1
|
Azzam M, Fahim S, ElMonier A, Maurice N. Functional analysis of a panel of molecular markers for diagnosis of systemic lupus erythematosus in rats. Biosci Rep 2024; 44:BSR20240318. [PMID: 38967046 PMCID: PMC11263041 DOI: 10.1042/bsr20240318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024] Open
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a diverse autoimmune disease that arises from a combination of complex genetic factors and environmental influences. While circRNAs and miRNAs have recently been identified as promising biomarkers for disease diagnosis, their specific expression patterns, and clinical implications in SLE are not yet fully understood. AIM OF THE WORK The aim of the present study was to determine the role of a panel of noncoding-RNAs specifically circRNAs (circ-TubD1, circ-CDC27, and circ-Med14), along with miRNA (rno-miR-146a-5p) and mRNA (TRAF6), as novel minimally invasive diagnostic biomarkers for experimentally induced SLE. Additionally, the study involved an insilico bioinformatics analysis to explore potential pathways involved in the pathogenesis of SLE, aiming to enhance our understanding of the disease, enable early diagnosis, and facilitate improved treatment strategies. MATERIALS AND METHODS SLE was induced in rats using single IP injection of incomplete Freund's adjuvant (IFA). The Induction was confirmed by assessing the ANA and anti-ds DNA levels using ELSA technique. qPCR analysis was conducted to assess the expression of selected RNAs in sera collected from a group of 10 rats with induced SLE and a control group of 10 rats. In addition, bioinformatics and functional analysis were used to construct a circRNA-miRNA-mRNA network and to determine the potential function of these differentially expressed circRNAs. RESULTS SLE rats demonstrated significantly higher expression levels of circ-CDC27, circ-Med14, and rno-miR-146a-5p as well as TRAF6, with lower expression level of circ-TubD1 in sera of SLE rats relative to controls. ROC curve analysis indicated that all the selected non-coding RNAs could serve as potential early diagnostic markers for SLE. In addition, the expression level of circ-TubD1 was negatively correlated with rno-miR-146a-5p, however, rno-miR-146a-5p was positively correlated with TRAF6. Bioinformatic analysis revealed the incorporation of the circRNAs targeted genes in various immune system and neurodegeneration pathways. CONCLUSIONS Therefore, circRNAs; circ-TubD1, circ-CDC27, and circ-Med14, in addition to the miRNA (rno-miR-146a-5p) and mRNA (TRAF6) may be involved in the development of SLE and may have promising roles for future diagnosis and targeted therapy.
Collapse
Affiliation(s)
- May A. Azzam
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Sally A. Fahim
- Department of Biochemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, 12577, Giza, Egypt
| | - Asmaa A. ElMonier
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Nadine W. Maurice
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| |
Collapse
|
2
|
Ebrahimian H, Akhtari M, Akhlaghi M, Farhadi E, Jamshidi A, Alishiri GH, Mahmoudi M, Tavallaie M. Altered expression of apoptosis-related genes in rheumatoid arthritis peripheral blood mononuclear cell and related miRNA regulation. Immun Inflamm Dis 2023; 11:e914. [PMID: 37506143 PMCID: PMC10336681 DOI: 10.1002/iid3.914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/27/2023] [Accepted: 05/29/2023] [Indexed: 07/30/2023] Open
Abstract
AIM Impaired apoptosis and proliferation resulted in autoreactive lymphocyte development and inflammation in Rheumatoid arthritis (RA). TP53, BAX, FOXO1, and RB1 are related genes in cell survival, proliferation, and inflammation which could be important in RA development and disease severity. Here we investigated their expression in peripheral blood mononuclear cells (PBMCs) from RA patients in comparison to healthy controls. METHODS Fifty healthy controls and 50 RA patients were selected. The quantitative real-time polymerase chain reaction was used to assess the gene expression level in PBMCs. RESULTS The mRNA expression of TP53 (FC = 0.65, p = .000), BAX (FC = 0.76, p = .008), FOXO1 (FC = 0.59, p = .000) and RB1 (FC = 0.50, p = .000) were significantly reduced in RA PBMCs. TP53 expression was negatively correlated with miR-16-5p (p = .032) and FOXO1 expression was negatively correlated with miR-335-5p (p = .005) and miR-34a-5p (p = .014). A positive correlation was seen between TP53 expression and its downstream gene, BAX (p = .001). FOXO1 expression was also negatively correlated with disease activity, DAS28 (p = .021). CONCLUSION All selected genes have downregulated expression in RA PBMCs which could be correlated with RA pathogenesis by regulating apoptosis, cell survival, inflammatory mediator production, and proliferation. Due to the correlation of miR-16-5p, miR-34a-5p, and miR-335-5p with TP53 and FOXO1 expression in RA PBMCs, they could be used as future therapeutic targets.
Collapse
Affiliation(s)
- Hamidreza Ebrahimian
- Human Genetic Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Maryam Akhtari
- Tobacco Prevention and Control Research Center (TPCRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD)Shahid Beheshti University of Medical SciencesTehranIran
| | | | - Elham Farhadi
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
- Inflammation Research CenterTehran University of Medical SciencesTehranIran
| | - Ahmadreza Jamshidi
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
| | - Gholam Hossein Alishiri
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
- Department of Rheumatology, Faculty of MedicineBaqiyatallah University of Medical SciencesTehranIran
| | - Mahdi Mahmoudi
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
- Inflammation Research CenterTehran University of Medical SciencesTehranIran
| | - Mahmood Tavallaie
- Human Genetic Research CenterBaqiyatallah University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Khired ZA, Kattan SW, Alzahrani AK, Milebary AJ, Hussein MH, Qusti SY, Alshammari EM, Toraih EA, Fawzy MS. Analysis of MIR27A (rs11671784) Variant Association with Systemic Lupus Erythematous. Life (Basel) 2023; 13:701. [PMID: 36983856 PMCID: PMC10058767 DOI: 10.3390/life13030701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Multiple microRNAs (miRs) are associated with systemic autoimmune disease susceptibility/phenotype, including systemic lupus erythematosus (SLE). With this work, we aimed to unravel the association of the miR-27a gene (MIR27A) rs11671784G/A variant with SLE risk/severity. One-hundred sixty-three adult patients with SLE and matched controls were included. A TaqMan allelic discrimination assay was applied for MIR27A genotyping. Logistic regression models were run to test the association with SLE susceptibility/risk. Genotyping of 326 participants revealed that the heterozygote form was the most common genotype among the study cohort, accounting for 72% of the population (n = 234), while A/A and G/G represented 15% (n = 49) and 13% (n = 43), respectively. Similarly, the most prevalent genotype among cases was the A/G genotype, which was present in approximately 93.3% of cases (n = 152). In contrast, only eight and three patients had A/A and G/G genotypes, respectively. The MIR27A rs11671784 variant conferred protection against the development of SLE in several genetic models, including heterozygous (G/A vs. A/A; OR = 0.10, 95% CI = 0.05-0.23), dominant (G/A + G/G vs. AA; OR = 0.15, 95% CI = 0.07-0.34), and overdominant (G/A vs. A/A + G/G; OR = 0.07, 95% CI = 0.04-0.14) models. However, the G/G genotype was associated with increased SLE risk in the recessive model (G/G vs. A/A+ G/G; OR = 17.34, 95% CI = 5.24-57.38). Furthermore, the variant showed significant associations with musculoskeletal and mucocutaneous manifestations in the patient cohort (p = 0.035 and 0.009, respectively) and platelet and white blood cell counts (p = 0.034 and 0.049, respectively). In conclusion, the MIR27A rs11671784 variant showed a potentially significant association with SLE susceptibility/risk in the studied population. Larger-scale studies on multiethnic populations are recommended to verify the results.
Collapse
Affiliation(s)
- Zenat Ahmed Khired
- Department of Surgery, College of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Shahad W. Kattan
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46423, Saudi Arabia
| | - Ahmad Khuzaim Alzahrani
- Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Ahmad J. Milebary
- Department of Medical Laboratory, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia
| | - Mohammad H. Hussein
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Safaa Y. Qusti
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eida M. Alshammari
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Medical Genetics Unit, Department of Histology and Cell Biology, Suez Canal University, Ismailia 41522, Egypt
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| |
Collapse
|
4
|
Tan L, Shi G, Zhao J, Xia X, Li D, Wang S, Liang J, Hou Y, Dou H. MDSCs participate in the pathogenesis of diffuse pulmonary hemorrhage in murine lupus through mTOR-FoxO1 signaling. Biochem Biophys Rep 2022; 32:101351. [PMID: 36164563 PMCID: PMC9507990 DOI: 10.1016/j.bbrep.2022.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Liping Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Guoping Shi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Junyu Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Xiaoyu Xia
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Dan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Saiwen Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
- Corresponding author. The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
- Corresponding author. The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China.
| |
Collapse
|
5
|
Xu S, Zhang X, Ma Y, Xu S, Pan F. The Expression Level of FOXO3a in Patients With Autoimmune Diseases: A Meta-analysis. J Clin Rheumatol 2022; 28:e228-e233. [PMID: 33938500 DOI: 10.1097/rhu.0000000000001675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
METHODS PubMed, Web of Science, and China National Knowledge Infrastructure were used to retrieve relevant articles. The pooled standard mean difference with 95% confidence interval was calculated. RESULTS Totally, 10 studies from 7 publications were included. The levels of FOXO3a were significantly decreased in patients with autoimmune diseases compared with healthy controls (standard mean difference, -1.045; 95% confidence interval, -1.892 to -0.197). When stratified by disease, FOXO3a levels were significantly decreased in rheumatoid arthritis (RA) and inflammatory bowel disease (IBD), but were significantly increased in systemic lupus erythematosus. FOXO3a levels of specific tissues or cells in patients with autoimmune diseases were significantly decreased, but no significant difference was observed in the subgroup of peripheral blood mononuclear cells. In the subgroup analysis combining disease and sample, significant differences of FOXO3a were observed in non-PMBCs of RA and IBD patients. CONCLUSIONS Our study indicated that FOXO3a were significantly decreased in patients with autoimmune diseases. FOXO3a levels was a potential therapeutic target of autoimmune diseases.
Collapse
Affiliation(s)
| | - Xiaoyi Zhang
- Department of Health Toxicology, School of Public Health, Anhui Medical University
| | | | - Shengqian Xu
- Department of Rheumatism and Immunity, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | | |
Collapse
|
6
|
Xu S, Pan Z, Huang L, Chen Y, Xie H, Wang F, Zhou T, Yu L, Kong J, Xu S, Pan F. Association of FOXO3a gene polymorphisms and ankylosing spondylitis susceptibility in Eastern Chinese Han population. Gene 2021; 800:145832. [PMID: 34274476 DOI: 10.1016/j.gene.2021.145832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/26/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the association of FOXO3a polymorphisms and ankylosing spondylitis (AS) susceptibility in Eastern Chinese Han population. METHODS FOXO3a polymorphisms rs12206094, rs12212067, rs2253310, rs3800232, and rs4946933 were genotyped in 650 AS patients and 646 controls by the improved Multiple Ligase Detection Reaction. RESULTS The distribution of genotype in rs12212067 polymorphism was significantly different between AS patients and controls (P = 0.020), especially in male population (P = 0.009). There was significant difference of the genotype frequency distribution at rs3800232 between patients and controls in male population. The results of binary regression analysis showed that the rs12212067 GG genotype and rs3800232 TT genotype were obviously correlated with elevated AS risk, and the associations were still significant after being adjusted by age and gender (all P < 0.05). Interestingly, rs12212067 and rs3800232 genotypes were associated with disease activity of patients. Additionally, haplotype block rs12212067G- rs3800232T (OR = 1.403, 95%CI = 1.011-1.949) was further shown to confer promoting effect on developing AS. CONCLUSION Among Eastern Chinese Han population, FOXO3a polymorphism rs12212067 and rs3800232 may contribute to increased risk of developing AS, but well-designed multicenter studies are needed to further confirm these preliminary findings in the future.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Zhipeng Pan
- Department of Medical Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Li Huang
- Anhui Medical College, 387 Wuhu Road, Hefei, Anhui 230032, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Huimin Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Feier Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Tingting Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Lingxiang Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jiangpiang Kong
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Shengqian Xu
- Department of Rheumatism and Immunity, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
7
|
Lee SM, Lee SW, Kang M, Choi JK, Park K, Byun JS, Kim DY. FoxO1 as a Regulator of Aquaporin 5 Expression in the Salivary Gland. J Dent Res 2021; 100:1281-1288. [PMID: 33840298 DOI: 10.1177/00220345211003490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Forkhead box O1 (FoxO1) is a multifunctional initiator, mediator, and repressor of autoimmune diseases in an organ- or disease-specific manner. However, the role of FoxO1 in the salivary gland has not yet been elucidated. In this study, we discovered that FoxO1 and aquaporin 5 (AQP5) are both significantly downregulated in the patients with primary Sjögren syndrome, an autoimmune disease accompanying salivary gland dysfunction. Pharmacologic or genetic perturbation of FoxO1 in the rat salivary gland acinar cell line, SMG-C6, induced a significant downregulation of AQP5 expression, as observed in clinical specimens. There was a strong correlation between FoxO1 and AQP5 expression because FoxO1 is a direct regulator of AQP5 expression in salivary gland acinar cells through its interaction with the promoter region of AQP5. Serial injection of a FoxO1 inhibitor into mice induced a reduction of AQP5 expression in submandibular glands and, consequently, hyposalivation, which is one of the major clinical symptoms of primary Sjögren syndrome. However, there was no sign of inflammation or cell damage in the submandibular glands harvested from mice treated with the FoxO1 inhibitor. In conclusion, our findings indicate that FoxO1 in salivary gland tissue acts as a direct regulator of AQP5 expression. Thus, downregulation of FoxO1 observed in primary Sjögren syndrome is a putative mechanism for hyposalivation without the involvement of previously reported soluble factors in primary Sjögren syndrome patient sera.
Collapse
Affiliation(s)
- S M Lee
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - S W Lee
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - M Kang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - J K Choi
- Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - K Park
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - J S Byun
- Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - D Y Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
8
|
Xu S, Ma Y, Chen Y, Pan F. Role of Forkhead box O3a transcription factor in autoimmune diseases. Int Immunopharmacol 2021; 92:107338. [PMID: 33412391 DOI: 10.1016/j.intimp.2020.107338] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/05/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Forkhead box O3a (FOXO3a) transcription factor, the most important member of Forkhead box O family, is closely related to cell proliferation, apoptosis, autophagy, oxidative stress and aging. The downregulation of FOXO3a has been verified to be associated with the poor prognosis, severer malignancy and chemoresistance in several human cancers. The activity of FOXO3a mainly regulated by phosphorylation of protein kinase B. FOXO3a plays a vital role in promoting the apoptosis of immune cells. FOXO3a could also modulate the activation, differentiation and function of T cells, regulate the proliferation and function of B cells, and mediate dendritic cells tolerance and immunity. FOXO3a accommodates the immune response through targeting nuclear factor kappa-B and FOXP3, as well as regulating the expression of cytokines. Besides, FOXO3a participates in intercellular interactions. FOXO3a inhibits dendritic cells from producing interleukin-6, which inhibits B-cell lymphoma-2 (BCL-2) and BCL-XL expression, thereby sparing resting T cells from apoptosis and increasing the survival of antigen-stimulated T cells. Recently, plentiful evidences further illustrated the significance of FOXO3a in the pathogenesis of autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, ankylosing spondylitis, myositis, multiple sclerosis, and systemic sclerosis. In this review, we focused on the biological function of FOXO3a and related signaling pathways regarding immune system, and summarized the potential role of FOXO3a in the pathogenesis, progress and therapeutic potential of autoimmune diseases.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
9
|
Yang J, McGovern A, Martin P, Duffus K, Ge X, Zarrineh P, Morris AP, Adamson A, Fraser P, Rattray M, Eyre S. Analysis of chromatin organization and gene expression in T cells identifies functional genes for rheumatoid arthritis. Nat Commun 2020; 11:4402. [PMID: 32879318 PMCID: PMC7468106 DOI: 10.1038/s41467-020-18180-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Genome-wide association studies have identified genetic variation contributing to complex disease risk. However, assigning causal genes and mechanisms has been more challenging because disease-associated variants are often found in distal regulatory regions with cell-type specific behaviours. Here, we collect ATAC-seq, Hi-C, Capture Hi-C and nuclear RNA-seq data in stimulated CD4+ T cells over 24 h, to identify functional enhancers regulating gene expression. We characterise changes in DNA interaction and activity dynamics that correlate with changes in gene expression, and find that the strongest correlations are observed within 200 kb of promoters. Using rheumatoid arthritis as an example of T cell mediated disease, we demonstrate interactions of expression quantitative trait loci with target genes, and confirm assigned genes or show complex interactions for 20% of disease associated loci, including FOXO1, which we confirm using CRISPR/Cas9.
Collapse
Affiliation(s)
- Jing Yang
- Division of Informatics, Imaging & Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Amanda McGovern
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Paul Martin
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Kate Duffus
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Xiangyu Ge
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Peyman Zarrineh
- Division of Informatics, Imaging & Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Antony Adamson
- The Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Peter Fraser
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Magnus Rattray
- Division of Informatics, Imaging & Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| | - Stephen Eyre
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK.
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
10
|
Wasén C, Ospelt C, Camponeschi A, Erlandsson MC, Andersson KME, Silfverswärd ST, Gay S, Bokarewa MI. Nicotine Changes the microRNA Profile to Regulate the FOXO Memory Program of CD8 + T Cells in Rheumatoid Arthritis. Front Immunol 2020; 11:1474. [PMID: 32765511 PMCID: PMC7381249 DOI: 10.3389/fimmu.2020.01474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Objective: Smoking suppresses PD-1 expression in patients with rheumatoid arthritis (RA). In this study, we assess if smoking changed the epigenetic control over CD8+ T cell memory formation through a microRNA (miR) dependent mechanism. Methods: Phenotypes of CD8+ T cells from smokers and non-smokers, RA and healthy, were analyzed by flow cytometry. A microarray analysis was used to screen for differences in miR expression. Sorted CD8+ cells were in vitro stimulated with nicotine and analyzed for transcription of miRs and genes related to memory programming by qPCR. Results: CD27+CD107a−CD8+ T cells, defining a naïve-memory population, had low expression of PD-1. Additionally, the CD27+ population was more frequent in smokers (p = 0.0089). Smokers were recognized by differential expression of eight miRs. Let-7c-5p, let-7d-5p and let-7e-5p, miR-92a-3p, miR-150-5p, and miR-181-5p were up regulated, while miR-3196 and miR-4723-5p were down regulated. These miRs were predicted to target proteins within the FOXO-signaling pathway involved in CD8+ memory programming. Furthermore, miR-92a-3p was differentially expressed in CD8+ cells with naïve-memory predominance. Nicotine exposure of CD8+ cells induced the expression of miR-150-5p and miR-181a-5p in the naïve-memory cells in vitro. Additionally, nicotine exposure inverted the ratio between mRNAs of proteins in the FOXO pathway and their targeting miRs. Conclusions: Smokers have a high prevalence of CD8+ T cells with a naïve-memory phenotype. These cells express a miR profile that interacts with the memory programming conducted through the FOXO pathway.
Collapse
Affiliation(s)
- Caroline Wasén
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Caroline Ospelt
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malin C Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karin M E Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Töyrä Silfverswärd
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Steffen Gay
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Maria I Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
11
|
Yang F, Zhai Z, Luo X, Luo G, Zhuang L, Zhang Y, Li Y, Sun E, He Y. Bioinformatics identification of key candidate genes and pathways associated with systemic lupus erythematosus. Clin Rheumatol 2019; 39:425-434. [PMID: 31673979 DOI: 10.1007/s10067-019-04751-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/13/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by autoantibody production and multi-system involvement, but the etiology is largely unclear. This study aimed to elucidate candidate genes and pathways involved in SLE. METHODS Three original datasets GSE72509, GSE20864, and GSE39088 were downloaded from Gene Expression Omnibus (GEO) and the data were further integrated and analyzed. Subsequently, differentially expressed genes (DEGs) between SLE patients and healthy people were identified. And then we performed gene ontology (GO) function and pathway enrichment analyses of common DEGs, and constructed a protein-protein interaction (PPI) network with STRING database. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was carried out to validate the expression levels of candidate genes in blood samples from SLE patients and healthy controls. RESULTS In total, 321 common DEGs were identified in SLE patients compared with healthy controls, including 231 upregulated and 90 downregulated genes. GO function analysis revealed that 321 common DEGs were mainly enriched in innate immune response, defense response, cytokine-mediated signaling pathway, response to interferon-alpha, and I-kappaB kinase/NF-kappaB signaling. Additionally, pathway enrichment analysis indicated that DEGs were mainly enriched in several signaling pathways associated with immune system and apoptosis, including RIG-I-like receptor signaling pathway, antigen processing and presentation, and p53 signaling pathway. The expression levels of candidate genes RPL26L1, FBXW11, FOXO1, and SMAD7 were validated by RT-qPCR analysis. CONCLUSIONS The four hub genes including RPL26L1, FBXW11, FOXO1, and SMAD7 may play key roles in the pathogenesis and development of SLE. RIG-I-like receptor signaling pathway, antigen processing and presentation pathway, and p53 signaling pathway may be closely implicated in SLE pathogenesis. Collectively, these results may provide valuable novel markers or targets for the diagnosis and treatment of SLE.Key Points• Integrated bioinformatics analysis of three profile datasets based on SLE patients and healthy controls was performed and 321 common DEGs were identified.• The 321 common DEGs were mainly enriched in biological processes related to immune responses and inflammatory responses, including innate immune response, defense response, cytokine-mediated signaling pathway, response to interferon-alpha, I-kappaB kinase/NF-kappaB signaling, whereas the three most significant cellular components were oxidoreductase complex, AIM2 inflammasome complex, and ubiquitin ligase complex.• KEGG pathway enrichment analysis indicated that common DEGs were mainly enriched in several signaling pathways associated with immune system and apoptosis, including RIG-I-like receptor signaling pathway, antigen processing and presentation, and p53 signaling pathway.• Candidate genes RPL26L1, FBXW11, FOXO1, and SMAD7 may be closely involved in the pathogenesis and development of SLE and may provide valuable novel markers or targets for the diagnosis and treatment of SLE.
Collapse
Affiliation(s)
- Fangyuan Yang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Zeqing Zhai
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Xiaoqing Luo
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Guihu Luo
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Lili Zhuang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Yanan Zhang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Yehao Li
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China. .,Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China.
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China. .,Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China.
| |
Collapse
|
12
|
Huang J, Shen G, Ren H, Zhang Z, Yu X, Zhao W, Shang Q, Cui J, Yu P, Peng J, Liang D, Yang Z, Jiang X. Role of forkhead box gene family in bone metabolism. J Cell Physiol 2019; 235:1986-1994. [DOI: 10.1002/jcp.29178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jinjing Huang
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Gengyang Shen
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Hui Ren
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
- Department of Spinal Surgery The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
| | - Zhida Zhang
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Xiang Yu
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Wenhua Zhao
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Qi Shang
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Jianchao Cui
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Peiyuan Yu
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Jiancheng Peng
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - De Liang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
- Department of Spinal Surgery The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
| | - Zhidong Yang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
- Department of Spinal Surgery The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
| | - Xiaobing Jiang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
- Department of Spinal Surgery The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
| |
Collapse
|
13
|
Liu Y, Yan X. Eriodictyol inhibits survival and inflammatory responses and promotes apoptosis in rheumatoid arthritis fibroblast‐like synoviocytes through AKT/FOXO1 signaling. J Cell Biochem 2019; 120:14628-14635. [PMID: 31009103 DOI: 10.1002/jcb.28724] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Affiliation(s)
- YingChun Liu
- Rheumatological ward, ward 2 Xi'an No.5 Hospital Xi'an China
| | - XiaoNing Yan
- Dermatology department Shaanxi hospital of traditional Chinese medicine Xi'an China
| |
Collapse
|
14
|
Wang M, Wu J, Zhou E, Chang X, Gan J, Cheng T. Forkhead box o3a suppresses lipopolysaccharide-stimulated proliferation and inflammation in fibroblast-like synoviocytes through regulating tripartite motif-containing protein 3. J Cell Physiol 2019; 234:20139-20148. [PMID: 30980385 DOI: 10.1002/jcp.28615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
Abstract
Fibroblast-like synoviocytes (FLS), synovial tissue-specific cells, are key effector cells during the pathogenesis of rheumatoid arthritis (RA). Our previous study has shown that tripartite motif-containing protein 3 (TRIM3) overexpression inhibits the proliferation and cytokine secretion of RA FLS. Experiments with gene knockout mice have suggested the important roles of forkhead box o3a (Foxo3a) in RA pathogenesis. The present study aimed to investigate the correlation between Foxo3a and TRIM3 during RA pathogenesis. The expression of Foxo3a and TRIM3 was reduced in RA synovial tissues in comparison to healthy controls, and Foxo3a messenger RNA (mRNA) expression in RA synovial tissues correlated positively with TRIM3 mRNA expression. We found that stimulation with lipopolysaccharide (LPS) caused the downregulation of Foxo3a and TRIM3 in FLS. Foxo3a or TRIM3 overexpression significantly attenuated the promoting effects of LPS on cell proliferation and the release of tumor necrosis factor-α, interleukin-6 (IL-6), and IL-1β. In addition, Foxo3a suppressed the inhibitory effects of LPS on the mRNA and protein levels of TRIM3, as well as the activity of TRIM3 promoter. Foxo3a or TRIM3 overexpression attenuated collagen-induced arthritis in rats. Furthermore, knockdown of TRIM3 significantly suppressed the effects of Foxo3a overexpression on LPS-activated FLS. In summary, our findings suggested that Foxo3a exerted inhibitory effects on LPS-induced proliferation and inflammation through increasing TRIM3 transcription. The decreased expression of Foxo3a may contribute to the RA pathogenesis.
Collapse
Affiliation(s)
- Mingjun Wang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Jian Wu
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Erye Zhou
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Xin Chang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Jianhe Gan
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Tao Cheng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| |
Collapse
|
15
|
Ye H, Wang X, Wang L, Chu X, Hu X, Sun L, Jiang M, Wang H, Wang Z, Zhao H, Yang X, Wang J. Full high-throughput sequencing analysis of differences in expression profiles of long noncoding RNAs and their mechanisms of action in systemic lupus erythematosus. Arthritis Res Ther 2019; 21:70. [PMID: 30836987 PMCID: PMC6402184 DOI: 10.1186/s13075-019-1853-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/24/2019] [Indexed: 11/17/2022] Open
Abstract
Background The specific function of long noncoding RNAs (lncRNAs) in systemic lupus erythematosus (SLE) and the mechanism of their involvement in related pathological changes remain to be elucidated, so, in this study, we analyzed the differences in the expression profiles of lncRNAs and their mechanisms of action in SLE using full high-throughput sequencing, bioinformatics, etc. methods. Methods We used high-throughput sequencing to detect differences in the expression profiles of lncRNAs, miRNAs, and mRNAs in PBMCs from patients with SLE at the genome-wide level. Next, we predicted target genes of 30 lincRNAs (long intergenic noncoding RNAs) by constructing a coexpression network of differential lincRNAs and mRNAs and identified the role of lincRNAs. Then, we analyzed the coexpression network of 23 optimized lincRNAs and their corresponding 353 miRNAs, evaluated the cis- and trans-effects of these lincRNAs, and performed GO and KEGG analyses of target genes. We also selected 8 lincRNAs and 2 newly discovered lncRNAs for q-PCR validation and lncRNA–miRNA–mRNA analysis. Finally, we also analyzed respectively the relation between lncRNAs and gender bias in SLE patients using RT-qPCR, the relation between Systemic Lupus Erythematosus Disease Activity Index score and the “IFN signature” using ELISA, and the relation between the differential expression of lncRNAs and a change in the number of a cell type of PBMCs in SLE patients using RT-qPCR. Results The profiles of 1087 lncRNAs, 102 miRNAs, and 4101 mRNAs in PBMCs significantly differed between patients with SLE and healthy controls. The coexpression network analysis showed that the network contained 23 lincRNAs and 353 mRNAs. The evaluation of the cis- and trans-effects showed that the 23 lincRNAs acted on 704 target genes. GO and KEGG analyses of the target genes predicted the biological functions of the 23 lincRNAs. q-PCR validation showed 7 lincRNAs and 2 novel lncRNAs were identical to the sequencing results. The ceRNA network contained 7 validated lincRNAs, 15 miRNAs, and 155 mRNAs. In addition, the differential expression of lncRNAs may be gender dependent in SLE patients, SLE patients also exhibit a robust “IFN signature,” and PBMCs exhibiting differential expression of lncRNAs may be due to a change in the number of a cell type. Conclusion This work determined specific lncRNAs that play important biological functions in the pathogenesis of lupus and provided a new direction for diagnosis and treatment of disease. Electronic supplementary material The online version of this article (10.1186/s13075-019-1853-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Ye
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Xue Wang
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lei Wang
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaoying Chu
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xuanxuan Hu
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Li Sun
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Minghua Jiang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hong Wang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zihan Wang
- School of Stomatology, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Han Zhao
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xinyu Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Jianguang Wang
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
16
|
Said H, Louka ML, Sameh M, Sabry IM. Evaluation of nephroblastoma overexpressed gene, a transcriptional target of forkhead box protein O1 in type 2 diabetes mellitus. Meta Gene 2017. [DOI: 10.1016/j.mgene.2017.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
17
|
Choi EW, Lee M, Song JW, Shin IS, Kim SJ. Mesenchymal stem cell transplantation can restore lupus disease-associated miRNA expression and Th1/Th2 ratios in a murine model of SLE. Sci Rep 2016; 6:38237. [PMID: 27924862 PMCID: PMC5141468 DOI: 10.1038/srep38237] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022] Open
Abstract
C3.MRL-Faslpr/J mice spontaneously develop high titers of anti-dsDNA, mild glomerular nephritis, and severe lymphoproliferation symptoms. This study aimed to compare the effects of long-term serial administration of human adipose tissue-derived mesenchymal stem cells (ASCs), and cyclophosphamide treatment in C3.MRL-Faslpr/J mice using a murine SLE model. C3.MRL-Faslpr/J mice were divided into saline (C), cyclophosphamide (Y), and ASC (H) treatment groups. Background-matched control C3H mice treated with saline (N) were also compared. The Y group showed the greatest improvement in disease parameters, but with damaged trabecular integrity. ASC transplantation reduced anti-dsDNA levels, glomerular C3 deposition and CD138 proportion significantly, without trabecular damage. Furthermore, both cyclophosphamide and ASC treatment significantly decreased the ratio of Th1/Th2 compared with the saline-treatment. The expression levels of miR-31-5p, miR-96-5p, miR-182-5p, miR-183-5p, and miR-379-5p were significantly higher, while those of miR150-5p were significantly lower in the C group than in the N group. The expression levels of miR-96-5p, miR-182-5p in the Y and H groups were significantly lower than in the C group. Thus, treatment with cyclophosphamide or ASC can change miRNAs and decrease miR-96-5p and miR-182-5p expression, as well as decreasing the CD138 proportion and the Th1/Th2 ratio, which might be involved in the therapeutic mechanism.
Collapse
Affiliation(s)
- Eun Wha Choi
- Laboratory Animal Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul 135-710, Republic of Korea.,School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - MinJae Lee
- Laboratory Animal Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Ji Woo Song
- Laboratory Animal Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Il Seob Shin
- Biostar Stem Cell Research Center, K-STEMCELL, #2-305 IT Castle, 98 GasanDigital2-ro, Geumcheon-gu, Seoul 153-768, Republic of Korea
| | - Sung Joo Kim
- Laboratory Animal Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul 135-710, Republic of Korea.,Department of Surgery, Division of Transplantation, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 135-710, Republic of Korea
| |
Collapse
|
18
|
A RXR ligand 6-OH-11-O-hydroxyphenanthrene with antitumour properties enhances (-)-epigallocatechin-3-gallate activity in three human breast carcinoma cell lines. BIOMED RESEARCH INTERNATIONAL 2014; 2014:853086. [PMID: 25013807 PMCID: PMC4072039 DOI: 10.1155/2014/853086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/05/2014] [Indexed: 12/18/2022]
Abstract
(−)-Epigallocatechin-3-gallate (EGCG) and chemotherapeutic agents cotreatment can improve cytotoxicity against cancer cells. We showed that EGCG and the rexinoid 6-OH-11-O-hydroxyphenanthrene (IIF), given together, were cytotoxic toward MCF-7, MCF-7TAM, and MDA-MB-231, three breast carcinoma cell lines showing different molecular characteristics. Cell growth arrest and apoptosis were greater after EGCG and IIF cotreatment than after individual administration. Cytotoxicity was related to upregulation of 67-kDa laminin receptor (LR67), one of the principal molecular targets of EGCG, and activation of the nuclear retinoic X receptors (RXRs) pathway. Furthermore, the transcription factor Forkhead box O3 (Foxo3a), a protein able to trigger apoptosis through upregulation of genes necessary for cell death, was activated. EGCG and IIF cotreatment produced a significant nuclear import of Foxo3a from the cytoplasm in MCF-7, MCF-7TAM, and MDA-MB-231 cells. In MCF-7TAM cells only, Foxo3a nuclear localization was associated with p473AKT downregulation. For the first time we showed that when EGCG and IIF, two harmless molecules, were given together, they might increase cytotoxicity in three breast carcinoma cell lines, two of them being representative of poorly responsive breast carcinoma types.
Collapse
|
19
|
Grabiec AM, Angiolilli C, Hartkamp LM, van Baarsen LGM, Tak PP, Reedquist KA. JNK-dependent downregulation of FoxO1 is required to promote the survival of fibroblast-like synoviocytes in rheumatoid arthritis. Ann Rheum Dis 2014; 74:1763-71. [DOI: 10.1136/annrheumdis-2013-203610] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/13/2014] [Indexed: 01/11/2023]
|
20
|
Zhao Y, Yu Y, Tian X, Yang X, Li X, Jiang F, Chen Y, Shi M. Association study to evaluate FoxO1 and FoxO3 gene in CHD in Han Chinese. PLoS One 2014; 9:e86252. [PMID: 24489705 PMCID: PMC3904908 DOI: 10.1371/journal.pone.0086252] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/10/2013] [Indexed: 12/22/2022] Open
Abstract
Background Coronary heart disease (CHD) is one of the leading causes of mortality and morbidity in China. Genetic factors that predispose individuals to CHD are unclear. In the present study, we aimed to determine whether the variation of FoxOs, a novel genetic factor associated with longevity, was associated with CHD in Han Chinese populations. Methods 1271 CHD patients and 1287 age-and sex-matched controls from Beijing and Harbin were included. We selected four tagging single nucleotide polymorphisms (SNPs) of FoxO1 (rs2755209, rs2721072, rs4325427 and rs17592371) and two tagging SNPs of FoxO3 (rs768023 and rs1268165). And the genotypes of these SNPs were determined in both CHD patients and non-CHD controls. Results For population from Beijing, four SNPs of FoxO1 and two SNPs of FoxO3 were found not to be associated with CHD (p>0.05). And this was validated in the other population from Harbin (p>0.05). After combining the two geographically isolated case-control populations, the results showed that the six SNPs did not necessarily predispose to CHD in Han Chinese(p>0.05). In stratified analysis according to gender, the history of smoking, hypertension, diabetes mellitus, hyperlipidemia and the metabolic syndrome, we further explored that neither the variants of FoxO1 nor the variants of FoxO3 might be associated with CHD (p>0.05). Conclusion The variants of FoxO1 and FoxO3 may not increase the prevalence of CHD in Han Chinese population.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Geriatrics, Jinan Military General Hospital, Jinan, China
| | - Yanbo Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoli Tian
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xi Yang
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xueqi Li
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feng Jiang
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
- * E-mail: (YC); (MS)
| | - Maowei Shi
- Department of Geriatrics, Jinan Military General Hospital, Jinan, China
- * E-mail: (YC); (MS)
| |
Collapse
|
21
|
The epigenetic landscape of B lymphocyte tolerance to self. FEBS Lett 2013; 587:2067-73. [PMID: 23684644 DOI: 10.1016/j.febslet.2013.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 02/06/2023]
Abstract
Despite frequent exposures to a variety of potential triggers, including antigens produced by pathogens or commensal microbiota, B-lymphocytes are able to mount highly protective responses to a variety of threats, while remaining tolerant to self-components. A number of cytokines, signaling pathways and transcription factors have been characterized to elucidate the mechanisms underlying B cell tolerance to self. It is, however, unclear how the signals received by B-lymphocytes are converted into complex and sustained patterns of gene expression that can allow production of protective antibodies and maintain immune tolerance to self-components. Mounting evidence now suggests an important role for epigenetic mechanisms in modulating and transmitting signals for B lymphocyte tolerization to self-antigens. It is likely that a better insight into epigenetic regulation of B cell tolerance will lead to development of gene-specific therapeutic approaches that optimize host defense mechanisms to exogenous threats, while preventing development and/or progression of autoimmune inflammatory diseases.
Collapse
|
22
|
Kok SH, Lin LD, Hou KL, Hong CY, Chang CC, Hsiao M, Wang JH, Lai EHH, Lin SK. Simvastatin inhibits cysteine-rich protein 61 expression in rheumatoid arthritis synovial fibroblasts through the regulation of sirtuin-1/FoxO3a signaling. ACTA ACUST UNITED AC 2013; 65:639-49. [PMID: 23239110 DOI: 10.1002/art.37807] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 11/20/2012] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To examine the role of sirtuin-1 (SIRT-1)/FoxO3a in the expression of cysteine-rich protein 61 (CYR-61) in rheumatoid arthritis synovial fibroblasts (RASFs) and the influence of simvastatin on this pathway, and to determine the relationship between disease progression and FoxO3a/CYR-61 signaling in synovial fibroblasts in vivo using a rat model of collagen-induced arthritis (CIA). METHODS In RASFs, the expression of CYR-61 and SIRT-1, the localization of FoxO3a in the nucleus/cytoplasm, and the phosphorylation/acetylation of FoxO3a were examined by Western blotting. Secretion of CCL20 was assessed by enzyme-linked immunosorbent assay. Promoter activity of the Cyr61 gene was evaluated by luciferase assay, with or without forced expression of FoxO3a and SIRT-1 by lentiviral transduction. FoxO3a-Cyr61 promoter interaction was examined by chromatin immunoprecipitation. In rats with CIA, the expression of CYR-61 and phosphorylated FoxO3a in synovial fibroblasts was examined by immunohistochemistry. RESULTS In RASFs, simvastatin suppressed the tumor necrosis factor α (TNFα)-induced production of CYR-61 and CCL20. Nuclear levels of FoxO3a were decreased after TNFα stimulation of RASFs, and forced expression of FoxO3a reversed the inductive effects of TNFα on CYR-61. Simvastatin inhibited the nuclear export, phosphorylation, and acetylation of FoxO3a and maintained its binding to the Cyr61 promoter. Forced expression of SIRT-1 in RASFs led to decreased levels of CYR-61 and deacetylation of FoxO3a. Following treatment with simvastatin, the expression of SIRT-1 was up-regulated and SIRT-1/FoxO3a binding was enhanced in RASFs. In rats with CIA, intraarticular injection of simvastatin alleviated arthritis and suppressed CYR-61 expression and FoxO3a phosphorylation in synovial fibroblasts. CONCLUSION CYR-61 is important in the pathogenesis of RA, and SIRT-1/FoxO3a signaling is crucial to induction of CYR-61 in RASFs. Simvastatin plays a beneficial role in inflammatory arthritis through its up-regulation of SIRT-1/FoxO3a signaling in synovial fibroblasts. Continued study of the pathways linking sirtuins, FoxO proteins, and the inflammatory responses of RASFs may provide new insights into the pathophysiology of RA.
Collapse
Affiliation(s)
- Sang-Heng Kok
- National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
The applied basic research of systemic lupus erythematosus based on the biological omics. Genes Immun 2013; 14:133-46. [PMID: 23446742 DOI: 10.1038/gene.2013.3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by the production of autoantibodies directed against nuclear self-antigens and circulating immune complexes. This results in damages to various organs or systems, including skin, joints, kidneys and the central nervous system. Clinical manifestations of SLE could be diverse, including glomerulonephritis, dermatitis, thrombosis, vasculitis, seizures and arthritis. The complicated pathogenesis and varied clinical symptoms of SLE pose great challenges in the diagnosis and monitoring of this disease. Unfortunately, the etiological factors and pathogenesis of SLE are still not completely understood. It is noteworthy that recent advances in our understanding of the biological omics and emerging technologies have been providing new tools in the analyses of SLE, such as genomics, epigenomics, transcriptomics, proteomics, metabolomics and so on. In this article, we summarize our current knowledge in this field for a better understanding of the pathogenesis, diagnosis and treatment for SLE.
Collapse
|
24
|
Luron L, Saliba D, Blazek K, Lanfrancotti A, Udalova IA. FOXO3 as a new IKK-ε-controlled check-point of regulation of IFN-β expression. Eur J Immunol 2012; 42:1030-7. [PMID: 22531926 DOI: 10.1002/eji.201141969] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell survival transcription factor FOXO3 has been recently implicated in moderating pro-inflammatory cytokine production by dendritic cells (DCs), but the molecular mechanisms are unclear. It was suggested that FOXO3 could antagonize NF-κB activity, while IKK-β was demonstrated to inactivate FOXO3, suggesting a cross-talk between the two pathways. Therefore, FOXO3 activity must be tightly regulated to allow for an appropriate inflammatory response. Here, we show that in human monocyte-derived DCs (MDDCs), FOXO3 is able to antagonize signaling intermediates downstream of the Toll-like receptor (TLR) 4, such as NF-κB and interferon regulatory factors (IRFs), resulting in inhibition of interferon (IFN)-β expression. We also demonstrate that the activity of FOXO3 itself is regulated by IKK-ε, a kinase involved in IFN-β production, which phosphorylates and inactivates FOXO3 in response to TLR4 agonists. Thus, we identify FOXO3 as a new IKK-ε-controlled check-point of IRF activation and regulation of IFN-β expression, providing new insight into the role of FOXO3 in immune response control.
Collapse
Affiliation(s)
- Lionel Luron
- Kennedy Institute of Rheumatology, Imperial College of Science, Technology and Medicine, London, United Kingdom.
| | | | | | | | | |
Collapse
|
25
|
Haftmann C, Stittrich AB, Sgouroudis E, Matz M, Chang HD, Radbruch A, Mashreghi MF. Lymphocyte signaling: regulation of FoxO transcription factors by microRNAs. Ann N Y Acad Sci 2012; 1247:46-55. [DOI: 10.1111/j.1749-6632.2011.06264.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
26
|
MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res 2011; 157:163-79. [PMID: 21420027 PMCID: PMC3072681 DOI: 10.1016/j.trsl.2011.01.007] [Citation(s) in RCA: 318] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are newly discovered, small, noncoding ribonucleic acids (RNAs) that play critical roles in the regulation of host genome expression at the posttranscriptional level. During last 20 years, miRNAs have emerged as key regulators of various biological processes including immune cell lineage commitment, differentiation, maturation, and maintenance of immune homeostasis and normal function. Thus, it is not surprising that dysregulated miRNA expression patterns now have been documented in a broad range of diseases including cancer as well as inflammatory and autoimmune diseases. This rapidly emerging field has revolutionized our understanding of normal immunoregulation and breakdown of self-tolerance. This review focuses on the current understanding of miRNA biogenesis, the role of miRNAs in the regulation of innate and adaptive immunity, and the association of miRNAs with autoimmune diseases. We have discussed miRNA dysregulation and the potential role of miRNAs in systemic lupus erythematosus (SLE), rheumatoid arthritis, and multiple sclerosis. Given that most autoimmune diseases are female-predominant, we also have discussed sex hormone regulation of miRNAs in inflammatory responses, with an emphasis on estrogen, which now has been shown to regulate miRNAs in the immune system. The field of miRNA regulation of mammalian genes has tremendous potential. The identification of specific miRNA expression patterns in autoimmune diseases as well as a comprehensive understanding of the role of miRNA in disease pathogenesis offers promise of not only novel molecular diagnostic markers but also new gene therapy strategies for treating SLE and other inflammatory autoimmune diseases.
Collapse
|
27
|
Maiese K, Hou J, Chong ZZ, Shang YC. A fork in the path: Developing therapeutic inroads with FoxO proteins. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:119-29. [PMID: 20592766 PMCID: PMC2763237 DOI: 10.4161/oxim.2.3.8916] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 04/23/2009] [Accepted: 04/27/2009] [Indexed: 12/13/2022]
Abstract
Advances in clinical care for disorders involving any system of the body necessitates novel therapeutic strategies that can focus upon the modulation of cellular proliferation, metabolism, inflammation and longevity. In this respect, members of the mammalian forkhead transcription factors of the O class (FoxOs) that include FoxO1, FoxO3, FoxO4 and FoxO6 are increasingly being recognized as exciting prospects for multiple disorders. These transcription factors govern development, proliferation, survival and longevity during multiple cellular environments that can involve oxidative stress. Furthermore, these transcription factors are closely integrated with several novel signal transduction pathways, such as erythropoietin and Wnt proteins, that may influence the ability of FoxOs to act as a “double-edge sword” to sometimes promote cell survival, but at other times lead to cell injury. Here we discuss the fascinating but complex role of FoxOs during cellular injury and oxidative stress, progenitor cell development, fertility, angiogenesis, cardiovascular function, cellular metabolism and diabetes, cell longevity, immune surveillance and cancer.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
28
|
Abstract
Accumulating epidemiological, clinical, and experimental evidence supports the conclusion of a critical role of epigenetic factors in immune programming. This understanding provides the basis for elucidating how the intricate interactions of the genome, epigenome, and transcriptome shape immune responses and maintain immune tolerance to self-antigens. Deciphering the precise contribution of epigenetic factors to autoimmunity, and in particular to lupus, has become an active research area. On one hand, it is well established that environmental factors have an impact on the epigenome and, therefore, on the transcriptional and translational machinery of specific cell types; on the other, the environment also plays an important role in the severity of lupus and other autoimmunity diseases. Determining how epigenetics "connects" the environment to cell biology and to autoreactivity will be key for advancing our understanding in this field and, possibly, for developing novel preventive strategies.
Collapse
Affiliation(s)
- Moncef Zouali
- Inserm UMR-S 606, University Diderot-Paris 7, Paris, France.
| |
Collapse
|
29
|
Dai R, Zhang Y, Khan D, Heid B, Caudell D, Crasta O, Ahmed SA. Identification of a common lupus disease-associated microRNA expression pattern in three different murine models of lupus. PLoS One 2010; 5:e14302. [PMID: 21170274 PMCID: PMC3000827 DOI: 10.1371/journal.pone.0014302] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 11/13/2010] [Indexed: 11/18/2022] Open
Abstract
Background Recent reports have shown that microRNAs (miRNAs) regulate vital immunological processes and have emerged as key regulators of immune system development and function. Therefore, it is important to determine miRNA dysregulation and its pathogenic contribution in autoimmune diseases, an aspect not adequately addressed thus far. Methodology/Principal Findings In this study, we profiled miRNA expressions in splenic lymphocytes from three murine lupus models (MRL-lpr, B6-lpr and NZB/WF1) with different genetic background by miRNA microarray assays and Real-time RT-PCR. Despite the genetic differences among these three lupus stains, a common set of dysregulated miRNAs (miR-182-96-183 cluster, miR-31, and miR-155) was identified in splenocytes when compared with age-matched control mice. The association of these miRNAs with the disease was highlighted by our observation that this miRNA expression pattern was evident in NZB/W mice only at an age when lupus disease is manifested. Further, we have shown that the miRNA dysregulation in MRL-lpr mice was not simply due to the activation of splenocytes. By Real-time RT-PCR, we confirmed that these miRNAs were upregulated in both purified splenic B and T cells from MRL-lpr mice. miR-127 and miR-379, which were greatly upregulated in splenocytes from lpr mice, were moderately increased in diseased NZB/W mice. In addition, Real-time RT-PCR revealed that miR-146a, miR-101a, and miR-17-92 were also markedly upregulated in splenic T, but not B cells from MRL-lpr mice. Conclusions/Significance The identification of common lupus disease-associated miRNAs now forms the basis for the further investigation of the pathogenic contribution of these miRNAs in autoimmune lupus, which will advance our knowledge of the role of miRNAs in autoimmunity. Given that miRNAs are conserved, with regard to both evolution and function, our observation of a common lupus disease-associated miRNA expression pattern in murine lupus models is likely to have significant pathogenic, diagnostic, and/or therapeutic implications in human lupus.
Collapse
Affiliation(s)
- Rujuan Dai
- Center for Molecular Medicine and Infectious Diseases (CMMID), Department of Biomedical Sciences and Pathology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail: (RD); (SAA)
| | - Yan Zhang
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Deena Khan
- Center for Molecular Medicine and Infectious Diseases (CMMID), Department of Biomedical Sciences and Pathology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Bettina Heid
- Center for Molecular Medicine and Infectious Diseases (CMMID), Department of Biomedical Sciences and Pathology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - David Caudell
- Center for Molecular Medicine and Infectious Diseases (CMMID), Department of Biomedical Sciences and Pathology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Oswald Crasta
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - S. Ansar Ahmed
- Center for Molecular Medicine and Infectious Diseases (CMMID), Department of Biomedical Sciences and Pathology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail: (RD); (SAA)
| |
Collapse
|
30
|
Wu G, Zhu L, Dent JE, Nardini C. A comprehensive molecular interaction map for rheumatoid arthritis. PLoS One 2010; 5:e10137. [PMID: 20419126 PMCID: PMC2855702 DOI: 10.1371/journal.pone.0010137] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 03/15/2010] [Indexed: 12/15/2022] Open
Abstract
Background Computational biology contributes to a variety of areas related to life sciences and, due to the growing impact of translational medicine - the scientific approach to medicine in tight relation with basic science -, it is becoming an important player in clinical-related areas. In this study, we use computation methods in order to improve our understanding of the complex interactions that occur between molecules related to Rheumatoid Arthritis (RA). Methodology Due to the complexity of the disease and the numerous molecular players involved, we devised a method to construct a systemic network of interactions of the processes ongoing in patients affected by RA. The network is based on high-throughput data, refined semi-automatically with carefully curated literature-based information. This global network has then been topologically analysed, as a whole and tissue-specifically, in order to translate the experimental molecular connections into topological motifs meaningful in the identification of tissue-specific markers and targets in the diagnosis, and possibly in the therapy, of RA. Significance We find that some nodes in the network that prove to be topologically important, in particular AKT2, IL6, MAPK1 and TP53, are also known to be associated with drugs used for the treatment of RA. Importantly, based on topological consideration, we are also able to suggest CRKL as a novel potentially relevant molecule for the diagnosis or treatment of RA. This type of finding proves the potential of in silico analyses able to produce highly refined hypotheses, based on vast experimental data, to be tested further and more efficiently. As research on RA is ongoing, the present map is in fieri, despite being -at the moment- a reflection of the state of the art. For this reason we make the network freely available in the standardised and easily exportable .xml CellDesigner format at ‘www.picb.ac.cn/ClinicalGenomicNTW/temp.html’ and ‘www.celldesigner.org’.
Collapse
Affiliation(s)
- Gang Wu
- Group of Clinical Genomic Networks, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Lisha Zhu
- Group of Clinical Genomic Networks, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Jennifer E. Dent
- Group of Clinical Genomic Networks, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Christine Nardini
- Group of Clinical Genomic Networks, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- * E-mail:
| |
Collapse
|
31
|
Oxidative stress: Biomarkers and novel therapeutic pathways. Exp Gerontol 2010; 45:217-34. [PMID: 20064603 DOI: 10.1016/j.exger.2010.01.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 12/28/2009] [Accepted: 01/07/2010] [Indexed: 01/12/2023]
Abstract
Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.
Collapse
|
32
|
Forkhead transcription factors in chronic inflammation. Int J Biochem Cell Biol 2009; 42:482-5. [PMID: 19850149 DOI: 10.1016/j.biocel.2009.10.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 10/13/2009] [Indexed: 01/10/2023]
Abstract
Forkhead (Fox) transcription factors have been increasingly recognized to play key roles in immune homeostasis, especially Foxp3 for its role in the development and function of regulatory T cells, and Foxo family members for their regulatory role in T and B lymphocytes as well as other leukocytes. Although these transcription factors positively regulate the expression of multiple target genes, a unique functional attribute of these genes is the maintenance of leukocyte homeostasis, such as the preservation of the naïve or quiescent T cell state and prevention of autoimmunity. As a result, many chronic inflammatory processes appear to reflect a relative loss of activity of one of these transcription factors, raising the possibility that therapeutic approaches which confer gain-of-function Fox activity may be beneficial. On the other hand, however, some of the Fox family members also appear to promote and/or maintain chronic inflammation by preserving inflammatory leukocyte survival and/or otherwise promoting the expression of inflammatory target genes, at least in some cell types such as neutrophils. Therefore, although the role of Fox in inflammatory disorders remains complex and incompletely understood, the continued study of these factors provides new insight into the initiation, maintenance, and propagation of inflammation.
Collapse
|
33
|
Maiese K, Hou J, Chong ZZ, Shang YC. Erythropoietin, forkhead proteins, and oxidative injury: biomarkers and biology. ScientificWorldJournal 2009; 9:1072-104. [PMID: 19802503 PMCID: PMC2762199 DOI: 10.1100/tsw.2009.121] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO), and members of the mammalian forkhead transcription factors of the O class (FoxOs), may offer the greatest promise for new treatment regimens, since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. Yet, EPO and FoxOs may sometimes have unexpected and undesirable effects that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as the complex role that EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan, USA.
| | | | | | | |
Collapse
|
34
|
Maiese K, Chong ZZ, Shang YC, Hou J. A "FOXO" in sight: targeting Foxo proteins from conception to cancer. Med Res Rev 2009; 29:395-418. [PMID: 18985696 DOI: 10.1002/med.20139] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The successful treatment for multiple disease entities can rest heavily upon the ability to elucidate the intricate relationships that govern cellular proliferation, metabolism, survival, and inflammation. Here we discuss the therapeutic potential of the mammalian forkhead transcription factors predominantly in the O class, FoxO1, FoxO3, FoxO4, and FoxO6, which play a significant role during normal cellular function as well as during progressive disease. These transcription factors are integrated with several signal transduction pathways, such as Wnt proteins, that can regulate a broad array of cellular process that include stem cell proliferation, aging, and malignancy. FoxO transcription factors are attractive considerations for strategies directed against human cancer in light of their pro-apoptotic effects and ability to lead to cell cycle arrest. Yet, FoxO proteins can be associated with infertility, cellular degeneration, and unchecked cellular proliferation. As our knowledge continues to develop for this novel family of proteins, potential clinical applications for the FoxO family should heighten our ability to limit disease progression without clinical compromise.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
35
|
Hinman RM, Nichols WA, Diaz TM, Gallardo TD, Castrillon DH, Satterthwaite AB. Foxo3-/- mice demonstrate reduced numbers of pre-B and recirculating B cells but normal splenic B cell sub-population distribution. Int Immunol 2009; 21:831-42. [PMID: 19502585 DOI: 10.1093/intimm/dxp049] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
B cell antigen receptor (BCR) cross-linking promotes proliferation and survival of mature B cells. Phosphoinositide-3-kinase-mediated down-regulation of pro-apoptotic and anti-mitogenic genes such as the Foxo family of transcription factors is an important component of this process. Previously, we demonstrated that BCR signaling decreases expression of transcripts for Foxo1, Foxo3 and Foxo4. We now show that BCR-induced down-regulation of Foxo3 and Foxo4 mRNA expression occurs via distinct mechanisms from those established for Foxo1. While Foxo1, Foxo3 and Foxo4 bind the same DNA sequence, the differential control of their expression upon B cell activation suggests that they may have unique functions in the B lineage. To begin to address this issue, we evaluated B cell development and function in Foxo3-/- mice. No effect of Foxo3 deficiency was observed with respect to the following parameters in the splenic B cell compartment: sub-population distribution, proliferation, in vitro differentiation and expression of the Foxo target genes cyclin G2 and B cell translocation gene 1. However, Foxo3-/- mice demonstrated increased basal levels of IgG2a, IgG3 and IgA. A significant reduction in pre-B cell numbers was also observed in Foxo3-/- bone marrow. Finally, recirculating B cells in the bone marrow and peripheral blood were decreased in Foxo3-/- mice, perhaps due to lower than normal expression of receptor for sphingosine-1 phosphate, which mediates egress from lymphoid organs. Thus, Foxo3 makes a unique contribution to B cell development, B cell localization and control of Ig levels.
Collapse
Affiliation(s)
- Rochelle M Hinman
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
36
|
FoxO proteins: cunning concepts and considerations for the cardiovascular system. Clin Sci (Lond) 2009; 116:191-203. [PMID: 19118491 DOI: 10.1042/cs20080113] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dysfunction in the cardiovascular system can lead to the progression of a number of disease entities that can involve cancer, diabetes, cardiac ischaemia, neurodegeneration and immune system dysfunction. In order for new therapeutic avenues to overcome some of the limitations of present clinical treatments for these disorders, future investigations must focus upon novel cellular processes that control cellular development, proliferation, metabolism and inflammation. In this respect, members of the mammalian forkhead transcription factors of the O class (FoxOs) have increasingly become recognized as important and exciting targets for disorders of the cardiovascular system. In the present review, we describe the role of these transcription factors in the cardiovascular system during processes that involve angiogenesis, cardiovascular development, hypertension, cellular metabolism, oxidative stress, stem cell proliferation, immune system regulation and cancer. Current knowledge of FoxO protein function combined with future studies should continue to lay the foundation for the successful translation of these transcription factors into novel and robust clinical therapies.
Collapse
|
37
|
Laczy B, Hill BG, Wang K, Paterson AJ, White CR, Xing D, Chen YF, Darley-Usmar V, Oparil S, Chatham JC. Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system. Am J Physiol Heart Circ Physiol 2009; 296:H13-28. [PMID: 19028792 PMCID: PMC2637779 DOI: 10.1152/ajpheart.01056.2008] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 11/11/2008] [Indexed: 02/07/2023]
Abstract
The posttranslational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide beta-N-acetylglucosamine (O-GlcNAc) is a highly dynamic and ubiquitous protein modification. Protein O-GlcNAcylation is rapidly emerging as a key regulator of critical biological processes including nuclear transport, translation and transcription, signal transduction, cytoskeletal reorganization, proteasomal degradation, and apoptosis. Increased levels of O-GlcNAc have been implicated as a pathogenic contributor to glucose toxicity and insulin resistance, which are both major hallmarks of diabetes mellitus and diabetes-related cardiovascular complications. Conversely, there is a growing body of data demonstrating that the acute activation of O-GlcNAc levels is an endogenous stress response designed to enhance cell survival. Reports on the effect of altered O-GlcNAc levels on the heart and cardiovascular system have been growing rapidly over the past few years and have implicated a role for O-GlcNAc in contributing to the adverse effects of diabetes on cardiovascular function as well as mediating the response to ischemic injury. Here, we summarize our present understanding of protein O-GlcNAcylation and its effect on the regulation of cardiovascular function. We examine the pathways regulating protein O-GlcNAcylation and discuss, in more detail, our understanding of the role of O-GlcNAc in both mediating the adverse effects of diabetes as well as its role in mediating cellular protective mechanisms in the cardiovascular system. In addition, we also explore the parallels between O-GlcNAc signaling and redox signaling, as an alternative paradigm for understanding the role of O-GlcNAcylation in regulating cell function.
Collapse
Affiliation(s)
- Boglarka Laczy
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0007, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The "O" class: crafting clinical care with FoxO transcription factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 665:242-60. [PMID: 20429429 DOI: 10.1007/978-1-4419-1599-3_18] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Forkhead Transcription Factors: Vital Elements in Biology and Medicine provides a unique platform for the presentation of novel work and new insights into the vital role that forkhead transcription factors play in both cellular physiology as well as clinical medicine. Internationally recognized investigators provide their insights and perspectives for a number of forkhead genes and proteins that may have the greatest impact for the development of new strategies for a broad array of disorders that can involve aging, cancer, cardiac function, neurovascular integrity, fertility, stem cell differentiation, cellular metabolism, and immune system regulation. Yet, the work clearly sets a precedent for the necessity to understand the cellular and molecular function of forkhead proteins since this family of transcription factors can limit as well as foster disease progression depending upon the cellular environment. With this in mind, our concluding chapter for Forkhead Transcription Factors: Vital Elements in Biology andMedicine offers to highlight both the diversity and complexity of the forkhead transcription family by focusing upon the mammalian forkhead transcription factors of the O class (FoxOs) that include FoxO1, FoxO3, FoxO4, and FoxO6. FoxO proteins are increasingly considered to represent unique cellular targets that can control numerous processes such as angiogenesis, cardiovascular development, vascular tone, oxidative stress, stem cell proliferation, fertility, and immune surveillance. Furthermore, FoxO transcription factors are exciting considerations for disorders such as cancer in light of their pro-apoptotic and inhibitory cell cycle effects as well as diabetes mellitus given the close association FoxOs hold with cellular metabolism. In addition, these transcription factors are closely integrated with several novel signal transduction pathways, such as erythropoietin and Wnt proteins, that may influence the ability of FoxOs to lead to cell survival or cell injury. Further understanding of both the function and intricate nature of the forkhead transcription factor family, and in particular the FoxO proteins, should allow selective regulation of cellular development or cellular demise for the generation of successful future clinical strategies and patient well-being.
Collapse
|
39
|
Maiese K, Chong ZZ, Shang YC, Hou J. Clever cancer strategies with FoxO transcription factors. Cell Cycle 2008; 7:3829-39. [PMID: 19066462 DOI: 10.4161/cc.7.24.7231] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Given that cancer and related disorders affect a wide spectrum of the world's population, and in most cases are progressive in nature, it is essential that future care must overcome the present limitations of existing therapies in the absence of toxic side effects. Mammalian forkhead transcription factors of the O class (FoxOs) may fill this niche since these proteins are increasingly considered to represent unique cellular targets directed against human cancer in light of their pro-apoptotic effects and ability to lead to cell cycle arrest. Yet, FoxOs also can significantly affect normal cell survival and longevity, requiring new treatments for neoplastic growth to modulate novel pathways that integrate cell proliferation, metabolism, inflammation and survival. In this respect, members of the FoxO family are extremely compelling to consider since these transcription factors have emerged as versatile proteins that can control angiogenesis, stem cell proliferation, cell adhesion and autoimmune disease. Further elucidation of FoxO protein function during neoplastic growth should continue to lay the foundation for the successful translation of these transcription factors into novel and robust clinical therapies for cancer.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
40
|
Maiese K, Chong ZZ, Shang YC, Hou J. Rogue proliferation versus restorative protection: where do we draw the line for Wnt and forkhead signaling? Expert Opin Ther Targets 2008; 12:905-16. [PMID: 18554157 DOI: 10.1517/14728222.12.7.905] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Disease entities such as diabetes, neurodegeneration and cardiovascular disorders affect a significant portion of the world's population. OBJECTIVE Given that cellular survival and longevity in multiple disorders are tied to oxidative stress, apoptotic cell injury and immune system deregulation, the development of robust therapeutic strategies rests heavily upon the ability to balance each of these parameters. METHODS Here we discuss two exciting signaling pathways, namely Wnt and mammalian forkhead transcription factors predominantly of the O class superfamily, which can share integrated cytoprotective pathways during oxidative stress but may also adversely influence cellular survival and promote cancer cell proliferation. CONCLUSION Future investigations must elucidate the cellular determinants that govern the ability of Wnt and forkhead proteins to promote cellular longevity and possible disease remission but also allow for detrimental biological consequences and clinical compromise.
Collapse
Affiliation(s)
- Kenneth Maiese
- Wayne State University School of Medicine, Department of Neurology, 8C-1 UHC, 4201 Street, Antoine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
41
|
Maiese K, Chong ZZ, Shang YC. OutFOXOing disease and disability: the therapeutic potential of targeting FoxO proteins. Trends Mol Med 2008; 14:219-27. [PMID: 18403263 DOI: 10.1016/j.molmed.2008.03.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/04/2008] [Accepted: 03/04/2008] [Indexed: 01/08/2023]
Abstract
Forkhead transcription factors have a 'winged helix' domain and regulate processes that range from cell longevity to cell death. Of the mammalian forkhead family members in the O class, FoxO1, FoxO3a and FoxO4 can fill a crucial void for the treatment of disorders that include aging, cancer, diabetes, infertility, neurodegeneration and immune system dysfunction. Yet, observations that forkhead family members also can compromise clinical utility have fueled controversy and highlight the necessity to further outline the integrated cellular pathways governed by these transcription factors. Here we discuss recent advances that have elucidated the unique cellular pathways and clinical potential of targeting FoxO proteins to develop novel therapeutic strategies and avert potential pitfalls that might be closely intertwined with its benefits for patient care.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
42
|
Andersson AK, Li C, Brennan FM. Recent developments in the immunobiology of rheumatoid arthritis. Arthritis Res Ther 2008; 10:204. [PMID: 18373887 PMCID: PMC2453771 DOI: 10.1186/ar2370] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Progress into the understanding of immunopathology in rheumatoid arthritis is reviewed in the present article with regard to pro-inflammatory cytokine production, cell activation and recruitment, and osteoclastogenesis. Studies highlight the potential importance of T helper 17 cells and regulatory T cells in driving and suppressing inflammation in rheumatoid arthritis, respectively, and highlight other potential T-cell therapeutic targets. The genetic associations of the HLA shared epitope alleles with antibodies to citrullinated peptides in rheumatoid arthritis patients indicate that T cells are providing help to B cells to produce autoantibodies, and there is increasing evidence that these autoantibodies are pathogenic in rheumatoid arthritis.
Collapse
Affiliation(s)
- Anna K Andersson
- Kennedy Institute of Rheumatology, Imperial College Faculty of Medicine, 1 Aspenlea Road, London W6 8LH, UK.
| | | | | |
Collapse
|