1
|
Habiba U, Descallar J, Kreilaus F, Adhikari UK, Kumar S, Morley JW, Bui BV, Hamaoui MK, Tayebi M. Detection of retinal and blood Aβ oligomers with nanobodies. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2021; 13:e12193. [PMID: 33977118 PMCID: PMC8101010 DOI: 10.1002/dad2.12193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022]
Abstract
Introduction Abnormal retinal changes are increasingly recognized as an early pathological change in Alzheimer's disease (AD). Although amyloid beta oligomers (Aβo) have been shown to accumulate in the blood and retina of AD patients and animals, it is not known whether the early Aβo deposition precedes their accumulation in brain. Methods and results Using nanobodies targeting Aβ1‐40 and Aβ1‐42 oligomers we were able to detect Aβ oligomers in the retina and blood but not in the brain of 3‐month‐old APP/PS1 mice. Furthermore, Aβ plaques were detected in the brain but not the retina of 3‐month‐old APP/PS1 mice. Conclusion These results suggest that retinal accumulation of Aβo originates from peripheral blood and precedes cognitive decline and Aβo deposition in the brain. This provides a very strong basis to develop and implement an “eye test” for early detection of AD using nanobodies targeting retinal Aβ.
Collapse
Affiliation(s)
- Umma Habiba
- School of Medicine Western Sydney University Campbelltown New South Wales Australia
| | - Joseph Descallar
- South Western Sydney Clinical School, Faculty of Medicine UNSW, Liverpool Hospital Liverpool New South Wales Australia.,Ingham Institute of Applied Medical Research Liverpool New South Wales Australia
| | - Fabian Kreilaus
- School of Medicine Western Sydney University Campbelltown New South Wales Australia
| | - Utpal K Adhikari
- School of Medicine Western Sydney University Campbelltown New South Wales Australia
| | - Sachin Kumar
- School of Medicine Western Sydney University Campbelltown New South Wales Australia
| | - John W Morley
- School of Medicine Western Sydney University Campbelltown New South Wales Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences University of Melbourne Melbourne Victoria Australia
| | - Maya K Hamaoui
- Department of Neurosurgery Maxine Dunitz Neurosurgical Research Institute and Department of Biomedical Sciences Cedars-Sinai Medical Center Los Angeles California USA
| | - Mourad Tayebi
- School of Medicine Western Sydney University Campbelltown New South Wales Australia
| |
Collapse
|
2
|
Mammadova N, Cassmann ED, Moore SJ, Nicholson EM, Greenlee JJ. Experimental inoculation of CD11c + B1 lymphocytes, CD68 + macrophages, or platelet-rich plasma from scrapie-infected sheep into susceptible sheep results in variable infectivity. Access Microbiol 2020; 2:acmi000155. [PMID: 33195984 PMCID: PMC7656192 DOI: 10.1099/acmi.0.000155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/24/2020] [Indexed: 11/18/2022] Open
Abstract
Many studies have demonstrated prion infectivity in whole blood and blood components in a variety of transmissible spongiform encephalopathies of livestock and rodents, and variant Creutzfeldt–Jakob disease in humans, as well as an association between pathogenic prion protein (PrPSc) and different immune cells (e.g. follicular dendritic cells, T and B lymphocytes, monocytes and tingible body macrophages). To further investigate the role of various blood components in prion disease transmission, we intracranially inoculated genetically susceptible VRQ/ARQ and ARQ/ARQ sheep with inocula composed of CD11c+ B1 lymphocytes, CD68 +macrophages, or platelet-rich plasma derived from clinically ill sheep infected with the US no. 13–7 scrapie agent. At the completion of the study, we found that VRQ/ARQ and ARQ/ARQ sheep inoculated with CD11c+ B1 lymphocytes and CD68+ macrophages developed scrapie with detectable levels of PrPSc in the central nervous system and lymphoreticular system, while those inoculated with platelet-rich plasma did not develop disease and did not have detectable PrPSc by immunohistochemistry or enzyme immunoassay. This study complements and expands on earlier findings that white blood cells harbour prion infectivity, and reports CD11c+ B1 lymphocytes and CD68+ macrophages as additional targets for possible preclinical detection of prion infection in blood.
Collapse
Affiliation(s)
- Najiba Mammadova
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA.,Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA). ORISE is managed by ORAU under DOE contract number DE-SC0014664
| | - Eric D Cassmann
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA.,Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA). ORISE is managed by ORAU under DOE contract number DE-SC0014664
| | - S Jo Moore
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA.,Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA). ORISE is managed by ORAU under DOE contract number DE-SC0014664
| | - Eric M Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| |
Collapse
|
3
|
Tayebi M, Jones DR, Taylor WA, Stileman BF, Chapman C, Zhao D, David M. PrP(Sc)-specific antibodies with the ability to immunodetect prion oligomers. PLoS One 2011; 6:e19998. [PMID: 21625515 PMCID: PMC3098279 DOI: 10.1371/journal.pone.0019998] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 04/22/2011] [Indexed: 12/01/2022] Open
Abstract
The development of antibodies with binding capacity towards soluble oligomeric forms of PrPSc recognised in the aggregation process in early stage of the disease would be of paramount importance in diagnosing prion diseases before extensive neuropathology has ensued. As blood transfusion appears to be efficient in the transmission of the infectious prion agent, there is an urgent need to develop reagents that would specifically recognize oligomeric forms of the abnormally folded prion protein, PrPSc. To that end, we show that anti-PrP monoclonal antibodies (called PRIOC mAbs) derived from mice immunised with native PrP-coated microbeads are able to immunodetect oligomers/multimers of PrPSc. Oligomer-specific immunoreactivity displayed by these PRIOC mAbs was demonstrated as large aggregates of immunoreactive deposits in prion-permissive neuroblastoma cell lines but not in equivalent non-infected or prn-p0/0 cell lines. In contrast, an anti-monomer PrP antibody displayed diffuse immunoreactivity restricted to the cell membrane. Furthermore, our PRIOC mAbs did not display any binding with monomeric recombinant and cellular prion proteins but strongly detected PrPSc oligomers as shown by a newly developed sensitive and specific ELISA. Finally, PrioC antibodies were also able to bind soluble oligomers formed of Aβ and α-synuclein. These findings demonstrate the potential use of anti-prion antibodies that bind PrPSc oligomers, recognised in early stage of the disease, for the diagnosis of prion diseases in blood and other body fluids.
Collapse
Affiliation(s)
- Mourad Tayebi
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
4
|
Edwards JC, Moore SJ, Hawthorn JA, Neale MH, Terry LA. PrPSc is associated with B cells in the blood of scrapie-infected sheep. Virology 2010; 405:110-9. [DOI: 10.1016/j.virol.2010.05.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 05/03/2010] [Accepted: 05/21/2010] [Indexed: 11/25/2022]
|
5
|
Tayebi M, Taylor WA, Jones DR, Bate C, David M. PrP-specific camel antibodies with the ability to immunodetect intracellular prion protein. J Gen Virol 2010; 91:2121-2131. [DOI: 10.1099/vir.0.018754-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although there is currently no effective treatment for prion diseases, significant advances have been made in suppressing its progress, using antibodies that block the conversion of PrPC into PrPSc. In order to be effective in treating individuals that have prion diseases, antibodies must be capable of arresting disease in its late stages. This requires the development of antibodies with higher affinity for PrPSc and systems for effective translocation of antibodies across the blood–brain barrier in order to achieve high concentrations of inhibitor at the site of protein replication. An additional advantage is the ability of these antibodies to access the cytosol of affected cells. To this end, we have generated PrP-specific antibodies (known as PrioV) by immunization of camels with murine scrapie material adsorbed to immunomagnetic beads. The PrioV antibodies display a range of specificities with some recognizing the PrP27–30 proteinase K-resistant fragment, others specific for PrPC and a number with dual binding specificity. Independent of their PrP conformation specificity, one of the PrioV antibodies (PrioV3) was shown to bind PrPC in the cytosol of neuroblastoma cells. In marked contrast, conventional anti-PrP antibodies produced in mouse against similar target antigen were unable to cross the neuronal plasma membrane and instead formed a ring around the cells. The PrioV anti-PrP antibodies could prove to be a valuable tool for the neutralization/clearance of PrPSc in intracellular compartments of affected neurons and could potentially have wider applicability for the treatment of so-called protein-misfolding diseases.
Collapse
Affiliation(s)
- Mourad Tayebi
- Department of Pathology & Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - William Alexander Taylor
- Department of Pathology & Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Daryl Rhys Jones
- Department of Pathology & Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Clive Bate
- Department of Pathology & Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Monique David
- Multiple Sclerosis Research Center of New York, Inc., 521 West 57th Street, 4th Floor, New York, NY 10019, USA
| |
Collapse
|
6
|
A camelid anti-PrP antibody abrogates PrP replication in prion-permissive neuroblastoma cell lines. PLoS One 2010; 5:e9804. [PMID: 20339552 PMCID: PMC2842437 DOI: 10.1371/journal.pone.0009804] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 02/26/2010] [Indexed: 11/19/2022] Open
Abstract
The development of antibodies effective in crossing the blood brain barrier (BBB), capable of accessing the cytosol of affected cells and with higher affinity for PrPSc would be of paramount importance in arresting disease progression in its late stage and treating individuals with prion diseases. Antibody-based therapy appears to be the most promising approach following the exciting report from White and colleagues, establishing the “proof-of-principle” for prion-immunotherapy. After passive transfer, anti-prion antibodies were shown to be very effective in curing peripheral but not central rodent prion disease, due to the fact that these anti-prion antibodies are relatively large molecules and cannot therefore cross the BBB. Here, we show that an anti-prion antibody derived from camel immunised with murine scrapie material adsorbed to immunomagnetic beads is able to prevent infection of susceptible N2a cells and cure chronically scrapie-infected neuroblastoma cultures. This antibody was also shown to transmigrate across the BBB and cross the plasma membrane of neurons to target cytosolic PrPC. In contrast, treatment with a conventional anti-prion antibody derived from mouse immunised with recombinant PrP protein was unable to prevent recurrence of PrPSc replication. Furthermore, our camelid antibody did not display any neurotoxic effects following treatment of susceptible N2a cells as evidenced by TUNEL staining. These findings demonstrate the potential use of anti-prion camelid antibodies for the treatment of prion and other related diseases via non-invasive means.
Collapse
|
7
|
Tayebi M, Collinge J, Hawke S. Unswitched immunoglobulin M response prolongs mouse survival in prion disease. J Gen Virol 2009; 90:777-782. [PMID: 19218226 DOI: 10.1099/vir.0.005041-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Several studies have failed to demonstrate the presence of immune responses to infectious prions during the course of prion disease, reflecting the identical primary structure of normal and disease-associated isoforms and the widespread expression of the normal cellular form of prion protein, PrP(C), leading to B- and/or T-cell tolerance of disease-associated isoforms and also possibly because antigen-presenting cells are unable to process the highly aggregated, detergent-insoluble, protease-resistant form, PrP(Sc). Under certain circumstances, PrP(Sc) can be revealed to the immune system in immunogenic form, and it has been shown previously that anti-PrP antibodies can be induced to prions immunoadsorbed to Dynabeads using specific anti-PrP monoclonal antibodies, even in PrP-sufficient mice. This study demonstrated in a murine scrapie model that PrP-Dynabeads effectively stimulated the immune system to produce anti-PrP IgM antibodies over prolonged periods after repeated immunization. It was also shown that these immune responses prolonged incubation times in murine scrapie.
Collapse
Affiliation(s)
- Mourad Tayebi
- Brain & Mind Research Institute, University of Sydney, 100 Mallett Street, Camperdown, NSW 2050, Australia.,Department of Pathology and Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - John Collinge
- MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Simon Hawke
- Brain & Mind Research Institute, University of Sydney, 100 Mallett Street, Camperdown, NSW 2050, Australia
| |
Collapse
|
8
|
Jones M, Wight D, McLoughlin V, Norrby K, Ironside JW, Connolly JG, Farquhar CF, MacGregor IR, Head MW. An antibody to the aggregated synthetic prion protein peptide (PrP106-126) selectively recognizes disease-associated prion protein (PrP) from human brain specimens. Brain Pathol 2009; 19:293-302. [PMID: 18507665 PMCID: PMC8094797 DOI: 10.1111/j.1750-3639.2008.00181.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/21/2008] [Accepted: 04/22/2008] [Indexed: 11/29/2022] Open
Abstract
Human prion diseases are characterized by the conversion of the normal host cellular prion protein (PrP(C)) into an abnormal misfolded form [disease-associated prion protein (PrP(Sc))]. Antibodies that are capable of distinguishing between PrP(C) and PrP(Sc) may prove to be useful, not only for the diagnosis of these diseases, but also for a better understanding of the molecular mechanisms involved in disease pathogenesis. In an attempt to produce such antibodies, we immunized mice with an aggregated peptide spanning amino acid residues 106 to 126 of human PrP (PrP106-126). We were able to isolate and single cell clone a hybridoma cell line (P1:1) which secreted an IgM isotype antibody [monoclonal antibody (mAb P1:1)] that recognized the aggregated, but not the monomeric form of the immunogen. When used in immunoprecipitation assays, the antibody did not recognize normal PrP(C) from non-prion disease brain specimens, but did selectively immunoprecipitate full-length PrP(Sc) from cases of variant and sporadic Creutzfeldt-Jakob disease and Gerstmann-Straussler-Scheinker disease. These results suggest that P1:1 recognizes an epitope formed during the structural rearrangement or aggregation of the PrP that is common to the major PrP(Sc) types found in the most common forms of human prion disease.
Collapse
Affiliation(s)
- Michael Jones
- National CJD Surveillance Unit, School of Molecular and Clinical Medicine (Pathology), University of Edinburgh, Western General Hospital, Edinburgh, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chang B, Miller MW, Bulgin MS, Sorenson-Melson S, Balachandran A, Chiu A, Rubenstein R. PrP antibody binding-induced epitope modulation evokes immunocooperativity. J Neuroimmunol 2008; 205:94-100. [PMID: 18977037 DOI: 10.1016/j.jneuroim.2008.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 09/17/2008] [Accepted: 09/17/2008] [Indexed: 11/28/2022]
Abstract
We have characterized the antibody-antigen binding events of the prion protein (PrP) utilizing three new PrP-specific monoclonal antibodies (Mabs). The degree of immunoreactivity was dependent on the denaturation treatment with the combination of heat and SDS resulting in the highest levels of epitope accessibility and antibody binding. Interestingly however, this harsh denaturation treatment was not sufficient to completely and irreversibly abolish protein conformation. The Mabs differed in their PrP epitopes with Mab 08-1/11F12 binding in the region of PrP(93-122), Mab 08-1/8E9 reacting to PrP(155-200) and Mab 08-1/5D6 directed to an undefined conformational epitope. Using normal and infected brains from hamsters, sheep and deer, we demonstrate that the binding of PrP to one Mab triggers PrP epitope unmasking, which enhances the binding of a second Mab. This phenomenon, termed positive immunocooperativity, is specific regarding epitope and the sequence of binding events. Positive immunocooperativity will likely increase immunoassay sensitivity since assay conditions for PrP(Sc) detection does not require protease digestion.
Collapse
Affiliation(s)
- Binggong Chang
- Department of Biochemistry, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Tayebi M, Bate C, Hawke S, Williams A. A role for B lymphocytes in anti-infective prion therapies? Expert Rev Anti Infect Ther 2007; 5:631-8. [PMID: 17678426 DOI: 10.1586/14787210.5.4.631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The deposition of proteins in the form of amyloid fibrils and plaques is the characteristic feature of a number of neurodegenerative conditions affecting the nervous system. These disorders include prion and Alzheimer's diseases and are of enormous importance for public health. It has become apparent over the last 20 years that specificity and application in prion diseases' diagnostic and therapeutic situations are the most important considerations in designing strategies for the generation of antiprion antibodies. Specific antiprion therapeutics have been suggested and the establishment of the 'proof-of-principle' that the use of epitope-specific antiprion antibodies leads to indefinite delay of disease onset, has increased momentum for its use, although caution should be exerted prior to the application of new therapeutic strategies in a clinical set up. Furthermore, in vivo stimulation of immune-competent cells to specifically recognize and neutralize the abnormally folded isoform should also be pursued.
Collapse
Affiliation(s)
- Mourad Tayebi
- Department of Pathology and Infectious Diseases, The Royal Veterinary College, North Mymms, Hatfield, Hertfordshire, UK.
| | | | | | | |
Collapse
|
11
|
Spinner DS, Kascsak RB, Lafauci G, Meeker HC, Ye X, Flory MJ, Kim JI, Schuller-Levis GB, Levis WR, Wisniewski T, Carp RI, Kascsak RJ. CpG oligodeoxynucleotide-enhanced humoral immune response and production of antibodies to prion protein PrPSc in mice immunized with 139A scrapie-associated fibrils. J Leukoc Biol 2007; 81:1374-85. [PMID: 17379700 DOI: 10.1189/jlb.1106665] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Prion diseases are characterized by conversion of the cellular prion protein (PrP(C)) to a protease-resistant conformer, the srapie form of PrP (PrP(Sc)). Humoral immune responses to nondenatured forms of PrP(Sc) have never been fully characterized. We investigated whether production of antibodies to PrP(Sc) could occur in PrP null (Prnp(-/-)) mice and further, whether innate immune stimulation with the TLR9 agonist CpG oligodeoxynucleotide (ODN) 1826 could enhance this process. Whether such stimulation could raise anti-PrP(Sc) antibody levels in wild-type (Prnp(+/+)) mice was also investigated. Prnp(-/-) and Prnp(+/+) mice were immunized with nondenatured 139A scrapie-associated fibrils (SAF), with or without ODN 1826, and were tested for titers of PrP-specific antibodies. In Prnp(-/-) mice, inclusion of ODN 1826 in the immunization regime increased anti-PrP titers more than 13-fold after two immunizations and induced, among others, antibodies to an N-terminal epitope, which were only present in the immune repertoire of mice receiving ODN 1826. mAb 6D11, derived from such a mouse, reacts with the N-terminal epitope QWNK in native and denatured forms of PrP(Sc) and recombinant PrP and exhibits a K(d) in the 10(-)(11) M range. In Prnp(+/+) mice, ODN 1826 increased anti-PrP levels as much as 84% after a single immunization. Thus, ODN 1826 potentiates adaptive immune responses to PrP(Sc) in 139A SAF-immunized mice. These results represent the first characterization of humoral immune responses to nondenatured, infectious PrP(Sc) and suggest methods for optimizing the generation of mAbs to PrP(Sc), many of which could be used for diagnosis and treatment of prion diseases.
Collapse
Affiliation(s)
- Daryl S Spinner
- New York State Institute for Basic Research in Development Disabilities, 1050 Forest Hill Rd., Staten Island, NY 10314, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|