1
|
Greaves GE, Allison L, Machado P, Morfill C, Fleck RA, Porter AE, Phillips CC. Infrared nanoimaging of neuronal ultrastructure and nanoparticle interaction with cells. NANOSCALE 2024; 16:6190-6198. [PMID: 38445876 PMCID: PMC10956966 DOI: 10.1039/d3nr04948e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Here we introduce scattering-type scanning near-field optical microscopy (s-SNOM) as a novel tool for nanoscale chemical-imaging of sub-cellular organelles, nanomaterials and of the interactions between them. Our setup uses a tuneable mid-infrared laser and a sharp scanning probe to image at a resolution substantially surpassing the diffraction limit. The laser can be tuned to excite vibrational modes of functional groups in biomolecules, (e.g. amide moieties), in a way that enables direct chemical mapping without the need for labelling. We, for the first time, chemically image neuronal ultrastructure, identify neuronal organelles and sub-organelle structures as small as 10 nm and validate our findings using transmission electron microscopy (TEM). We produce chemical and morphological maps of neurons treated with gold nanospheres and characterize nanoparticle size and intracellular location, and their interaction with the plasma membrane. Our results show that the label-free nature of s-SNOM means it has a 'true' chemical resolution of up to 20 nm which can be further improved. We argue that it offers significant potential in nanomedicine for nanoscale chemical imaging of cell ultrastructure and the subcellular distribution of nanomaterials within tissues.
Collapse
Affiliation(s)
- George E Greaves
- Experimental Solid State Group, Department of Physics, Imperial College London, SW7 2BW, UK.
| | - Leanne Allison
- Centre for Ultrastructural Imaging, Kings College London, SE1 1UL, UK
| | - Pedro Machado
- Centre for Ultrastructural Imaging, Kings College London, SE1 1UL, UK
| | - Corinne Morfill
- Department of Materials and London Centre for Nanotechnology, Imperial College London, SW7 2AZ, UK
| | - Roland A Fleck
- Centre for Ultrastructural Imaging, Kings College London, SE1 1UL, UK
- Randall Centre for Cell and Molecular Biophysics, Kings College London, SE1 1YR, UK
| | - Alexandra E Porter
- Department of Materials and London Centre for Nanotechnology, Imperial College London, SW7 2AZ, UK
| | - Chris C Phillips
- Experimental Solid State Group, Department of Physics, Imperial College London, SW7 2BW, UK.
| |
Collapse
|
2
|
Székiová E, Michalová Z, Blaško J, Mucha R, Slovinská L, Kello M, Vanický I. Characterisation of mesenchymal stem cells conditioned media obtained at different conditioning times: their effect on glial cells in in vitro scratch model. Growth Factors 2023; 41:57-70. [PMID: 36825505 DOI: 10.1080/08977194.2023.2182145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
In this study, the bone marrow mesenchymal stem cells conditioned media (BMMSC-CM) obtained by conditioning for 24(CM24), 48(CM48) and 72(CM72) hours was characterised. In vitro, the impact of BMMSC-CM on the astrocyte migratory response and oligodendrocyte density was evaluated using the scratch model. The proteomic profiles of individual secretomes were analysed by mass spectrometry and the concentrations of four selected neurotrophins (BDNF, NGF, GDNF and VEGF) were determined by ELISA. Our results revealed an increased number of proteins at CM72, many of which are involved in neuroregenerative processes. ELISA documented a gradual increase in the concentration of two neurotrophins (NGF, VEGF), peaking at CM72. In vitro, the different effect of individual BMMSC-CM on astrocyte migration response and oligodendrocyte density was observed, most pronounced with CM72. The outcomes demonstrate that the prolonged conditioning results in increased release of detectable proteins, neurotrophic factors concentration and stronger effect on reparative processes in neural cell cultures.
Collapse
Affiliation(s)
- Eva Székiová
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovakia
| | - Zuzana Michalová
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovakia
| | - Juraj Blaško
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovakia
| | - Rastislav Mucha
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovakia
| | - Lucia Slovinská
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovakia
- Associated Tissue Bank, P. J. Šafárik University and L. Pasteur University Hospital, Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, P. J. Šafárik University, Košice, Slovakia
| | - Ivo Vanický
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovakia
| |
Collapse
|
3
|
Morfill C, Pankratova S, Machado P, Fernando NK, Regoutz A, Talamona F, Pinna A, Klosowski M, Wilkinson RJ, Fleck RA, Xie F, Porter AE, Kiryushko D. Nanostars Carrying Multifunctional Neurotrophic Dendrimers Protect Neurons in Preclinical In Vitro Models of Neurodegenerative Disorders. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47445-47460. [PMID: 36218307 PMCID: PMC9614720 DOI: 10.1021/acsami.2c14220] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 05/06/2023]
Abstract
A challenge in neurology is the lack of efficient brain-penetrable neuroprotectants targeting multiple disease mechanisms. Plasmonic gold nanostars are promising candidates to deliver standard-of-care drugs inside the brain but have not been trialed as carriers for neuroprotectants. Here, we conjugated custom-made peptide dendrimers (termed H3/H6), encompassing motifs of the neurotrophic S100A4-protein, onto star-shaped and spherical gold nanostructures (H3/H6-AuNS/AuNP) and evaluated their potential as neuroprotectants and interaction with neurons. The H3/H6 nanostructures crossed a model blood-brain barrier, bound to plasma membranes, and induced neuritogenesis with the AuNS, showing higher potency/efficacy than the AuNP. The H3-AuNS/NP protected neurons against oxidative stress, the H3-AuNS being more potent, and against Parkinson's or Alzheimer's disease (PD/AD)-related cytotoxicity. Unconjugated S100A4 motifs also decreased amyloid beta-induced neurodegeneration, introducing S100A4 as a player in AD. Using custom-made dendrimers coupled to star-shaped nanoparticles is a promising route to activate multiple neuroprotective pathways and increase drug potency to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Corinne Morfill
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition Road, LondonSW7 2AZ, UK
| | - Stanislava Pankratova
- Department
of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen2200N, Denmark
- Comparative
Paediatrics and Nutrition, Department of Veterinary and Animal Sciences,
Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen2200N, Denmark
| | - Pedro Machado
- Centre
for Ultrastructural Imaging, Kings College
London, LondonSE1 1UL, UK
| | - Nathalie K. Fernando
- Department
of Chemistry, University College London, 20 Gordon Street, LondonWC1H 0AJ, UK
| | - Anna Regoutz
- Department
of Chemistry, University College London, 20 Gordon Street, LondonWC1H 0AJ, UK
| | - Federica Talamona
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition Road, LondonSW7 2AZ, UK
| | - Alessandra Pinna
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition Road, LondonSW7 2AZ, UK
- The Francis
Crick Institute, LondonNW11 AT, UK
| | - Michal Klosowski
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition Road, LondonSW7 2AZ, UK
| | - Robert J. Wilkinson
- The Francis
Crick Institute, LondonNW11 AT, UK
- Imperial
College, Exhibition Road, LondonSW7 2AZ, UK
| | - Roland A. Fleck
- Centre
for Ultrastructural Imaging, Kings College
London, LondonSE1 1UL, UK
| | - Fang Xie
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition Road, LondonSW7 2AZ, UK
| | - Alexandra E. Porter
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition Road, LondonSW7 2AZ, UK
| | - Darya Kiryushko
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition Road, LondonSW7 2AZ, UK
- Centre
for Neuroinflammation and Neurodegeneration, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, 160 Du
Cane Road, LondonW12 0NN, UK
- Experimental
Solid State Physics Group, Department of Physics, Imperial College, Exhibition Road, LondonSW72AZ, UK
| |
Collapse
|
4
|
Yin GN, Shin TY, Ock J, Choi MJ, Limanjaya A, Kwon MH, Liu FY, Hong SS, Kang JH, Gho YS, Suh JK, Ryu JK. Pericyte‑derived extracellular vesicles‑mimetic nanovesicles improves peripheral nerve regeneration in mouse models of sciatic nerve transection. Int J Mol Med 2022; 49:18. [PMID: 34935051 PMCID: PMC8711595 DOI: 10.3892/ijmm.2021.5073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/02/2021] [Indexed: 11/06/2022] Open
Abstract
Pericyte‑derived extracellular vesicle‑mimetic nanovesicles (PC‑NVs) play an important role in the improvement of erectile function after cavernous nerve injury. However, the impact of PC‑NVs on the peripheral nervous system (PNS), such as the sciatic nerve, is unclear. In this study, PC‑NVs were isolated from mouse cavernous pericytes (MCPs). A sciatic nerve transection (SNT) model was established using 8‑week‑old C57BL/6J mice. The sciatic nerve was harvested 5 and 14 days for immunofluorescence and western blot studies. Function studies were evaluated by performing the rotarod test and walking track analysis. The results demonstrated that PC‑NVs could stimulate endothelial cells, increase neuronal cell content, and increase macrophage and Schwann cell presence at the proximal stump rather than the distal stump in the SNT model, thereby improving angiogenesis and nerve regeneration in the early stage of sciatic nerve regeneration. In addition, PC‑NVs also increased the expression of neurotrophic factors (brain‑derived nerve growth factor, neurotrophin‑3 and nerve growth factor) and the activity of the cell survival signaling pathway (PI3K/Akt signaling), and reduced the activity of the JNK signaling pathway. Additionally, after 8 weeks of local application of PC‑NVs in SNT model mice, their motor and sensory functions were significantly improved, as assessed by performing the rotarod test and walking track analysis. In conclusion, the present study showed that the significant improvement of neurovascular regeneration in mice following treatment with PC‑NVs may provide a favorable strategy for promoting motor and sensory regeneration and functional recovery of the PNS.
Collapse
Affiliation(s)
- Guo Nan Yin
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Tae Young Shin
- Department of Urology, Ewha Woman's University School of Medicine, Seoul 07804, Republic of Korea
| | - Jiyeon Ock
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Min-Ji Choi
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Anita Limanjaya
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Mi-Hye Kwon
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Fang-Yuan Liu
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Program in Biomedical Science and Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongsangbuk-do 37673, Republic of Korea
| | - Jun-Kyu Suh
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Ji-Kan Ryu
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| |
Collapse
|
5
|
Wack G, Metzner K, Kuth MS, Wang E, Bresnick A, Brandes RP, Schröder K, Wittig I, Schmidtko A, Kallenborn-Gerhardt W. Nox4-dependent upregulation of S100A4 after peripheral nerve injury modulates neuropathic pain processing. Free Radic Biol Med 2021; 168:155-167. [PMID: 33789124 DOI: 10.1016/j.freeradbiomed.2021.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 11/24/2022]
Abstract
Previous studies suggested that reactive oxygen species (ROS) produced by NADPH oxidase 4 (Nox4) affect the processing of neuropathic pain. However, mechanisms underlying Nox4-dependent pain signaling are incompletely understood. In this study, we aimed to identify novel Nox4 downstream interactors in the nociceptive system. Mice lacking Nox4 specifically in sensory neurons were generated by crossing Advillin-Cre mice with Nox4fl/fl mice. Tissue-specific deletion of Nox4 in sensory neurons considerably reduced mechanical hypersensitivity and neuronal action potential firing after peripheral nerve injury. Using a proteomic approach, we detected various proteins that are regulated in a Nox4-dependent manner after injury, including the small calcium-binding protein S100A4. Immunofluorescence staining and Western blot experiments confirmed that S100A4 expression is massively up-regulated in peripheral nerves and dorsal root ganglia after injury. Furthermore, mice lacking S100A4 showed increased mechanical hypersensitivity after peripheral nerve injury and after delivery of a ROS donor. Our findings suggest that S100A4 expression is up-regulated after peripheral nerve injury in a Nox4-dependent manner and that deletion of S100A4 leads to an increased neuropathic pain hypersensitivity.
Collapse
Affiliation(s)
- Gesine Wack
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany
| | - Katharina Metzner
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany
| | - Miriam S Kuth
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany
| | - Elena Wang
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany
| | - Anne Bresnick
- Albert Einstein College of Medicine, Department of Biochemistry, Bronx, NY 10461, USA
| | - Ralf P Brandes
- Institute of Cardiovascular Physiology, Goethe University, 60590 Frankfurt am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590 Frankfurt am Main, Germany
| | - Katrin Schröder
- Institute of Cardiovascular Physiology, Goethe University, 60590 Frankfurt am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590 Frankfurt am Main, Germany
| | - Ilka Wittig
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590 Frankfurt am Main, Germany; Functional Proteomics, ZBC, Medical School, Goethe University, 60590 Frankfurt am Main, Germany; Cluster of Excellence "Macromolecular Complexes", Goethe University, 60590 Frankfurt am Main, Germany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany
| | | |
Collapse
|
6
|
S100A4 in the Physiology and Pathology of the Central and Peripheral Nervous System. Cells 2021; 10:cells10040798. [PMID: 33918416 PMCID: PMC8066633 DOI: 10.3390/cells10040798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/27/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
S100A4 is a member of the large family of S100 proteins, exerting a broad range of intracellular and extracellular functions that vary upon different cellular contexts. While S100A4 has long been implicated mainly in tumorigenesis and metastatization, mounting evidence shows that S100A4 is a key player in promoting pro-inflammatory phenotypes and organ pro-fibrotic pathways in the liver, kidney, lung, heart, tendons, and synovial tissues. Regarding the nervous system, there is still limited information concerning S100A4 presence and function. It was observed that S100A4 exerts physiological roles contributing to neurogenesis, cellular motility and chemotaxis, cell differentiation, and cell-to cell communication. Furthermore, S100A4 is likely to participate to numerous pathological processes of the nervous system by affecting the functions of astrocytes, microglia, infiltrating cells and neurons and thereby modulating inflammation and immune reactions, fibrosis as well as neuronal plasticity and survival. This review summarizes the current state of knowledge concerning the localization, deregulation, and possible functions of S100A4 in the physiology of the central and peripheral nervous system. Furthermore, we highlight S100A4 as a gene involved in the pathogenesis of neurological disorders such as brain tumors, neurodegenerative diseases, and acute injuries.
Collapse
|
7
|
Chen SX, He JH, Mi YJ, Shen HF, Schachner M, Zhao WJ. A mimetic peptide of α2,6-sialyllactose promotes neuritogenesis. Neural Regen Res 2020; 15:1058-1065. [PMID: 31823885 PMCID: PMC7034278 DOI: 10.4103/1673-5374.270313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/21/2019] [Accepted: 07/28/2019] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress contributes to the pathogenesis of neurodegenerative diseases. With the aim to find reagents that reduce oxidative stress, a phage display library was screened for peptides mimicking α2,6-sialyllactose (6'-SL), which is known to beneficially influence neural functions. Using Sambucus nigra lectin, which specifically binds to 6'-SL, we screened a phage display library and found a peptide comprising identical sequences of 12 amino acids. Mimetic peptide, reverse peptide and scrambled peptide were tested for inhibition of 6'-SL binding to the lectin. Indeed, lectin binding to 6'-SL was inhibited by the most frequently identified mimetic peptide, but not by the reverse or scrambled peptides, showing that this peptide mimics 6'-SL. Functionally, mimetic peptide, but not the reverse or scrambled peptides, increased viability and expression of neural cell adhesion molecule L1 in SK-N-SH human neuroblastoma cells, and promoted survival and neurite outgrowth of cultured mouse cerebellar granule neurons challenged by H2O2-induced oxidative stress. The combined results indicate that the 6'-SL mimetic peptide promotes neuronal survival and neuritogenesis, thus raising hopes for the treatment of neurodegenerative diseases. This study was approved by the Medical Ethics Committee of Shantou University Medical College, China (approval No. SUMC 2014-004) on February 20, 2014.
Collapse
Affiliation(s)
- Shuang-Xi Chen
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, China
- Department of Neurology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Jia-Hui He
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yong-Jian Mi
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, China
- Department of Neurology, Chongqing Qijiang Renmin Hospital, Chongqing, China
| | - Hui-Fan Shen
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
- Correspondence to: Melitta Schachner, ; Wei-Jiang Zhao,
| | - Wei-Jiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, China
- Correspondence to: Melitta Schachner, ; Wei-Jiang Zhao,
| |
Collapse
|
8
|
Kubánková M, Summers PA, López-Duarte I, Kiryushko D, Kuimova MK. Microscopic Viscosity of Neuronal Plasma Membranes Measured Using Fluorescent Molecular Rotors: Effects of Oxidative Stress and Neuroprotection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36307-36315. [PMID: 31513373 DOI: 10.1021/acsami.9b10426] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Molecular mobility in neuronal plasma membranes is a crucial factor in brain function. Microscopic viscosity is an important parameter that determines molecular mobility. This study presents the first direct measurement of the microviscosity of plasma membranes of live neurons. Microviscosity maps were obtained using fluorescence lifetime imaging of environment-sensing dyes termed "molecular rotors". Neurons were investigated both in the basal state and following common neurodegenerative stimuli, excitotoxicity, or oxidative stress. Both types of neurotoxic challenges induced microviscosity decrease in cultured neurons, and oxidant-induced membrane fluidification was counteracted by the wide-spectrum neuroprotectant, the H3 peptide. These results provide new insights into molecular mobility in neuronal membranes, paramount for basic brain function, and suggest that preservation of membrane stability may be an important aspect of neuroprotection in brain insults and neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Darya Kiryushko
- Centre for Neuroinflammation and Neurodegeneration , Imperial College London , Hammersmith Hospital Campus, Burlington Danes Building, 160 Du Cane Road , London W12 0NN , U.K
| | | |
Collapse
|
9
|
Kubánková M, López-Duarte I, Kiryushko D, Kuimova MK. Molecular rotors report on changes in live cell plasma membrane microviscosity upon interaction with beta-amyloid aggregates. SOFT MATTER 2018; 14:9466-9474. [PMID: 30427370 DOI: 10.1039/c8sm01633j] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Amyloid deposits of aggregated beta-amyloid Aβ(1-42) peptides are a pathological hallmark of Alzheimer's disease. Aβ(1-42) aggregates are known to induce biophysical alterations in cells, including disruption of plasma membranes. We investigated the microviscosity of plasma membranes upon interaction with oligomeric and fibrillar forms of Aβ(1-42). Viscosity-sensing fluorophores termed molecular rotors were utilised to directly measure the microviscosities of giant plasma membrane vesicles (GPMVs) and plasma membranes of live SH-SY5Y and HeLa cells. The fluorescence lifetimes of membrane-inserting BODIPY-based molecular rotors revealed a decrease in bilayer microviscosity upon incubation with Aβ(1-42) oligomers, while fibrillar Aβ(1-42) did not significantly affect the microviscosity of the bilayer. In addition, we demonstrate that the neuroprotective peptide H3 counteracts the microviscosity change induced by Aβ(1-42) oligomers, suggesting the utility of H3 as a neuroprotective therapeutic agent in neurodegenerative disorders and indicating that ligand-induced membrane stabilisation may be a possible mechanism of neuroprotection during neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Markéta Kubánková
- Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
10
|
Pankratova S, Klingelhofer J, Dmytriyeva O, Owczarek S, Renziehausen A, Syed N, Porter AE, Dexter DT, Kiryushko D. The S100A4 Protein Signals through the ErbB4 Receptor to Promote Neuronal Survival. Theranostics 2018; 8:3977-3990. [PMID: 30083275 PMCID: PMC6071530 DOI: 10.7150/thno.22274] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 04/10/2018] [Indexed: 12/21/2022] Open
Abstract
Understanding the mechanisms of neurodegeneration is crucial for development of therapies to treat neurological disorders. S100 proteins are extensively expressed in the injured brain but S100's role and signalling in neural cells remain elusive. We recently demonstrated that the S100A4 protein protects neurons in brain injury and designed S100A4-derived peptides mimicking its beneficial effects. Here we show that neuroprotection by S100A4 involves the growth factor family receptor ErbB4 and its ligand Neuregulin 1 (NRG), key regulators of neuronal plasticity and implicated in multiple brain pathologies. The neuroprotective effect of S100A4 depends on ErbB4 expression and the ErbB4 signalling partners ErbB2/Akt, and is reduced by functional blockade of NRG/ErbB4 in cell models of neurodegeneration. We also detect binding of S100A4 with ErbB1 (EGFR) and ErbB3. S100A4-derived peptides interact with, and signal through ErbB, are neuroprotective in primary and immortalized dopaminergic neurons, and do not affect cell proliferation/motility - features which make them promising as potential neuroprotectants. Our data suggest that the S100-ErbB axis may be an important mechanism regulating neuronal survival and plasticity.
Collapse
|
11
|
Sun J, Pan X, Christiansen LI, Yuan XL, Skovgaard K, Chatterton DEW, Kaalund SS, Gao F, Sangild PT, Pankratova S. Necrotizing enterocolitis is associated with acute brain responses in preterm pigs. J Neuroinflammation 2018; 15:180. [PMID: 29885660 PMCID: PMC5994241 DOI: 10.1186/s12974-018-1201-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/14/2018] [Indexed: 12/24/2022] Open
Abstract
Background Necrotizing enterocolitis (NEC) is an acute gut inflammatory disorder that occurs in preterm infants in the first weeks after birth. Infants surviving NEC often show impaired neurodevelopment. The mechanisms linking NEC lesions with later neurodevelopment are poorly understood but may include proinflammatory signaling in the immature brain. Using preterm pigs as a model for preterm infants, we hypothesized that severe intestinal NEC lesions are associated with acute effects on the developing hippocampus. Methods Cesarean-delivered preterm pigs (n = 117) were reared for 8 days and spontaneously developed variable severity of NEC lesions. Neonatal arousal, physical activity, and in vitro neuritogenic effects of cerebrospinal fluid (CSF) were investigated in pigs showing NEC lesions in the colon (Co-NEC) or in the small intestine (Si-NEC). Hippocampal transcriptome analysis and qPCR were used to assess gene expressions and their relation to biological processes, including neuroinflammation, and neural plasticity. Microglia activation was quantified by stereology. The neuritogenic response to selected proteins was investigated in primary cultures of hippocampal neurons. Results NEC development rapidly reduced the physical activity of pigs, especially when lesions occurred in the small intestine. Si-NEC and Co-NEC were associated with 27 and 12 hippocampal differentially expressed genes (DEGs), respectively. These included genes related to neuroinflammation (i.e., S100A8, S100A9, IL8, IL6, MMP8, SAA, TAGLN2) and hypoxia (i.e., PDK4, IER3, TXNIP, AGER), and they were all upregulated in Si-NEC pigs. Genes related to protection against oxidative stress (HBB, ALAS2) and oligodendrocytes (OPALIN) were downregulated in Si-NEC pigs. CSF collected from NEC pigs promoted neurite outgrowth in vitro, and the S100A9 and S100A8/S100A9 proteins may mediate the neuritogenic effects of NEC-related CSF on hippocampal neurons. NEC lesions did not affect total microglial cell number but markedly increased the proportion of Iba1-positive amoeboid microglial cells. Conclusions NEC lesions, especially when present in the small intestine, are associated with changes to hippocampal gene expression that potentially mediate neuroinflammation and disturbed neural circuit formation via enhanced neuronal differentiation. Early brain-protective interventions may be critical for preterm infants affected by intestinal NEC lesions to reduce their later neurological dysfunctions. Electronic supplementary material The online version of this article (10.1186/s12974-018-1201-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Sun
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870, Frederiksberg C, Denmark
| | - Xiaoyu Pan
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870, Frederiksberg C, Denmark
| | - Line I Christiansen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870, Frederiksberg C, Denmark
| | - Xiao-Long Yuan
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870, Frederiksberg C, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Dereck E W Chatterton
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870, Frederiksberg C, Denmark.,Department of Food Science, University of Copenhagen, DK-1958, Frederiksberg C, Denmark
| | - Sanne S Kaalund
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospitals, DK-2400, Copenhagen, Denmark
| | - Fei Gao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518000, Shenzhen, China
| | - Per T Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870, Frederiksberg C, Denmark. .,Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| | - Stanislava Pankratova
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark. .,Laboratory of Neural Plasticity, Department of Neuroscience, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
12
|
Fei F, Qu J, Li C, Wang X, Li Y, Zhang S. Role of metastasis-induced protein S100A4 in human non-tumor pathophysiologies. Cell Biosci 2017; 7:64. [PMID: 29204268 PMCID: PMC5702147 DOI: 10.1186/s13578-017-0191-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/20/2017] [Indexed: 12/24/2022] Open
Abstract
S100A4, an important member of the S100 family of proteins, is best known for its significant role in promoting cancer progression and metastasis. In addition to its expression in tumors, upregulation of S100A4 expression has been associated with various non-tumor pathophysiology processes. However, the mechanisms underlying the role of S100A4 remain unclear. Activated “host” cells (fibroblasts, immunocytes, vascular cells, among others) secrete S100A4 into the extracellular space in various non-tumor human disorders, where it executes its biological functions by interacting with intracellular target proteins. However, the exact molecular mechanisms underlying these interactions in different non-tumor pathophysiologies vary, and S100A4 is likely one of the cross-linking factors that acts as common intrinsic constituents of biological mechanisms. Numerous studies have indicated that the S100A4-mediated epithelial–mesenchymal transition plays a vital role in the occurrence and development of various non-tumor pathophysiologies. Epithelial–mesenchymal transition can be categorized into three general subtypes based on the phenotype and function of the output cells. S100A4 regulates tissue fibrosis associated with the type II epithelial–mesenchymal transition via various signaling pathways. Additionally, S100A4 stimulates fibroblasts to secrete fibronectin and collagen, thus forming the structural components of the extracellular matrix (ECM) and stimulating their deposition in tissues, contributing to the formation of a pro-inflammatory niche. Simultaneously, S100A4 enhances the motility of macrophages, neutrophils, and leukocytes and promotes the recruitment and chemotaxis of these inflammatory cells to regulate inflammation and immune functions. S100A4 also exerts a neuroprotective pro-survival effect on neurons by rescuing them from brain injury and participates in angiogenesis by interacting with other target molecules. In this review, we summarize the role of S100A4 in fibrosis, inflammation, immune response, neuroprotection, angiogenesis, and some common non-tumor diseases as well as its possible involvement in molecular pathways and potential clinical value.
Collapse
Affiliation(s)
- Fei Fei
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People's Republic of China.,Departments of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Jie Qu
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People's Republic of China.,Departments of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Chunyuan Li
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People's Republic of China.,Departments of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Xinlu Wang
- Departments of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193 People's Republic of China
| | - Yuwei Li
- Departments of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Shiwu Zhang
- Departments of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| |
Collapse
|
13
|
Trolle C, Ivert P, Hoeber J, Rocamonde-Lago I, Vasylovska S, Lukanidin E, Kozlova EN. Boundary cap neural crest stem cell transplants contribute Mts1/S100A4-expressing cells in the glial scar. Regen Med 2017. [PMID: 28621171 DOI: 10.2217/rme-2016-0163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM During development, boundary cap neural crest stem cells (bNCSCs) assist sensory axon growth into the spinal cord. Here we repositioned them to test if they assist regeneration of sensory axons in adult mice after dorsal root avulsion injury. MATERIALS & METHODS Avulsed mice received bNCSC or human neural progenitor (hNP) cell transplants and their contributions to glial scar formation and sensory axon regeneration were analyzed with immunohistochemistry and transganglionic tracing. RESULTS hNPs and bNCSCs form similar gaps in the glial scar, but unlike hNPs, bNCSCs contribute Mts1/S100A4 (calcium-binding protein) expression to the scar and do not assist sensory axon regeneration. CONCLUSION bNCSC transplants contribute nonpermissive Mts1/S100A4-expressing cells to the glial scar after dorsal root avulsion.
Collapse
Affiliation(s)
- Carl Trolle
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Patrik Ivert
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jan Hoeber
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | - Eugen Lukanidin
- Department of Molecular Cancer Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elena N Kozlova
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Epobis is a Nonerythropoietic and Neuroprotective Agonist of the Erythropoietin Receptor with Anti-Inflammatory and Memory Enhancing Effects. Mediators Inflamm 2016; 2016:1346390. [PMID: 27990061 PMCID: PMC5136666 DOI: 10.1155/2016/1346390] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/26/2016] [Accepted: 09/15/2016] [Indexed: 12/12/2022] Open
Abstract
The cytokine erythropoietin (EPO) stimulates proliferation and differentiation of erythroid progenitor cells. Moreover, EPO has neuroprotective, anti-inflammatory, and antioxidative effects, but the use of EPO as a neuroprotective agent is hampered by its erythropoietic activity. We have recently designed the synthetic, dendrimeric peptide, Epobis, derived from the sequence of human EPO. This peptide binds the EPO receptor and promotes neuritogenesis and neuronal cell survival. Here we demonstrate that Epobis in vitro promotes neuritogenesis in primary motoneurons and has anti-inflammatory effects as demonstrated by its ability to decrease TNF release from activated AMJ2-C8 macrophages and rat primary microglia. When administered systemically Epobis is detectable in both plasma and cerebrospinal fluid, demonstrating that the peptide crosses the blood-brain barrier. Importantly, Epobis is not erythropoietic, but systemic administration of Epobis in rats delays the clinical signs of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, and the peptide has long-term, but not short-term, effects on working memory, detected as an improved social memory 3 days after administration. These data reveal Epobis to be a nonerythropoietic and neuroprotective EPO receptor agonist with anti-inflammatory and memory enhancing properties.
Collapse
|
15
|
Lei L, Tang L. Schwann cells genetically modified to express S100A4 increases GAP43 expression in spiral ganglion neurons in vitro. Bioengineered 2016; 8:404-410. [PMID: 27669149 PMCID: PMC5553331 DOI: 10.1080/21655979.2016.1238534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Schwann cells (SCs) have been reported as a possible source of neurotrophic support for spiral ganglion neurons (SGNs). This study was aimed to investigate whether S100A4 was contributed in the functional effects of SCs on SGNs. SCs were transfected with S100A4 vector or small interfering RNA (siRNA) against S100A4, and the transfection efficiency was verified by quantitative PCR (qPCR) and Western blot. The migration of transfected SCs was determined by Transwell assay, and the expression levels of vascular endothelial growth factor precursor (VEGF) and matrix metallopeptidase 9 (MMP-9) were measured by Western blot. Co-culture of either S100A4 overexpressed or suppressed SCs with SGNs, and the growth associated protein 43 (GAP43) expression in SGNs was detected by immunofluorescence (IF), qPCR and Western blot. The migration of SCs was significantly enhanced by S100A4 overexpression (P < 0.001), while was suppressed by S100A4 knockdown (P < 0.01). Further, the expressions of VEGF and MMP-9 were notably up-regulated by S100A4 overexpression, while were down-regulated by S100A4 knockdown. Moreover, co-culture with the S100A4 overexpressed SCs significantly increased the expression of GAP43 in SGNs (P < 0.01). As expected, co-culture with S100A4 knockdown SCs decreased GAP43 level (P < 0.05). S100A4 enhanced the migratory ability of SCs. SCs genetically modified to overexpress the S100A4 could up-regulate the GAP43 expression in SGNs.
Collapse
Affiliation(s)
- Li Lei
- a Department of Otolaryngology-Head and Neck Surgery , Beijing Tongren Hospital, Capital Medical University , Beijing , China
| | - Li Tang
- b Department of Otolaryngology-Head and Neck Surgery , Heze Municipal Hospital of Shangdong Province , Heze , Shandong , China
| |
Collapse
|
16
|
|
17
|
Wang Y, Li WY, Sun P, Jin ZS, Liu GB, Deng LX, Guan LX. Sciatic nerve regeneration in KLF7-transfected acellular nerve allografts. Neurol Res 2016; 38:242-54. [DOI: 10.1080/01616412.2015.1105584] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Moldovan M, Alvarez S, Rosberg MR, Krarup C. Persistent alterations in active and passive electrical membrane properties of regenerated nerve fibers of man and mice. Eur J Neurosci 2015; 43:388-403. [DOI: 10.1111/ejn.13047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/31/2015] [Accepted: 08/13/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Mihai Moldovan
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
- Department of Clinical Neurophysiology; NF3063 Rigshospitalet 9 Blegdamsvej 2100 Copenhagen Denmark
| | - Susana Alvarez
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
- Department of Clinical Neurophysiology; NF3063 Rigshospitalet 9 Blegdamsvej 2100 Copenhagen Denmark
| | - Mette R. Rosberg
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
- Department of Clinical Neurophysiology; NF3063 Rigshospitalet 9 Blegdamsvej 2100 Copenhagen Denmark
| | - Christian Krarup
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
- Department of Clinical Neurophysiology; NF3063 Rigshospitalet 9 Blegdamsvej 2100 Copenhagen Denmark
| |
Collapse
|
19
|
Mathis S, Magy L, Vallat JM. Therapeutic options in Charcot–Marie–Tooth diseases. Expert Rev Neurother 2015; 15:355-66. [DOI: 10.1586/14737175.2015.1017471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Immunomodulator CD200 Promotes Neurotrophic Activity by Interacting with and Activating the Fibroblast Growth Factor Receptor. Mol Neurobiol 2014; 53:584-594. [DOI: 10.1007/s12035-014-9037-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 11/30/2014] [Indexed: 11/26/2022]
|
21
|
Corradini BR, Iamashita P, Tampellini E, Farfel JM, Grinberg LT, Moreira-Filho CA. Complex network-driven view of genomic mechanisms underlying Parkinson's disease: analyses in dorsal motor vagal nucleus, locus coeruleus, and substantia nigra. BIOMED RESEARCH INTERNATIONAL 2014; 2014:543673. [PMID: 25525598 PMCID: PMC4261556 DOI: 10.1155/2014/543673] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/15/2014] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD)—classically characterized by severe loss of dopaminergic neurons in the substantia nigra pars compacta—has a caudal-rostral progression, beginning in the dorsal motor vagal nucleus and, in a less extent, in the olfactory system, progressing to the midbrain and eventually to the basal forebrain and the neocortex. About 90% of the cases are idiopathic. To study the molecular mechanisms involved in idiopathic PD we conducted a comparative study of transcriptional interaction networks in the dorsal motor vagal nucleus (VA), locus coeruleus (LC), and substantia nigra (SN) of idiopathic PD in Braak stages 4-5 (PD) and disease-free controls (CT) using postmortem samples. Gene coexpression networks (GCNs) for each brain region (patients and controls) were obtained to identify highly connected relevant genes (hubs) and densely interconnected gene sets (modules). GCN analyses showed differences in topology and module composition between CT and PD networks for each anatomic region. In CT networks, VA, LC, and SN hub modules are predominantly associated with neuroprotection and homeostasis in the ageing brain, whereas in the patient's group, for the three brain regions, hub modules are mostly related to stress response and neuron survival/degeneration mechanisms.
Collapse
Affiliation(s)
- Beatriz Raposo Corradini
- Department of Pediatrics, Faculdade de Medicina da USP (FMUSP), Avenida Dr. Enéas Carvalho Aguiar 647, 5 Andar, 05403-900 São Paulo, SP, Brazil
| | - Priscila Iamashita
- Department of Pediatrics, Faculdade de Medicina da USP (FMUSP), Avenida Dr. Enéas Carvalho Aguiar 647, 5 Andar, 05403-900 São Paulo, SP, Brazil
| | - Edilaine Tampellini
- Brazilian Aging Brain Study Group (BEHEEC), LIM 22, FMUSP, 01246-903 São Paulo, SP, Brazil
- Hospital Israelita Albert Einstein, 05652-900 São Paulo, SP, Brazil
| | - José Marcelo Farfel
- Hospital Israelita Albert Einstein, 05652-900 São Paulo, SP, Brazil
- Division of Geriatrics, FMUSP, 01246-903 São Paulo, SP, Brazil
| | - Lea Tenenholz Grinberg
- Brazilian Aging Brain Study Group (BEHEEC), LIM 22, FMUSP, 01246-903 São Paulo, SP, Brazil
- Department of Pathology, FMUSP, 01246-903 São Paulo, SP, Brazil
- Department of Neurology and Pathology, University of California, San Francisco, CA 94143, USA
| | - Carlos Alberto Moreira-Filho
- Department of Pediatrics, Faculdade de Medicina da USP (FMUSP), Avenida Dr. Enéas Carvalho Aguiar 647, 5 Andar, 05403-900 São Paulo, SP, Brazil
| |
Collapse
|
22
|
Schmid D, Zeis T, Sobrio M, Schaeren-Wiemers N. MAL overexpression leads to disturbed expression of genes that influence cytoskeletal organization and differentiation of Schwann cells. ASN Neuro 2014; 6:1759091414548916. [PMID: 25290060 PMCID: PMC4187015 DOI: 10.1177/1759091414548916] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the developing peripheral nervous system, a coordinated reciprocal signaling between Schwann cells and axons is crucial for accurate myelination. The myelin and lymphocyte protein MAL is a component of lipid rafts that is important for targeting proteins and lipids to distinct domains. MAL overexpression impedes peripheral myelinogenesis, which is evident by a delayed onset of myelination and reduced expression of the myelin protein zero (Mpz/P0) and the low-affinity neurotrophin receptor p75(NTR). This study shows that MAL overexpression leads to a significant reduction of Mpz and p75(NTR) expression in primary mouse Schwann cell cultures, which was already evident before differentiation, implicating an effect of MAL in early Schwann cell development. Their transcription was robustly reduced, despite normal expression of essential transcription factors and receptors. Further, the cAMP response element-binding protein (CREB) and phosphoinositide 3-kinase signaling pathways important for Schwann cell differentiation were correctly induced, highlighting that other so far unknown rate limiting factors do exist. We identified novel genes expressed by Schwann cells in a MAL-dependent manner in vivo and in vitro. A number of those, including S100a4, RhoU and Krt23, are implicated in cytoskeletal organization and plasma membrane dynamics. We showed that S100a4 is predominantly expressed by nonmyelinating Schwann cells, whereas RhoU was localized within myelin membranes, and Krt23 was detected in nonmyelinating as well as in myelinating Schwann cells. Their differential expression during early peripheral nerve development further underlines their possible role in influencing Schwann cell differentiation and myelination.
Collapse
Affiliation(s)
- Daniela Schmid
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland
| | - Thomas Zeis
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland
| | - Monia Sobrio
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland
| | | |
Collapse
|