. [PMID: 33665390 PMCID: PMC7897936 DOI: 10.1016/j.synbio.2021.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/14/2020] [Accepted: 01/03/2021] [Indexed: 12/21/2022] Open
Abstract
Protein chemical modifications are important tools for elucidating chemical and biological functions of proteins. Several strategies have been developed to implement these modifications, including enzymatic tailoring reactions, unnatural amino acid incorporation using the expanded genetic codes, and recognition-driven transformations. These technologies have been applied in metalloenzyme studies, specifically in dissecting their mechanisms, improving their enzymatic activities, and creating artificial enzymes with non-natural activities. Herein, we summarize some of the recent efforts in these areas with an emphasis on a few metalloenzyme case studies.
Collapse
Affiliation(s)
| | | | - Juan Lopez
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Christina Wong
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Lu Qiao
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| |
Collapse
|
37
|
Morellon-Sterling R, Siar EH, Braham SA, de Andrades D, Pedroche J, Millán MDC, Fernandez-Lafuente R. Effect of amine length in the interference of the multipoint covalent immobilization of enzymes on glyoxyl agarose beads. J Biotechnol 2021; 329:128-142. [PMID: 33600890 DOI: 10.1016/j.jbiotec.2021.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022]
Abstract
Trypsin, chymotrypsin, penicillin G acylase and ficin extract have been stabilized by immobilization on glyoxyl agarose, adding different aliphatic compounds bearing a primary amine group during the immobilization: ethyl amine, butyl amine, hexyl amine (at concentrations ranging from 0 to 20 mM) and octyl amine (from 0 to 10 mM) to analyze their effects on the immobilized enzyme stability. As expected, the presence of amines reduced the intensity of the enzyme-support multipoint covalent attachment, and therefore the enzyme stability. However, it is clear that this effect is higher using octyl amine for all enzymes (in some cases the enzyme immobilized in the presence of 10 mM octyl amine was almost inactivated while the reference kept over 50 % of the initial activity). This way, it seems that the most important effect of the presence of aminated compounds came from the generation of steric hindrances to the enzyme/support multi-reaction promoted by the ammines that are interacting with the aldehyde groups. In some instances, just 1 mM of aminated compounds is enough to greatly decrease enzyme stability. The results suggested that, if the composition of the enzyme extract is unknown, to eliminate small aminated compounds may be necessary to maximize the enzyme-support reaction.
Collapse
Affiliation(s)
| | - El-Hocine Siar
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, Campus UAM-CSIC Madrid, Spain; Transformation and Food Product Elaboration Laboratory, Nutrition and Food, Technology Institute (INATAA), University of Brothers Mentouri Constantine 1, Algeria
| | - Sabrina Ait Braham
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, Campus UAM-CSIC Madrid, Spain; Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algeria
| | - Diandra de Andrades
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, Campus UAM-CSIC Madrid, Spain; Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Justo Pedroche
- Group of Plant Proteins, Department of Food and Health, Instituto de la Grasa-CSIC, Seville, Spain
| | - Mª Del Carmen Millán
- Group of Plant Proteins, Department of Food and Health, Instituto de la Grasa-CSIC, Seville, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, Campus UAM-CSIC Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
38
|
Monteiro RR, Virgen-Ortiz JJ, Berenguer-Murcia Á, da Rocha TN, dos Santos JC, Alcántara AR, Fernandez-Lafuente R. Biotechnological relevance of the lipase A from Candida antarctica. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Thimaradka V, Hoon Oh J, Heroven C, Radu Aricescu A, Yuzaki M, Tamura T, Hamachi I. Site-specific covalent labeling of His-tag fused proteins with N-acyl-N-alkyl sulfonamide reagent. Bioorg Med Chem 2021; 30:115947. [PMID: 33360195 PMCID: PMC7610637 DOI: 10.1016/j.bmc.2020.115947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 01/16/2023]
Abstract
The ability to incorporate a desired functionality into proteins of interest in a site-specific manner can provide powerful tools for investigating biological systems and creating therapeutic conjugates. However, there are not any universal methods that can be applied to all proteins, and it is thus important to explore the chemical strategy for protein modification. In this paper, we developed a new reactive peptide tag/probe pair system for site-specific covalent protein labeling. This method relies on the recognition-driven reaction of a peptide tag and a molecular probe, which comprises the lysine-containing short histidine tag (KH6 or H6K) and a binuclear nickel (II)- nitrilotriacetic acid (Ni2+-NTA) complex probe containing a lysine-reactive N-acyl-N-alkyl sulfonamide (NASA) group. The selective interaction of the His-tag and Ni2+-NTA propeles a rapid nucleophilic reaction between a lysine residue of the tag and the electrophilic NASA group of the probe by the proximity effect, resulting in the tag-site-specific functionalization of proteins. We characterized the reactive profile and site-specificity of this method using model peptides and proteins in vitro, and demonstrated the general utility for production of a nanobody-chemical probe conjugate without compromising its binding ability.
Collapse
Affiliation(s)
- Vikram Thimaradka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Jae Hoon Oh
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo, 102-0075, Japan
| | - Christina Heroven
- Division of Structural Biology, University of Oxford, Oxford OX3 7BN, UK; Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - A Radu Aricescu
- Division of Structural Biology, University of Oxford, Oxford OX3 7BN, UK; Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan; ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo, 102-0075, Japan.
| |
Collapse
|
40
|
Mino T, Sakamoto S, Hamachi I. Recent applications of N-acyl imidazole chemistry in chemical biology. Biosci Biotechnol Biochem 2021; 85:53-60. [PMID: 33577657 DOI: 10.1093/bbb/zbaa026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022]
Abstract
N-Acyl imidazoles are unique electrophiles that exhibit moderate reactivity, relatively long-half life, and high solubility in water. Thanks to their tunable reactivity and chemical selectivity, the application of N-acyl imidazole derivatives has launched to a number of chemical biology researches, which include chemical synthesis of peptide/protein, chemical labeling of native proteins of interest (POIs), and structural analysis and functional manipulation of RNAs. Since proteins and RNAs play pivotal roles in numerous biological events in all living organisms, the methods that enable the chemical modification of endogenously existing POIs and RNAs in live cells may offer a variety of opportunities not only for fundamental scientific study but also for biotechnology and drug development. In this review, we discuss the recent progress of N-acyl imidazole chemistry that contributes to the chemical labeling and functional control of endogenous proteins and RNAs under multimolecularly crowded biological conditions of live cells.
Collapse
Affiliation(s)
- Takeharu Mino
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Japan
| | - Seiji Sakamoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Japan.,ERATO, Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
41
|
Hymel D, Liu F. Proximity‐driven, Regioselective Chemical Modification of Peptides and Proteins. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- David Hymel
- Discovery Chemistry Novo Nordisk Research Center Seattle, Inc. 500 Fairview Ave Seattle WA 98109 USA
| | - Fa Liu
- Focus-X Therapeutics, Inc 3541 223rd Ave SE Sammamish WA 98075 USA
| |
Collapse
|
42
|
Stoddart LA, Kindon ND, Otun O, Harwood CR, Patera F, Veprintsev DB, Woolard J, Briddon SJ, Franks HA, Hill SJ, Kellam B. Ligand-directed covalent labelling of a GPCR with a fluorescent tag in live cells. Commun Biol 2020; 3:722. [PMID: 33247190 PMCID: PMC7695831 DOI: 10.1038/s42003-020-01451-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022] Open
Abstract
To study the localisation of G protein-coupled receptors (GPCR) in their native cellular environment requires their visualisation through fluorescent labelling. To overcome the requirement for genetic modification of the receptor or the limitations of dissociable fluorescent ligands, here we describe rational design of a compound that covalently and selectively labels a GPCR in living cells with a fluorescent moiety. We designed a fluorescent antagonist, in which the linker incorporated between pharmacophore (ZM241385) and fluorophore (sulfo-cyanine5) is able to facilitate covalent linking of the fluorophore to the adenosine A2A receptor. We pharmacologically and biochemically demonstrate irreversible fluorescent labelling without impeding access to the orthosteric binding site and demonstrate its use in endogenously expressing systems. This offers a non-invasive and selective approach to study function and localisation of native GPCRs.
Collapse
Affiliation(s)
- Leigh A Stoddart
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Nottingham, Midlands, NG7 2RD, UK
| | - Nicholas D Kindon
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Nottingham, Midlands, NG7 2RD, UK
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Omolade Otun
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Nottingham, Midlands, NG7 2RD, UK
| | - Clare R Harwood
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Nottingham, Midlands, NG7 2RD, UK
| | - Foteini Patera
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Dmitry B Veprintsev
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Nottingham, Midlands, NG7 2RD, UK
| | - Jeanette Woolard
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Nottingham, Midlands, NG7 2RD, UK
| | - Stephen J Briddon
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Nottingham, Midlands, NG7 2RD, UK
| | - Hester A Franks
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Nottingham, Midlands, NG7 2RD, UK
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Stephen J Hill
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Nottingham, Midlands, NG7 2RD, UK.
| | - Barrie Kellam
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Nottingham, Midlands, NG7 2RD, UK.
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
43
|
He PY, Chen H, Hu HG, Hu JJ, Lim YJ, Li YM. Late-stage peptide and protein modifications through phospha-Michael addition reaction. Chem Commun (Camb) 2020; 56:12632-12635. [PMID: 32960198 DOI: 10.1039/d0cc04969g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We developed a late-stage modification strategy by a phospha-Michael addition reaction between various functional phosphines and unprotected dehydroalanine (Dha) peptides and proteins under mild conditions. This strategy was applied to generate a staple peptide to enhance its cell membrane penetrability, and it was also able to regulate α-synuclein aggregation properties and morphological characteristics with the addition of different charges.
Collapse
Affiliation(s)
- Pei-Yang He
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | | | | | | | | | | |
Collapse
|
44
|
Liu Y, Pan X, Zhao M, Gao Y. Global chemical modifications comparison of human plasma proteome from two different age groups. Sci Rep 2020; 10:14998. [PMID: 32929118 PMCID: PMC7490693 DOI: 10.1038/s41598-020-72196-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/17/2020] [Indexed: 11/09/2022] Open
Abstract
In this study, two groups of human plasma proteome at different age groups (old and young) were used to perform a comparison of global chemical modifications, as determined by tandem mass spectrometry (MS/MS) combined with non-limiting modification identification algorithms. The sulfhydryl in the cysteine A total of 4 molecular modifications were found to have significant differences passing random grouping tests: the succinylation and phosphorylation modification of cysteine (Cys, C) and the modification of lysine (Lys, K) with threonine (Thr, T) were significantly higher in the old group than in the young group, while the carbamylation of lysine was lower in the young group. We speculate that there is an increase in certain modified proteins in the blood of the old people which, in turn, changes the function of those proteins. This change may be one of the reasons why old people are more likely than young people to be at risk for age-related diseases, such as metabolic diseases, cerebral and cardiovascular diseases, and cancer.
Collapse
Affiliation(s)
- Yongtao Liu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, Beijing Normal University, Beijing, China
| | - Xuanzhen Pan
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, Beijing Normal University, Beijing, China
| | - Mindi Zhao
- Department of Laboratory Medicine, National Geriatrics Center, Beijing Hospital, Beijing, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, Beijing Normal University, Beijing, China.
| |
Collapse
|
45
|
Komatsu T, Kyo E, Ishii H, Tsuchikama K, Yamaguchi A, Ueno T, Hanaoka K, Urano Y. Antibody Clicking as a Strategy to Modify Antibody Functionalities on the Surface of Targeted Cells. J Am Chem Soc 2020; 142:15644-15648. [DOI: 10.1021/jacs.0c05331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Etsu Kyo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Haruki Ishii
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kyoji Tsuchikama
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, Texas 77054, United States
| | - Aiko Yamaguchi
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, Texas 77054, United States
| | - Tasuku Ueno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
46
|
Unremitting progresses for phosphoprotein synthesis. Curr Opin Chem Biol 2020; 58:96-111. [PMID: 32889414 DOI: 10.1016/j.cbpa.2020.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 02/03/2023]
Abstract
Phosphorylation, one of the important protein post-translational modifications, is involved in many essential cellular processes. Site-specifical and homogeneous phosphoproteins can be used as probes for elucidating the protein phosphorylation network and as potential therapeutics for interfering their involved biological events. However, the generation of phosphoproteins has been challenging owing to the limitation of chemical synthesis and protein expression systems. Despite the pioneering discoveries in phosphoprotein synthesis, over the past decade, great progresses in this field have also been made to promote the biofunctional exploration of protein phosphorylation largely. Therefore, in this review, we mainly summarize recent advances in phosphoprotein synthesis, which includes five sections: 1) synthesis of the nonhydrolyzable phosphorylated amino acid mimetic building blocks, 2) chemical total and semisynthesis strategy, 3) in-cell and in vitro genetic code expansion strategy, 4) the late-stage modification strategy, 5) nonoxygen phosphoprotein synthesis.
Collapse
|
47
|
Lee S, Chung CYS, Liu P, Craciun L, Nishikawa Y, Bruemmer KJ, Hamachi I, Saijo K, Miller EW, Chang CJ. Activity-Based Sensing with a Metal-Directed Acyl Imidazole Strategy Reveals Cell Type-Dependent Pools of Labile Brain Copper. J Am Chem Soc 2020; 142:14993-15003. [PMID: 32815370 PMCID: PMC7877313 DOI: 10.1021/jacs.0c05727] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Copper is a required nutrient for life and particularly important to the brain and central nervous system. Indeed, copper redox activity is essential to maintaining normal physiological responses spanning neural signaling to metabolism, but at the same time copper misregulation is associated with inflammation and neurodegeneration. As such, chemical probes that can track dynamic changes in copper with spatial resolution, especially in loosely bound, labile forms, are valuable tools to identify and characterize its contributions to healthy and disease states. In this report, we present an activity-based sensing (ABS) strategy for copper detection in live cells that preserves spatial information by a copper-dependent bioconjugation reaction. Specifically, we designed copper-directed acyl imidazole dyes that operate through copper-mediated activation of acyl imidazole electrophiles for subsequent labeling of proximal proteins at sites of elevated labile copper to provide a permanent stain that resists washing and fixation. To showcase the utility of this new ABS platform, we sought to characterize labile copper pools in the three main cell types in the brain: neurons, astrocytes, and microglia. Exposure of each of these cell types to physiologically relevant stimuli shows distinct changes in labile copper pools. Neurons display translocation of labile copper from somatic cell bodies to peripheral processes upon activation, whereas astrocytes and microglia exhibit global decreases and increases in intracellular labile copper pools, respectively, after exposure to inflammatory stimuli. This work provides foundational information on cell type-dependent homeostasis of copper, an essential metal in the brain, as well as a starting point for the design of new activity-based probes for metals and other dynamic signaling and stress analytes in biology.
Collapse
Affiliation(s)
| | | | | | | | - Yuki Nishikawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST), Kyoto 615-8530, Japan
| | | | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST), Kyoto 615-8530, Japan
| | | | | | | |
Collapse
|
48
|
Rujas E, Insausti S, Leaman DP, Carravilla P, González-Resines S, Monceaux V, Sánchez-Eugenia R, García-Porras M, Iloro I, Zhang L, Elortza F, Julien JP, Saéz-Cirión A, Zwick MB, Eggeling C, Ojida A, Domene C, Caaveiro JMM, Nieva JL. Affinity for the Interface Underpins Potency of Antibodies Operating In Membrane Environments. Cell Rep 2020; 32:108037. [PMID: 32814041 PMCID: PMC7861656 DOI: 10.1016/j.celrep.2020.108037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/02/2020] [Accepted: 07/23/2020] [Indexed: 11/29/2022] Open
Abstract
The contribution of membrane interfacial interactions to recognition of membrane-embedded antigens by antibodies is currently unclear. This report demonstrates the optimization of this type of antibodies via chemical modification of regions near the membrane but not directly involved in the recognition of the epitope. Using the HIV-1 antibody 10E8 as a model, linear and polycyclic synthetic aromatic compounds are introduced at selected sites. Molecular dynamics simulations predict the favorable interactions of these synthetic compounds with the viral lipid membrane, where the epitope of the HIV-1 glycoprotein Env is located. Chemical modification of 10E8 with aromatic acetamides facilitates the productive and specific recognition of the native antigen, partially buried in the crowded environment of the viral membrane, resulting in a dramatic increase of its capacity to block viral infection. These observations support the harnessing of interfacial affinity through site-selective chemical modification to optimize the function of antibodies that target membrane-proximal epitopes.
Collapse
Affiliation(s)
- Edurne Rujas
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain; Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Sara Insausti
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Daniel P Leaman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pablo Carravilla
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain; Institute of Applied Optics and Biophysics Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany; Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | | | - Valérie Monceaux
- Institut Pasteur, Unité HIV Inflammation et Persistance, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Rubén Sánchez-Eugenia
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Miguel García-Porras
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Ibon Iloro
- Proteomics Platform, CIC bioGUNE, Parque Tecnológico de Vizcaya, 48160 Derio, Spain
| | - Lei Zhang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Parque Tecnológico de Vizcaya, 48160 Derio, Spain
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Asier Saéz-Cirión
- Institut Pasteur, Unité HIV Inflammation et Persistance, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Michael B Zwick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christian Eggeling
- Institute of Applied Optics and Biophysics Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany; Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Akio Ojida
- Department of Chemical Biology, School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, UK; Department of Chemistry, University of Oxford, Oxford OX1 3TF, UK
| | - Jose M M Caaveiro
- Laboratory of Global Health Care, School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan.
| | - José L Nieva
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
49
|
Enzyme-Coated Micro-Crystals: An Almost Forgotten but Very Simple and Elegant Immobilization Strategy. Catalysts 2020. [DOI: 10.3390/catal10080891] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The immobilization of enzymes using protein coated micro-crystals (PCMCs) was reported for the first time in 2001 by Kreiner and coworkers. The strategy is very simple. First, an enzyme solution must be prepared in a concentrated solution of one compound (salt, sugar, amino acid) very soluble in water and poorly soluble in a water-soluble solvent. Then, the enzyme solution is added dropwise to the water soluble solvent under rapid stirring. The components accompanying the enzyme are called the crystal growing agents, the solvent being the dehydrating agent. This strategy permits the rapid dehydration of the enzyme solution drops, resulting in a crystallization of the crystal formation agent, and the enzyme is deposited on this crystal surface. The reaction medium where these biocatalysts can be used is marked by the solubility of the PCMC components, and usually these biocatalysts may be employed in water soluble organic solvents with a maximum of 20% water. The evolution of these PCMC was to chemically crosslink them and further improve their stabilities. Moreover, the PCMC strategy has been used to coimmobilize enzymes or enzymes and cofactors. The immobilization may permit the use of buffers as crystal growth agents, enabling control of the reaction pH in the enzyme environments. Usually, the PCMC biocatalysts are very stable and more active than other biocatalysts of the same enzyme. However, this simple (at least at laboratory scale) immobilization strategy is underutilized even when the publications using it systematically presented a better performance of them in organic solvents than that of many other immobilized biocatalysts. In fact, many possibilities and studies using this technique are lacking. This review tried to outline the possibilities of this useful immobilization strategy.
Collapse
|
50
|
TAWFIQ Z, MATSUDA Y, ALFONSO MJ, CLANCY C, ROBLES V, LEUNG M, MENDELSOHN BA. Analytical Comparison of Antibody-drug Conjugates Based on Good Manufacturing Practice Strategies. ANAL SCI 2020; 36:871-875. [DOI: 10.2116/analsci.19p465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|