1
|
Kansara V, Tiwari S, Patel M. Graphene quantum dots: A review on the effect of synthesis parameters and theranostic applications. Colloids Surf B Biointerfaces 2022; 217:112605. [PMID: 35688109 DOI: 10.1016/j.colsurfb.2022.112605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
The rising demand for early-stage diagnosis of diseases such as cancer, diabetes, neurodegenerative can be met with the development of materials offering high sensitivity and specificity. Graphene quantum dots (GQDs) have been investigated extensively for theranostic applications owing to their superior photostability and high aqueous dispersibility. These are attractive for a range of biomedical applications as their physicochemical and optoelectronic properties can be tuned precisely. However, many aspects of these properties remain to be explored. In the present review, we have discussed the effect of synthetic parameters upon their physicochemical characteristics relevant to bioimaging. We have highlighted the effect of particle properties upon sensing of biological molecules through 'turn-on' and 'turn-off' fluorescence and generation of electrochemical signals. After describing the effect of surface chemistry and solution pH on optical properties, an inclusive view on application of GQDs in drug delivery and radiation therapy has been given. Finally, a brief overview on their application in gene therapy has also been included.
Collapse
Affiliation(s)
- Vrushti Kansara
- Maliba Pharmacy College, Uka Tarsadia University, Gujarat, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, India
| | - Mitali Patel
- Maliba Pharmacy College, Uka Tarsadia University, Gujarat, India.
| |
Collapse
|
2
|
Walther BK, Dinu CZ, Guldi DM, Sergeyev VG, Creager SE, Cooke JP, Guiseppi-Elie A. Nanobiosensing with graphene and carbon quantum dots: Recent advances. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2020; 39:23-46. [PMID: 37974933 PMCID: PMC10653125 DOI: 10.1016/j.mattod.2020.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Graphene and carbon quantum dots (GQDs and CQDs) are relatively new nanomaterials that have demonstrated impact in multiple different fields thanks to their unique quantum properties and excellent biocompatibility. Biosensing, analyte detection and monitoring wherein a key feature is coupled molecular recognition and signal transduction, is one such field that is being greatly advanced by the use of GQDs and CQDs. In this review, recent progress on the development of biotransducers and biosensors enabled by the creative use of GQDs and CQDs is reviewed, with special emphasis on how these materials specifically interface with biomolecules to improve overall analyte detection. This review also introduces nano-enabled biotransducers and different biosensing configurations and strategies, as well as highlights key properties of GQDs and CQDs that are pertinent to functional biotransducer design. Following relevant introductory material, the literature is surveyed with emphasis on work performed over the last 5 years. General comments and suggestions to advance the direction and potential of the field are included throughout the review. The strategic purpose is to inspire and guide future investigations into biosensor design for quality and safety, as well as serve as a primer for developing GQD- and CQD-based biosensors.
Collapse
Affiliation(s)
- Brandon K. Walther
- Biosensors and Biochips (C3), Department of Biomedical Engineering and Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nürnberg 91058 Erlangen, Germany
| | - Vladimir G. Sergeyev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| | - Stephen E. Creager
- Department of Chemistry and Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - John P. Cooke
- Biosensors and Biochips (C3), Department of Biomedical Engineering and Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Anthony Guiseppi-Elie
- Biosensors and Biochips (C3), Department of Biomedical Engineering and Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
- ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA 23219, USA
| |
Collapse
|
3
|
Li Y, Wang R, Fan A. Gold Nanocluster-catalyzed Luminol Chemiluminescent Sensing Method for Sensitive and Selective Detection of Alkaline Phosphatase. ANAL SCI 2020; 36:1075-1079. [PMID: 32307349 DOI: 10.2116/analsci.20p098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/07/2020] [Indexed: 08/09/2023]
Abstract
A sensitive sensing method was developed for the determination of alkaline phosphatase (ALP) activity based on gold nanocluster (Au NC)-catalyzed luminol-H2O2 chemiluminescent (CL) reaction. The CL signal of luminol-H2O2-Au NCs can be quenched by ascorbic acid, which was the product of magnesium ascorbyl phosphate (MAP) hydrolysis reaction catalyzed by ALP. The proposed sensing platform showed convenient, sensitive and selective detection of ALP in the range of 0.0027 - 1.3890 U L-1, with the detection limit of 0.0026 U L-1. The broad detection linear range and ultra-high sensitivity were inherited from the efficient free radical scavenging capability of ascorbic acid on the luminol-H2O2-Au NCs CL reaction. The CL sensing platform was applied to the detection of ALP activity in serum samples. We believe that this sensing platform is a universal CL strategy for ALP detection because ascorbic acid is an efficient CL quencher for many CL reactions.
Collapse
Affiliation(s)
- Ying Li
- School of Pharmaceutical Science and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 300072, Tianjin, China
| | - Ruyuan Wang
- School of Pharmaceutical Science and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 300072, Tianjin, China
| | - Aiping Fan
- School of Pharmaceutical Science and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 300072, Tianjin, China.
| |
Collapse
|
4
|
Yousefzadeh A, Abolhasani J, Hassanzadeh J, Somi MH. A Highly Efficient Chemiluminescence System Based on an Enhancing Effect of Ag Nanoclusters/Graphene Quantum Dots Mixture for Ultrasensitive Detection of Rabeprazole. ANAL SCI 2019; 35:385-391. [PMID: 30971635 DOI: 10.2116/analsci.18p419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Herein, an efficient chemiluminescence (CL) reaction with a high emission intensity is reported based on a synergistic improving effect of silver nanoclusters (AgNCs) and graphene quantum dots (GQDs). First, the syntheses of AgNCs and GQDs were simply performed by the chemical reducing of AgNO3 and a thermal treatment of glucose, respectively. After the characterization steps, the beneficial behavior of the prepared nanomaterial was investigated in CL systems. The oxidation reaction of KMnO4-rhodamine B produced weak CL emission. However, the presence of AgNCs and GQDs led to a synergetic enhancing effect, and thus higher emission was obtained. A possible mechanism was investigated for this effect using absorption and fluorescence experiments. Furthermore, rabeprazole showed a relatively selective enhancing impact on the CL emission. The CL intensity was linearly increased in the rabeprazole concentration range of 4 - 133 ng mL-1 with a detection limit (3Sb/m) of 1.1 ng mL-1. The developed CL method was utilized for the measurement of Rbp in biological samples with acceptable precision and accuracy.
Collapse
Affiliation(s)
| | | | - Javad Hassanzadeh
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences
| |
Collapse
|
5
|
Zhang X, Zhong XL, Jiang WW, Zeng SH, Pi T, Zheng XJ, Li ZM. Fluorescence-based Polymerase Amplification for the Sensitive Detection of DNA Methyltransferase Activity. ANAL SCI 2018; 34:959-964. [PMID: 30101892 DOI: 10.2116/analsci.18p080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
DNA methyltransferase (MTase) is related to transcriptional repressor activity in biological functions. It is an essential for cancer diagnosis and therapeutics to detect DNA MTase activity sensitively. Here, a fluorescent system based on polymerase amplification has been developed to detect DNA adenine MTase (Dam) activity sensitively. The amplification is triggered by the probe DNA regions a, which are the primes of a polymerase-induced replicated reaction. They come from methylation and a digestion reaction of DNA S1-S1, including a 5'-GATC-3' sequence recognized by Dam MTase and methylation sensitive restriction endonuclease Dpn I. The intensities of fluorescence are dependent on the Dam MTase activity. The method shows fine sensitivity with a detection limit of 3.2 × 10-4 U mL-1 and specificity for Dam MTase. In human serum samples, the method has been successfully applied, and it has also been used to screen the inhibitors, which means that the developed method can be a powerful and potential tool for drug development and clinical diagnosis in the future.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Chemistry, Nanchang University
| | | | - Wen-Wen Jiang
- School of Nursing of Jiangxi University of Technology
| | - Si-Hao Zeng
- Department of Chemistry, Nanchang University
| | - Ting Pi
- Department of Chemistry, Nanchang University
| | | | - Zhi-Mei Li
- Department of Chemistry, Nanchang University
| |
Collapse
|
6
|
Cao XY, Kong FZ, Zhang Q, Liu WW, Liu XP, Li GQ, Zhong R, Fan LY, Xiao H, Cao CX. iPhone-imaged and cell-powered electrophoresis titration chip for the alkaline phosphatase assay in serum by the moving reaction boundary. LAB ON A CHIP 2018; 18:1758-1766. [PMID: 29780999 DOI: 10.1039/c8lc00163d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As a vital enzyme, alkaline phosphatase (ALP) has great clinical significance in diagnoses of bone or liver cancer, bone metastases, rickets, and extrahepatic biliary obstruction. However, there is still no really portable chip for the ALP assay in blood. Herein, a simple electrophoresis titration (ET) model was developed for ALP detection via a moving reaction boundary (MRB). In the model, ALP catalyzed the dephosphorylation of a 4-methylumbelliferyl phosphate disodium salt (4-MUP) substrate in the cathode well to 4-methylumbelliferone ([4-MU]-) with a negative charge and blue fluorescence under UV excitation. After the catalysis, an electric field was used between the cathode and the anode. Under the electric field, [4-MU]- moved into the channel and neutralized the acidic Tris-HCl buffer, resulting in the quenching of [4-MU]- and creating a MRB. The ET system just had an ET chip, a lithium cell, a UV LED and an iPhone used as a recorder, having no traditional expensive power supply and fluorescence detector. The relevant method was developed, and a series of experiments were conducted via the ET chip. The experiments showed: (i) a MRB could be formed between the [4-MU]- base and the acidic buffer, and the MRB motion had a linear relationship with the ALP activity, validating the ET model; (ii) the ET run was not impacted by many interferences, implying good selectivity; and (iii) the ET chip could be used for portable detection within 10 min, implying an on-site and rapid analysis. In addition, the ET method had a relatively good sensitivity (0.1 U L-1), linearity (V = 0.033A + 3.87, R2 = 0.9980), stability (RSD 2.4-6.8%) and recoveries (101-105%). Finally, the ET method was successfully used for ALP assays in real serum samples. All the results implied that the developed method was simple, rapid and low-cost, and had potential for POCT clinical ALP assays.
Collapse
Affiliation(s)
- Xin-Yu Cao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|