1
|
Sun L, Xiang Y, Du Y, Wang Y, Ma J, Wang Y, Wang X, Wang G, Chen T. Template-independent synthesis and 3'-end labelling of 2'-modified oligonucleotides with terminal deoxynucleotidyl transferases. Nucleic Acids Res 2024; 52:10085-10101. [PMID: 39149896 PMCID: PMC11417362 DOI: 10.1093/nar/gkae691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
Xenobiotic nucleic acids (XNAs) are artificial genetic polymers with altered structural moieties and useful features, such as enhanced biological and chemical stability. Enzymatic synthesis and efficient labelling of XNAs are crucial for their broader application. Terminal deoxynucleotidyl transferases (TdTs) have been exploited for the de novo synthesis and labelling of DNA and demonstrated the capability of recognizing various substrates. However, the activities of TdTs for the synthesis and labelling of commonly used XNAs with 2' modifications have not been systematically explored. In this work, we explored and demonstrated the varied activities of three TdTs (bovine TdT, MTdT-evo and murine TdT) for the template-independent incorporation of 2'-methoxy NTPs, 2'-fluoro NTPs and 2'-fluoroarabino NTPs into the 3' ends of single- and double-stranded DNAs and the extension of 2'-modified XNAs with (d)NTPs containing a natural or unnatural nucleobase. Taking advantages of these activities, we established a strategy for protecting single-stranded DNAs from exonuclease I degradation by TdT-synthesized 2'-modified XNA tails and methods for 3'-end labelling of 2'-modified XNAs by TdT-mediated synthesis of G-quadruplex-containing tails or incorporation of nucleotides with a functionalized nucleobase. A DNA-2'-fluoroarabino nucleic acid (FANA) chimeric hydrogel was also successfully constructed based on the extraordinary activity of MTdT-evo for template-independent FANA synthesis.
Collapse
Affiliation(s)
- Leping Sun
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Yuming Xiang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Yangming Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Jiezhao Ma
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Yaxin Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Xueting Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Guangyuan Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| |
Collapse
|
2
|
Yang H, Zhu L, Wang X, Kang S, Li T, Chen K, Dong Y, Xu W. A label-free fluorescent magnetic dual-aptasensor based on aptamer allosteric regulation of β-lactoglobulin. Talanta 2024; 271:125664. [PMID: 38237281 DOI: 10.1016/j.talanta.2024.125664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/24/2024]
Abstract
We presented a label-free fluorescent biosensor based on magnetic dual-aptamer allosteric regulation of β-lactoglobulin (β-LG) detection. The bovine serum albumin (BSA) acted as the bridge to connect amino-modified magnetic beads and aptamer, which synthesized pyramid-type probes (MBAP) with high capture and reduced nonspecific adsorption. Moreover, the original aptamer was tailored and then designed as a bivalent aptamer to fabricate allosteric signal probes (ASP). The ASP can both specifically capture β-LG and output the fluorescence signal. The detection mechanism is as follows. The combination of the dual-aptamer and β-LG triggered the allosteric change, resulting in the release of SYBR Green (SG I) from the allosteric signal probe and change signals. This method exhibits a broad linear detection range from 10 ng/mL to 1 mg/mL and the limit of detection reaches as low as 8.06 ng/mL. This study provides a highly generalizable strategy for protein biomolecular detection via replacing different target aptamers.
Collapse
Affiliation(s)
- He Yang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xinxin Wang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shuaishuai Kang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing, 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tianshun Li
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing, 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Keren Chen
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Yulan Dong
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing, 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing, 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
3
|
Wei L, Zhu D, Cheng Q, Gao Z, Wang H, Qiu J. Aptamer-Based fluorescent DNA biosensor in antibiotics detection. Food Res Int 2024; 179:114005. [PMID: 38342532 DOI: 10.1016/j.foodres.2024.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
The inappropriate employment of antibiotics across diverse industries has engendered profound apprehensions concerning their cumulative presence within human bodies and food commodities. Consequently, many nations have instituted stringent measures limiting the admissible quantities of antibiotics in food items. Nonetheless, conventional techniques employed for antibiotic detection prove protracted and laborious, prompting a dire necessity for facile, expeditious, and uncomplicated detection methodologies. In this regard, aptamer-based fluorescent DNA biosensors (AFBs) have emerged as a sanguine panacea to surmount the limitations of traditional detection modalities. These ingenious biosensors harness the binding prowess of aptamers, singular strands of DNA/RNA, to selectively adhere to specific target antibiotics. Notably, the AFBs demonstrate unparalleled selectivity, affinity, and sensitivity in detecting antibiotics. This comprehensive review meticulously expounds upon the strides achieved in AFBs for antibiotic detection, particularly emphasizing the labeling modality and the innovative free-label approach. It also elucidates the design principles behind a diverse array of AFBs. Additionally, a succinct survey of signal amplification strategies deployed within these biosensors is provided. The central objective of this review is to apprise researchers from diverse disciplines of the contemporary trends in AFBs for antibiotic detection. By doing so, it aspires to instigate a concerted endeavor toward the development of heightened sensitivity and pioneering AFBs, thereby contributing to the perpetual advancement of antibiotic detection methodologies.
Collapse
Affiliation(s)
- Luke Wei
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Dingze Zhu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Qiuyue Cheng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zihan Gao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Honglei Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jieqiong Qiu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
4
|
Xue N, Wu S, Li Z, Miao X. Ultrasensitive and label-free detection of ATP by using gold nanorods coupled with enzyme assisted target recycling amplification. Anal Chim Acta 2019; 1104:117-124. [PMID: 32106942 DOI: 10.1016/j.aca.2019.12.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/02/2019] [Accepted: 12/28/2019] [Indexed: 11/18/2022]
Abstract
Abnormal concentration of adenosine triphosphate (ATP) is directly asscociate with several diseases. Thus, sensitive detection of ATP is essential to early diagnosis of disease. Herein, we described an ultrasensitive strategy for ATP detection by using positively charged gold nanorods ((+)AuNRs) as an efficient fluorescence quenching platform, coupled with exonuclease Ⅲ (Exo Ⅲ) assisted target recycling amplification. To construct the sensor, DNA template that contained ATP aptamer was used for the formation of Ag nanoclusters signal probe (DNA/AgNCs), the structure of it could change to duplex after the interaction of it with ATP. Such DNA template or duplex DNA product could electrostatically adsorb onto (+)AuNRs surface, resulting in the quenching of the fluorescence signal due to the vicinity of AgNCs to (+)AuNRs. With the addition of Exo Ⅲ, DNA duplex could be hydrolyzed and released from (+)AuNRs surface, leading to the recovery of a strong fluorescent signal, while ATP could be regenerated for next target recycling. Combing the good fluorescence quenching ability of (+)AuNRs and the Exo Ⅲ assisted signal amplification, a low detection limit of 26 pM was achieved for ATP detection. Notably, the proposed method can be successfully applied for detecting ATP in serum samples, indicating a potential application value in early cancer diagnosis.
Collapse
Affiliation(s)
- Ning Xue
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shujie Wu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zongbing Li
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiangmin Miao
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
5
|
Chen XX, Lin ZZ, Hong CY, Yao QH, Huang ZY. A dichromatic label-free aptasensor for sulfadimethoxine detection in fish and water based on AuNPs color and fluorescent dyeing of double-stranded DNA with SYBR Green I. Food Chem 2019; 309:125712. [PMID: 31679852 DOI: 10.1016/j.foodchem.2019.125712] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/08/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
Abstract
A dichromatic label-free aptasensor was described for sulfadimethoxine (SDM) detection. Compared with the binding of SDM-aptamer to SDM, the higher affinity of aptamer to cDNA may result in the hybridization of dsDNA. In the presence of SDM, the aptamer specifically binds to SDM, leading to a blue color of AuNPs in deposit and fluorescence at 530 nm in supernatant after adding cDNA and SGI. With no target of SDM, AuNPs protected with the aptamer re-disperse in PBS with a red color, and no fluorescence occurs in supernatant. Based on the principle, SDM can be quantitatively detected through both fluorescent emission and AuNPs color changes with recoveries ranging from 99.2% to 102.0% for fish and from 99.5% to 100.5% for water samples. An analytical linear range of 2-300 ng mL-1 was achieved with the detection limits of 3.41 ng mL-1 for water and 4.41 ng g-1 for fish samples (3σ, n = 9).
Collapse
Affiliation(s)
- Xiang-Xiu Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zheng-Zhong Lin
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Cheng-Yi Hong
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | | | - Zhi-Yong Huang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361102, China.
| |
Collapse
|
6
|
Yang C, Bie J, Zhang X, Yan C, Li H, Zhang M, Su R, Zhang X, Sun C. A label-free aptasensor for the detection of tetracycline based on the luminescence of SYBR Green I. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 202:382-388. [PMID: 29807336 DOI: 10.1016/j.saa.2018.05.075] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
A novel fluorescent method based on tetracycline-binding aptamers and the luminescence of SYBR Green I (SGI) was established for the sensitive and selective detection of tetracycline. Under natural conditions, the aptamers of tetracycline show the G-quadruplex spatial structures while SGI is nearly nonfluorescent in aqueous solution. After mixture with the G-quadruplex structured aptamers, SGI can recognize and intercalate into the aptamers, resulting in a strong fluorescence emission. When the target tetracycline was added into the solution, the specific recognition and high-affinity binding of aptamers with tetracycline will induce the conformational changes of aptamers from G-quadruplex structures to hairpin structures. Thereafter, SGI will be released from the aptamer molecules, leading to the fluorescence decline. The quantitative detection of tetracycline can be achieved by measuring the fluorescence change of the system. Under the optimum conditions, the linear range of tetracycline in the milk was from 5 to 25 μg/mL, and the detection limit was as low as 0.10 μg/mL. The recoveries of the spiked milk samples were in the range of 98.98%-104.67% with the relative standard deviations (RSDs) of 0.16%-0.67%, and the results were in agreement with those from HPLC. Therefore, the biosensor based on the specific recognition of aptamers and the fluorescence properties of SGI can detect the tetracycline in milk accurately, rapidly and specifically.
Collapse
Affiliation(s)
- Chuanyu Yang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jiaxin Bie
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xinmeng Zhang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Caiyun Yan
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Hanjie Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Minghui Zhang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruifang Su
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xiaoguang Zhang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
7
|
Rafati A, Zarrabi A, Abediankenari S, Aarabi M, Gill P. Sensitive colorimetric assay using insulin G-quadruplex aptamer arrays on DNA nanotubes coupled with magnetic nanoparticles. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171835. [PMID: 29657789 PMCID: PMC5882713 DOI: 10.1098/rsos.171835] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
Described here is a methodology for fabrication of a sensitive colorimetric nanoassay for measurement of insulin using G-quadruplex aptamer arrays on DNA nanotubes (DNTs) coupled with magnetic nanoparticles. The spectroscopic findings (e.g. visible spectra, velocity assay and limit of detection determination) indicated a highly sensitive performance of this new nanoassay in comparison to those results obtained from the insulin assay with non-arrayed aptamers. The clinical performance statistics (i.e. paired sample t-test, Bland-Altman plot and scatter diagram) from the newly developed assay and the enzyme-linked immunosorbent assay suggested its reliable precision and its acceptable repeatability for measurement of insulin in human sera. This is, to our knowledge, the first study for the application of magnetic nanoparticle-coupled DNTs for carrying G-quadruplex aptamers for detection of biomolecules (such as insulin) in human serum.
Collapse
Affiliation(s)
- A. Rafati
- Department of Biotechnology, Faculty of Advanced Science and Technology, University of Isfahan, Isfahan, Iran
| | - A. Zarrabi
- Department of Biotechnology, Faculty of Advanced Science and Technology, University of Isfahan, Isfahan, Iran
| | - S. Abediankenari
- Nanomedicine Group, Immunogenetics Research Center, Mazandaran University of Medical Science, Sari, Iran
| | - M. Aarabi
- Diabetes Research Center, Mazandaran University of Medical Science, Sari, Iran
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - P. Gill
- Nanomedicine Group, Immunogenetics Research Center, Mazandaran University of Medical Science, Sari, Iran
- Diabetes Research Center, Mazandaran University of Medical Science, Sari, Iran
| |
Collapse
|
8
|
A universal colorimetry for nucleic acids and aptamer-specific ligands detection based on DNA hybridization amplification. Anal Biochem 2017; 528:47-52. [PMID: 28442309 DOI: 10.1016/j.ab.2017.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/20/2017] [Accepted: 04/22/2017] [Indexed: 11/22/2022]
Abstract
We present a universal amplified-colorimetric for detecting nucleic acid targets or aptamer-specific ligand targets based on gold nanoparticle-DNA (GNP-DNA) hybridization chain reaction (HCR). The universal arrays consisted of capture probe and hairpin DNA-GNP. First, capture probe recognized target specificity and released the initiator sequence. Then dispersed hairpin DNA modified GNPs were cross-linked to form aggregates through HCR events triggered by initiator sequence. As the aggregates accumulate, a significant red-to purple color change can be easily visualized by the naked eye. We used miRNA target sequence (miRNA-203) and aptamer-specific ligand (ATP) as target molecules for this proof-of-concept experiment. Initiator sequence (DNA2) was released from the capture probe (MNP/DNA1/2 conjugates) under the strong competitiveness of miRNA-203. Hairpin DNA (H1 and H2) can be complementary with the help of initiator DNA2 to form GNP-H1/GNP-H2 aggregates. The absorption ratio (A620/A520) values of solutions were a sensitive function of miRNA-203 concentration covering from 1.0 × 10-11 M to 9.0 × 10-10 M, and as low as 1.0 × 10-11 M could be detected. At the same time, the color changed from light wine red to purple and then to light blue have occurred in the solution. For ATP, initiator sequence (5'-end of DNA3) was released from the capture probe (DNA3) under the strong combination of aptamer-ATP. The present colorimetric for specific detection of ATP exhibited good sensitivity and 1.0 × 10-8 M ATP could be detected. The proposed strategy also showed good performances for qualitative analysis and quantitative analysis of intracellular nucleic acids and aptamer-specific ligands.
Collapse
|
9
|
A Dual-signal Amplification Method for DNA Detection Based on Exonuclease III and Fluorescence Quenching Ability of MoS 2 Nanosheet. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)60997-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Lu S, Hu T, Wang S, Sun J, Yang X. Ultra-Sensitive Colorimetric Assay System Based on the Hybridization Chain Reaction-Triggered Enzyme Cascade Amplification. ACS APPLIED MATERIALS & INTERFACES 2017; 9:167-175. [PMID: 27996245 DOI: 10.1021/acsami.6b13201] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A versatile and ultrasensitive colorimetric detection platform has been developed based on the hybridization chain reaction (HCR)-triggered enzyme cascade amplification in this work. The proposal involves the preparation of two different hairpin DNA strands consisting of the H1, modified with glucose oxidase (GOx-H1) and H2, modified with horseradish peroxidase (HRP-H2). The H1 and H2 were composed of complementary sequence of nucleic acid target (T) and interlaced complementary stem-loop sequences. In the nucleic acid detection, the hybridization of T and its complementary sequence induces the autonomous assembly of GOx-H1 and HRP-H2 through the predictable HCR, accompanied by the formation of GOx/HRP enzyme pairs with a multiple enzymatic cascade. In contrast to the crude mixture of free GOx-H1 and HRP-H2, the catalytic performance of enzyme cascade reaction has been significantly enhanced, which can be determined by monitoring the absorbance change of 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS2-), a typical substrate with hydrogen peroxide for the HRP. Furthermore, this platform can be utilized in the assay of biological substances by the introduction of corresponding aptamer (Apt), complementary strands (Com), and an assistant hairpin DNA strand (HAssist). In view of the signal amplification of HCR and the enhanced catalytic performance of cascaded enzymes, our colorimetric assay system exhibits excellent sensitivity, and the detection limits have been calculated to be 5.2 fM and 0.8 pM for the nucleic acid target (T as a model) and biological substances (ATP as a model), respectively.
Collapse
Affiliation(s)
- Shasha Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
- University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Tao Hu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
- University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Shuang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
- University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
| |
Collapse
|
11
|
MATSUMOTO D, NISHIO M, KATO Y, YOSHIDA W, ABE K, FUKAZAWA K, ISHIHARA K, IWATA F, IKEBUKURO K, NAKAMURA C. ATP-mediated Release of a DNA-binding Protein from a Silicon Nanoneedle Array. ELECTROCHEMISTRY 2016. [DOI: 10.5796/electrochemistry.84.305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Daisuke MATSUMOTO
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Maui NISHIO
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology
| | - Yoshio KATO
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Wataru YOSHIDA
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology
| | - Koichi ABE
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology
| | - Kyoko FUKAZAWA
- Department of Materials Engineering, The University of Tokyo
| | | | - Futoshi IWATA
- Department of Mechanical Engineering, Shizuoka University
| | - Kazunori IKEBUKURO
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology
| | - Chikashi NAKAMURA
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|