1
|
Lu S, Lin Y, Lin Z, Shi B. Sensitive and Label‐Free Electrochemical Immunosensor for Alpha Fetoprotein Based on N‐Doped Hollow Nanocarbon Spheres Decorated with Gold Nanoparticles. ChemistrySelect 2023. [DOI: 10.1002/slct.202204101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Shiyun Lu
- Provincial Clinical College of Fujian Medical University, Fujian Provincial Hospital Fuzhou Fujian PR China
| | - Yun Lin
- Provincial Clinical College of Fujian Medical University Fujian Provincial Hospital South Branch Fuzhou Fujian PR China
| | - Zhihui Lin
- Provincial Clinical College of Fujian Medical University, Fujian Provincial Hospital Fuzhou Fujian PR China
| | - Bing Shi
- Provincial Clinical College of Fujian Medical University Fujian Provincial Hospital South Branch Fuzhou Fujian PR China
| |
Collapse
|
2
|
Determination of Heavy Metal Ions in Infant Milk Powder Using a Nanoporous Carbon Modified Disposable Sensor. Foods 2023; 12:foods12040730. [PMID: 36832804 PMCID: PMC9956227 DOI: 10.3390/foods12040730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Due to the risk of heavy metal pollution in infant milk powder, it is significant to establish effective detection methods. Here, a screen-printed electrode (SPE) was modified with nanoporous carbon (NPC) to detect Pb(II) and Cd(II) in infant milk powder using an electrochemical method. Using NPC as a functional nanolayer facilitated the electrochemical detection of Pb(II) and Cd(II) due to its efficient mass transport and large adsorption capacity. Linear responses were obtained for Pb (II) and Cd(II) in the range from 1 to 60 µg L-1 and 5 to 70 µg L-1, respectively. The limit of detection was 0.1 µg L-1 for Pb(II) and 1.67 µg L-1 for Cd(II). The reproducibility, stability, and anti-interference performance of the prepared sensor were tested as well. The heavy metal ion detection performance in the extracted infant milk powder shows that the developed SPE/NPC possesses the ability to detect Pb(II) and Cd(II) in milk powder.
Collapse
|
3
|
Zheng C, Chen J, Zhang Y, Zhou S, Wang L, Zhou J, Chen X, Yang D, Hong Y. Sandwich-type electrochemical immunosensing of hypopharyngeal carcinoma biomarker carcinoembryonic antigen based on N-doped hollow mesoporous nanocarbon spheres/gold hybrids as sensing platform and gold/ferrocene as signal amplifier. ANAL SCI 2023; 39:5-11. [PMID: 36596957 DOI: 10.1007/s44211-022-00223-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/24/2021] [Indexed: 01/05/2023]
Abstract
In the present work, a highly sensitive sandwich-type electrochemical immunosensor of carcinoembryonic antigen (CEA) was developed by preparing N-doped hollow mesoporous nanocarbon spheres/gold hybrids (NHMN/Au) hybridsas sensing platformand Au/ferrocene (Au/Fc) as signal amplifiers. The large surface area and high conductivity as well as good biocompatibility of NHMN/Au can increase the loading of primary antibody (Ab1) and accelerate the electron transport rate of the electrode surface, while Au can carry immobilized secondary antibodies (Ab2) and Fc derivative (Fc-SH).By using Fc-SH as response probe, the experiments show that the peak current of probe could increase after occurring the specific recognition of Ab1-CEA-Ab2, thus a novel sandwich-type immunosensor of CEA was developed. Finally, the proposed method for CEA detection was applied in human serum and the obtained results are satisfactory, indicating the developed method has important clinical applications for CEA determination.
Collapse
Affiliation(s)
- Chaohui Zheng
- Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Jing Chen
- Department of Pharmacology, College of Pharmacy, Quanzhou Medical College, Quanzhou, 362010, China
| | - Yizheng Zhang
- Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Shuang Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Lixing Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Jiao Zhou
- Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Xiaofang Chen
- Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Dapeng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Fujian Province, Quanzhou, 362002, China
| | - Yuming Hong
- Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| |
Collapse
|
4
|
Screen-printed electrochemical sensors for environmental monitoring of heavy metal ion detection. REV CHEM ENG 2022. [DOI: 10.1515/revce-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Heavy metal ions (HMIs) are known to cause severe damages to the human body and ecological environment. And considering the current alarming situation, it is crucial to develop a rapid, sensitive, robust, economical and convenient method for their detection. Screen printed electrochemical technology contributes greatly to this task, and has achieved global attention. It enabled the mass transmission rate and demonstrated ability to control the chemical nature of the measure media. Besides, the technique offers advantages like linear output, quick response, high selectivity, sensitivity and stability along with low power requirement and high signal-to-noise ratio. Recently, the performance of SPEs has been improved employing the most effective and promising method of the incorporation of different nanomaterials into SPEs. Especially, in electrochemical sensors, the incorporation of nanomaterials has gained extensive attention for HMIs detection as it exhibits outstanding features like broad electrochemical window, large surface area, high conductivity, selectivity and stability. The present review focuses on the recent progress in the field of screen-printed electrochemical sensors for HMIs detection using nanomaterials. Different fabrication methods of SPEs and their utilization for real sample analysis of HMIs using various nanomaterials have been extensively discussed. Additionally, advancement made in this field is also discussed taking help of the recent literature.
Collapse
|
5
|
Dahake RV, Bansiwal A. Disposable Sensors for Heavy Metals Detection: A Review of Carbon and Non‐Noble Metal‐Based Receptors. ChemistrySelect 2022. [DOI: 10.1002/slct.202202824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rashmi V. Dahake
- CSIR-National Environmental Engineering Research Institute(NEERI) Nagpur
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh
| | - Amit Bansiwal
- CSIR-National Environmental Engineering Research Institute(NEERI) Nagpur
| |
Collapse
|
6
|
Liu X, Yao Y, Ying Y, Ping J. Recent advances in nanomaterial-enabled screen-printed electrochemical sensors for heavy metal detection. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.021] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
|
8
|
Razzaque S, Wang K, Hussain I, Tan B. Facile Synthesis of Hypercrosslinked Hollow Microporous Organic Capsules for Electrochemical Sensing of Cu II Ions. Chemistry 2018; 25:548-555. [PMID: 30270511 DOI: 10.1002/chem.201803643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/13/2018] [Indexed: 11/08/2022]
Abstract
A very simple and facile methodology is used to prepare dithiocarbamate-functionalized hollow microporous organic capsules (HMOCs-DTC), which exhibit excellent stability, a high surface area, and appropriate microporous architecture. In this strategy, SiO2 particles are used as templates to construct PS-DVB-MAA microspheres, and then dithiocarbamate groups are grafted onto them. The dithiocarbamate-functionalized hypercrosslinked microporous organic capsules (HMOCs-DTC/GC) are then used as an electrode material for the detection of CuII ions. Cyclic voltammetry (CV) and electron impedance spectroscopy (EIS) are exploited to study the electrochemical potential of the designed material. The placement of functional groups (dithiocarbamate) at the mesopore interface effectively enhances the mass transfer, which facilitates the more selective detection of CuII ions. The high sensitivity of the modified electrode is expressed in terms of current (Ip ) enhancement at extremely low concentrations of CuII ions. Thus, a functional and robust porous material (HMOCs-DTC) presents a sensitive sensing ability, displaying the calibration response over a wide linear range (2.50×10-11 -3.50×10-10 m), with a lowest limit of detection of 1.02×10-11 m. Indeed, these HMOCs present a new class of porous polymers possessing extraordinarily high scalability but avoiding complex and expensive synthetic methodologies, promoting its practical utilization.
Collapse
Affiliation(s)
- Shumaila Razzaque
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong, University of Science and Technology, Wuhan, 430074, P.R. China
| | - Kewei Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong, University of Science and Technology, Wuhan, 430074, P.R. China
| | - Irshad Hussain
- Department of Chemistry, SBA School of Science and Engineering (SSE), Lahore University of Management Sciences (LUMS), Lahore Cantt 54792 (Pakistan) and US-Pakistan Centre for, Advanced Studies in Energy (USPCAS-E), University of, Engineering & Technology (UET), Peshawar, Pakistan
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong, University of Science and Technology, Wuhan, 430074, P.R. China
| |
Collapse
|