1
|
Sharmeen S, Kyei I, Hatch A, Hage DS. Analysis of drug interactions with serum proteins and related binding agents by affinity capillary electrophoresis: A review. Electrophoresis 2022; 43:2302-2323. [PMID: 36250426 PMCID: PMC10098505 DOI: 10.1002/elps.202200191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/17/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Biomolecules such as serum proteins can interact with drugs in the body and influence their pharmaceutical effects. Specific and precise methods that analyze these interactions are critical for drug development or monitoring and for diagnostic purposes. Affinity capillary electrophoresis (ACE) is one technique that can be used to examine the binding between drugs and serum proteins, or other agents found in serum or blood. This article will review the basic principles of ACE, along with related affinity-based capillary electrophoresis (CE) methods, and examine recent developments that have occurred in this field as related to the characterization of drug-protein interactions. An overview will be given of the various formats that can be used in ACE and CE for such work, including the relative advantages or weaknesses of each approach. Various applications of ACE and affinity-based CE methods for the analysis of drug interactions with serum proteins and other binding agents will also be presented. Applications of ACE and related techniques that will be discussed include drug interaction studies with serum agents, chiral drug separations employing serum proteins, and the use of CE in hybrid methods to characterize drug binding with serum proteins.
Collapse
Affiliation(s)
- Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Isaac Kyei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Arden Hatch
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
2
|
Cârcu-Dobrin M, Hancu G, Papp LA, Fülöp I. Chiral Discrimination of Mexiletine Enantiomers by Capillary Electrophoresis Using Cyclodextrins as Chiral Selectors and Experimental Design Method Optimization. Molecules 2022; 27:molecules27175603. [PMID: 36080370 PMCID: PMC9458186 DOI: 10.3390/molecules27175603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
Mexiletine (MXL) is a class IB antiarrhythmic agent, acting as a non-selective voltage-gated sodium channel blocker, used in therapy as a racemic mixture R,S-MXL hydrochloride. The aim of the current study was the development of a new, fast, and efficient method for the chiral separation of MXL enantiomers using capillary electrophoresis (CE) and cyclodextrins (CDs) as chiral selectors (CSs). After an initial CS screening, using several neutral and charged CDs, at four pH levels, heptakis-2,3,6-tri-O-methyl-β-CD (TM-β-CD), a neutral derivatized CD, was chosen as the optimum CS for the enantioseparation. For method optimization, an initial screening fractional factorial design was applied to identify the most significant parameters, followed by a face-centered central composite design to establish the optimal separation conditions. The best results were obtained by applying the following optimized electrophoretic conditions: 60 mM phosphate buffer, pH 5.0, 50 mM TM-β-CD, temperature 20 °C, applied voltage 30 kV, hydrodynamic injection 50 mbar/s. MXL enantiomers were baseline separated with a resolution of 1.52 during a migration time of under 5 min; S-MXL was the first migrating enantiomer. The method’s analytical performance was verified in terms of precision, linearity, accuracy, and robustness (applying a Plackett–Burman design). The developed method was applied for the determination of MXL enantiomers in pharmaceuticals. A computer modeling of the MXL-CD complexes was applied to characterize host–guest chiral recognition.
Collapse
Affiliation(s)
- Melania Cârcu-Dobrin
- Department of Pharmaceutical and Therapeutic Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Gabriel Hancu
- Department of Pharmaceutical and Therapeutic Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540142 Târgu Mureș, Romania
- Correspondence:
| | - Lajos Attila Papp
- Department of Pharmaceutical and Therapeutic Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Ibolya Fülöp
- Department of Toxicology and Biopharmacy, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540142 Târgu Mureș, Romania
| |
Collapse
|
3
|
Enantioresolution and Binding Affinity Studies on Human Serum Albumin: Recent Applications and Trends. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9110304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between proteins and drugs or other bioactive compounds has been widely explored over the past years. Several methods for analysis of this phenomenon have been developed and improved. Nowadays, increasing attention is paid to innovative methods, such as high performance affinity liquid chromatography (HPALC) and affinity capillary electrophoresis (ACE), taking into account various advantages. Moreover, the development of separation methods for the analysis and resolution of chiral drugs has been an area of ongoing interest in analytical and medicinal chemistry research. In addition to bioaffinity binding studies, both HPALC and ACE al-low one to perform other type of analyses, namely, displacement studies and enantioseparation of racemic or enantiomeric mixtures. Actually, proteins used as chiral selectors in chromatographic and electrophoretic methods have unique enantioselective properties demonstrating suitability for the enantioseparation of a large variety of chiral drugs or other bioactive compounds. This review is mainly focused in chromatographic and electrophoretic methods using human serum albumin (HSA), the most abundant plasma protein, as chiral selector for binding affinity analysis and enantioresolution of drugs. For both analytical purposes, updated examples are presented to highlight recent applications and current trends.
Collapse
|
4
|
Ansorge M, Dubský P, Ušelová K. Into the theory of the partial-filling affinity capillary electrophoresis and the determination of apparent stability constants of analyte-ligand complexes. Electrophoresis 2018; 39:742-751. [DOI: 10.1002/elps.201700385] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Martin Ansorge
- Charles University in Prague, Faculty of Science; Department of Physical and Macromolecular Chemistry; Prague Czech Republic
| | - Pavel Dubský
- Charles University in Prague, Faculty of Science; Department of Physical and Macromolecular Chemistry; Prague Czech Republic
| | - Kateřina Ušelová
- Charles University in Prague, Faculty of Science; Department of Physical and Macromolecular Chemistry; Prague Czech Republic
| |
Collapse
|
5
|
Ju HX, Zhuang QK, Long YT. The Preface. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Aturki Z, D'Orazio G, Rocco A, Fanali S. Advances in the enantioseparation of β-blocker drugs by capillary electromigration techniques. Electrophoresis 2011; 32:2602-28. [PMID: 21905049 DOI: 10.1002/elps.201100153] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/08/2011] [Accepted: 04/09/2011] [Indexed: 11/07/2022]
Abstract
β-Blocker drugs or β-adrenergic blocking agents are an important class of drugs, prescribed with great frequency. They are used for various diseases, particularly for the treatment of cardiac arrhythmias, cardioprotection after myocardial infarction (heart attack), and hypertension. Almost all β-blocker drugs possess one or more stereogenic centers; however; only some of them are administered as single enantiomers. Since both enantiomers can differ in their pharmacological and toxicological properties, enantioselective analytical methods are required not only for pharmacodynamic and pharmacokinetic studies but also for quality control of pharmaceutical preparations with the determination of enantiomeric purity. In addition to the chromatographic tools, in recent years, capillary electromigration techniques (CE, CEC, and MEKC) have been widely used for enantioselective purposes employing a variety of chiral selectors, e.g. CDs, polysaccharides, macrocyclic antibiotics, proteins, chiral ion-paring agents, etc. The high separation efficiency, rapid analysi,s and low consumption of reagents of electromigration methods make them a very attractive alternative to the conventional chromatographic methods. In this review, the development and applications of electrodriven methods for the enantioseparation of β-blocker drugs are reported. The papers concerning this topic, published from January 2000 until December 2010, are summarised here. Particular attention is given to the coupling of chiral CE and CEC methods to MS, as this detector provides high sensitivity and selectivity.
Collapse
Affiliation(s)
- Zeineb Aturki
- Istituto di Metodologie Chimiche, Consiglio Nazionale delle Ricerche, Area della Ricerca di Roma, Monterotondo Scalo, Rome, Italy
| | | | | | | |
Collapse
|
7
|
Chen QC, Jeong SJ, Hwang GS, Kim KH, Kang JS. Enantioselective determination of chlorpheniramine in various formulations by HPLC using carboxymethyl-β-cyclodextrin as a chiral additive. Arch Pharm Res 2008; 31:523-9. [DOI: 10.1007/s12272-001-1188-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Indexed: 11/28/2022]
|
8
|
Wang Z, Ouyang J, Baeyens WR. Recent developments of enantioseparation techniques for adrenergic drugs using liquid chromatography and capillary electrophoresis: A review. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 862:1-14. [DOI: 10.1016/j.jchromb.2007.11.034] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 10/20/2007] [Accepted: 11/23/2007] [Indexed: 10/22/2022]
|
9
|
Hödl H, Koidl J, Schmid MG, Gübitz G. Chiral resolution of tryptophan derivatives by CE using canine serum albumin and bovine serum albumin as chiral selectors. Electrophoresis 2006; 27:4755-62. [PMID: 17136718 DOI: 10.1002/elps.200600425] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This work deals with the application of BSA and canine serum albumin (CSA) for enantioseparation of tryptophan derivatives with CE. The aim of this work was the investigation of the influence of different functional groups of tryptophan derivatives on enantioseparation. CSA as a chiral selector was tested to compare its selector properties with those of BSA. The enantiomers of the tryptophan derivatives were separated by adding BSA or CSA to the BGE. The influence of pH, temperature, BSA and CSA concentration and organic modifiers was investigated. It was found that the stereoselectivity for the different tryptophan derivatives is dependent on the albumin species. It turned out that the different functional groups of the derivatives showed a significant influence on stereoselectivity.
Collapse
Affiliation(s)
- Heike Hödl
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Karl-Franzens University, Graz, Austria
| | | | | | | |
Collapse
|
10
|
Ha PTT, Hoogmartens J, Van Schepdael A. Recent advances in pharmaceutical applications of chiral capillary electrophoresis. J Pharm Biomed Anal 2006; 41:1-11. [PMID: 16516428 DOI: 10.1016/j.jpba.2006.01.035] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 01/05/2006] [Accepted: 01/19/2006] [Indexed: 11/28/2022]
Abstract
This review article summarizes developments and applications of chiral capillary electrophoresis (CE) in the pharmaceutical field published from January 2004 to June 2005. Due to the tremendous number of publications, this article is aimed to focus on major developments in chiral separations and some selected applications rather than to provide a descriptive overview of all published papers. Valuable information is also collected from several excellent reviews published during this period. Developments are classified according to CE modes, namely capillary zone electrophoresis (CZE), micellar electrokinetic capillary chromatography (MEKC), microemulsion electrokinetic chromatography (MEEKC). In the CZE section, different types of chiral selectors including cyclodextrins, oligo- and polysaccharides, crown ethers, macrocyclic antibiotics, ligand exchange systems and proteins are described. Nonaqueous capillary electrophoresis is also included in this section. Coupling CE to MS is discussed in a separate part, followed by a summary of selected pharmaceutical applications of enantioselective CE. Finally, some conclusions are drawn and prospects of CE in chiral analysis are also drafted.
Collapse
Affiliation(s)
- Pham Thi Thanh Ha
- Laboratory of Pharmaceutical Chemistry and Drug Analysis, Faculty of Pharmaceutical Sciences, K.U. Leuven, Leuven, Belgium
| | | | | |
Collapse
|
11
|
Kasicka V. Recent developments in capillary electrophoresis and capillary electrochromatography of peptides. Electrophoresis 2006; 27:142-75. [PMID: 16307429 DOI: 10.1002/elps.200500527] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The article gives a comprehensive review on the recent developments in the applications of high-performance capillary electromigration methods, zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography, to analysis, preparation, and physicochemical characterization of peptides. The article presents new approaches to the theoretical description and experimental verification of electromigration behavior of peptides, covers the methodological aspects of capillary electroseparations of peptides, such as rational selection of separation conditions, sample preparation, suppression of peptide adsorption, new developments in individual separation modes, and new designs of detection systems. Several types of applications of capillary electromigration methods to peptide analysis are presented: conventional qualitative and quantitative analysis, purity control, determination in biomatrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid and sequence analysis, and peptide mapping of proteins. Some examples of micropreparative peptide separations are given and capabilities of capillary electromigration techniques to provide important physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kasicka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|