1
|
Ali A, Mahla SB, Reza V, Hossein A, Bahareh K, Mohammad H, Fatemeh S, Mostafa AB, Leili R. MicroRNAs: Potential prognostic and theranostic biomarkers in chronic lymphocytic leukemia. EJHAEM 2024; 5:191-205. [PMID: 38406506 PMCID: PMC10887358 DOI: 10.1002/jha2.849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024]
Abstract
Small noncoding ribonucleic acids called microRNAs coordinate numerous critical physiological and biological processes such as cell division, proliferation, and death. These regulatory molecules interfere with the function of many genes by binding the 3'-UTR region of target mRNAs to inhibit their translation or even degrade them. Given that a large proportion of miRNAs behave as either tumor suppressors or oncogenes, any genetic or epigenetic aberration changeing their structure and/or function could initiate tumor formation and development. An example of such cancers is chronic lymphocytic leukemia (CLL), the most prevalent adult leukemia in Western nations, which is caused by unregulated growth and buildup of defective cells in the peripheral blood and lymphoid organs. Genetic alterations at cellular and molecular levels play an important role in the occurrence and development of CLL. In this vein, it was noted that the development of this disease is noticeably affected by changes in the expression and function of miRNAs. Many studies on miRNAs have shown that these molecules are pivotal in the prognosis of different cancers, including CLL, and their epigenetic alterations (e.g., methylation) can predict disease progression and response to treatment. Furthermore, miRNAs are involved in the development of drug resistance in CLL, and targeting these molecules can be considered a new therapeutic approach for the treatment of this disease. MiRNA screening can offer important information on the etiology and development of CLL. Considering the importance of miRNAs in gene expression regulation, their application in the diagnosis, prognosis, and treatment of CLL is reviewed in this paper.
Collapse
Affiliation(s)
- Afgar Ali
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Sattarzadeh Bardsiri Mahla
- Stem Cells and Regenerative Medicine Innovation CenterKerman University of Medical SciencesKermanIran
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical SciencesKerman University of Medical SciencesKermanIran
| | - Vahidi Reza
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Arezoomand Hossein
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical SciencesKerman University of Medical SciencesKermanIran
| | - Kashani Bahareh
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Hosseininaveh Mohammad
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Sharifi Fatemeh
- Research Center of Tropical and Infectious DiseasesKerman University of Medical SciencesKermanIran
| | - Amopour Bahnamiry Mostafa
- Department of Research and Development, Production and Research ComplexPasteur Institute of IranTehranIran
| | - Rouhi Leili
- Student Research CommitteeKerman University of Medical SciencesKermanIran
| |
Collapse
|
2
|
Massaro F, Corrillon F, Stamatopoulos B, Dubois N, Ruer A, Meuleman N, Bron D, Lagneaux L. Age-related changes in human bone marrow mesenchymal stromal cells: morphology, gene expression profile, immunomodulatory activity and miRNA expression. Front Immunol 2023; 14:1267550. [PMID: 38130717 PMCID: PMC10733451 DOI: 10.3389/fimmu.2023.1267550] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Mesenchymal stromal cells (MSC) are one of the main cellular components of bone marrow (BM) microenvironment. MSC play a key role in tissue regeneration, but they are also capable of immunomodulating activity. With host aging, MSC undergo age-related changes, which alter these functions, contributing to the set-up of "inflammaging", which is known to be the basis for the development of several diseases of the elderly, including cancer. However, there's few data investigating this facet of MSC, mainly obtained using murine models or replicative senescence. The aim of this research was to identify morphological, molecular and functional alterations of human bone marrow-derived MSC from young (yBM-MSC) and old (oBM-MSC) healthy donors. Methods MSC were identified by analysis of cell-surface markers according to the ISCT criteria. To evaluate response to inflammatory status, MSC were incubated for 24h in the presence of IL-1β, IFN-α, IFN-ɣ and TNF-α. Macrophages were obtained by differentiation of THP-1 cells through PMA exposure. For M1 polarization experiments, a 24h incubation with LPS and IFN-ɣ was performed. MSC were plated at the bottom of the co-culture transwell system for all the time of cytokine exposure. Gene expression was evaluated by real-time PCR after RNA extraction from BM-MSC or THP-1 culture. Secreted cytokines levels were quantitated through ELISA assays. Results Aging MSC display changes in size, morphology and granularity. Higher levels of β-Gal, reactive oxygen species (ROS), IL-6 and IL-8 and impaired colony-forming and cell cycle progression abilities were found in oBM-MSC. Gene expression profile seems to vary according to subjects' age and particularly in oBM-MSC seem to be characterized by an impaired immunomodulating activity, with a reduced inhibition of macrophage M1 status. The comparative analysis of microRNA (miRNA) expression in yBM-MSC and oBM-MSC revealed a significant difference for miRNA known to be involved in macrophage polarization and particularly miR-193b-3p expression is strongly increased after co-culture of macrophages with yBM-MSC. Conclusion There are profound differences in terms of morphology, gene and miRNA expression and immunomodulating properties among yBM-MSC and oBM-MSC, supporting the critical role of aging BM microenvironment on senescence, immune-mediated disorders and cancer pathogenesis.
Collapse
Affiliation(s)
- Fulvio Massaro
- Department of Hematology, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Florent Corrillon
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, ULB Cancer Research Center (U-CRC) - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, ULB Cancer Research Center (U-CRC) - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nathan Dubois
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, ULB Cancer Research Center (U-CRC) - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Achille Ruer
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, ULB Cancer Research Center (U-CRC) - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nathalie Meuleman
- Department of Hematology, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Dominique Bron
- Department of Hematology, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, ULB Cancer Research Center (U-CRC) - Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
3
|
Cerreto M, Foà R, Natoni A. The Role of the Microenvironment and Cell Adhesion Molecules in Chronic Lymphocytic Leukemia. Cancers (Basel) 2023; 15:5160. [PMID: 37958334 PMCID: PMC10647257 DOI: 10.3390/cancers15215160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy whose progression largely depends on the lymph node and bone marrow microenvironment. Indeed, CLL cells actively proliferate in specific regions of these anatomical compartments, known as proliferation centers, while being quiescent in the blood stream. Hence, CLL cell adhesion and migration into these protective niches are critical for CLL pathophysiology. CLL cells are lodged in their microenvironment through a series of molecular interactions that are mediated by cellular adhesion molecules and their counter receptors. The importance of these adhesion molecules in the clinic is demonstrated by the correlation between the expression levels of some of them, in particular CD49d, and the prognostic likelihood. Furthermore, novel therapeutic agents, such as ibrutinib, impair the functions of these adhesion molecules, leading to an egress of CLL cells from the lymph nodes and bone marrow into the circulation together with an inhibition of homing into these survival niches, thereby preventing disease progression. Several adhesion molecules have been shown to participate in CLL adhesion and migration. Their importance also stems from the observation that they are involved in promoting, directly or indirectly, survival signals that sustain CLL proliferation and limit the efficacy of standard and novel chemotherapeutic drugs, a process known as cell adhesion-mediated drug resistance. In this respect, many studies have elucidated the molecular mechanisms underlying cell adhesion-mediated drug resistance, which have highlighted different signaling pathways that may represent potential therapeutic targets. Here, we review the role of the microenvironment and the adhesion molecules that have been shown to be important in CLL and their impact on transendothelial migration and cell-mediated drug resistance. We also discuss how novel therapeutic compounds modulate the function of this important class of molecules.
Collapse
Affiliation(s)
| | | | - Alessandro Natoni
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00100 Rome, Italy; (M.C.); (R.F.)
| |
Collapse
|
4
|
Van Morckhoven D, Dubois N, Bron D, Meuleman N, Lagneaux L, Stamatopoulos B. Extracellular vesicles in hematological malignancies: EV-dence for reshaping the tumoral microenvironment. Front Immunol 2023; 14:1265969. [PMID: 37822925 PMCID: PMC10562589 DOI: 10.3389/fimmu.2023.1265969] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Following their discovery at the end of the 20th century, extracellular vesicles (EVs) ranging from 50-1,000 nm have proven to be paramount in the progression of many cancers, including hematological malignancies. EVs are a heterogeneous group of cell-derived membranous structures that include small EVs (commonly called exosomes) and large EVs (microparticles). They have been demonstrated to participate in multiple physiological and pathological processes by allowing exchange of biological material (including among others proteins, DNA and RNA) between cells. They are therefore a crucial way of intercellular communication. In this context, malignant cells can release these extracellular vesicles that can influence their microenvironment, induce the formation of a tumorigenic niche, and prepare and establish distant niches facilitating metastasis by significantly impacting the phenotypes of surrounding cells and turning them toward supportive roles. In addition, EVs are also able to manipulate the immune response and to establish an immunosuppressive microenvironment. This in turn allows for ideal conditions for heightened chemoresistance and increased disease burden. Here, we review the latest findings and reports studying the effects and therapeutic potential of extracellular vesicles in various hematological malignancies. The study of extracellular vesicles remains in its infancy; however, rapid advances in the analysis of these vesicles in the context of disease allow us to envision prospects to improve the detection and treatment of hematological malignancies.
Collapse
Affiliation(s)
- David Van Morckhoven
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nathan Dubois
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Departement of Hematology, Jules Bordet Institute, Brussels, Belgium
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Departement of Hematology, Jules Bordet Institute, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
5
|
Dubois K, Tannoury M, Bauvois B, Susin SA, Garnier D. Extracellular Vesicles in Chronic Lymphocytic Leukemia: Tumor Microenvironment Messengers as a Basis for New Targeted Therapies? Cancers (Basel) 2023; 15:cancers15082307. [PMID: 37190234 DOI: 10.3390/cancers15082307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
In addition to intrinsic genomic and nongenomic alterations, tumor progression is also dependent on the tumor microenvironment (TME, mainly composed of the extracellular matrix (ECM), secreted factors, and bystander immune and stromal cells). In chronic lymphocytic leukemia (CLL), B cells have a defect in cell death; contact with the TME in secondary lymphoid organs dramatically increases the B cells' survival via the activation of various molecular pathways, including the B cell receptor and CD40 signaling. Conversely, CLL cells increase the permissiveness of the TME by inducing changes in the ECM, secreted factors, and bystander cells. Recently, the extracellular vesicles (EVs) released into the TME have emerged as key arbiters of cross-talk with tumor cells. The EVs' cargo can contain various bioactive substances (including metabolites, proteins, RNA, and DNA); upon delivery to target cells, these substances can induce intracellular signaling and drive tumor progression. Here, we review recent research on the biology of EVs in CLL. EVs have diagnostic/prognostic significance and clearly influence the clinical outcome of CLL; hence, from the perspective of blocking CLL-TME interactions, EVs are therapeutic targets. The identification of novel EV inhibitors might pave the way to the development of novel combination treatments for CLL and the optimization of currently available treatments (including immunotherapy).
Collapse
Affiliation(s)
- Kenza Dubois
- Sorbonne Université, Université Paris Cité, Inserm, Centre de Recherche des Cordeliers, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France
| | - Mariana Tannoury
- Sorbonne Université, Université Paris Cité, Inserm, Centre de Recherche des Cordeliers, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France
| | - Brigitte Bauvois
- Sorbonne Université, Université Paris Cité, Inserm, Centre de Recherche des Cordeliers, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France
| | - Santos A Susin
- Sorbonne Université, Université Paris Cité, Inserm, Centre de Recherche des Cordeliers, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France
| | - Delphine Garnier
- Sorbonne Université, Université Paris Cité, Inserm, Centre de Recherche des Cordeliers, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France
| |
Collapse
|
6
|
Chen L, Xie T, Wei B, Di DL. Tumour‑derived exosomes and their emerging roles in leukaemia (Review). Exp Ther Med 2023; 25:126. [PMID: 36845960 PMCID: PMC9947586 DOI: 10.3892/etm.2023.11825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
Exosomes are small vesicles with a diameter of ~40-100 nm that are secreted by the majority of endogenous cells under normal and pathological conditions. They contain abundant proteins, lipids, microRNAs, and biomolecules such as signal transduction molecules, adhesion factors and cytoskeletal proteins, and play an important role in exchanging materials and transmitting information between cells. Recent studies have shown that exosomes are involved in the pathophysiology of leukaemia by affecting the bone marrow microenvironment, apoptosis, tumour angiogenesis, immune escape and chemotherapy resistance. Furthermore, exosomes are potential biomarkers and drug carriers for leukaemia, impacting the diagnosis and treatment of leukaemia. The present study describes the biogenesis and general characteristics of exosomes, and then highlight the emerging roles of exosomes in different types of leukaemia. Finally, the value of clinical application of exosomes as biomarkers and drug carriers is discussed with the aim to provide novel strategies for the treatment of leukaemia.
Collapse
Affiliation(s)
- Lei Chen
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Ting Xie
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Bing Wei
- Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Da-Lin Di
- Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China,Correspondence to: Dr Da-Lin Di, Department of Immunology, Weifang Medical University, 7166 Baotongxi Street, Weifang, Shandong 261053, P.R. China . com
| |
Collapse
|
7
|
Gargiulo E, Viry E, Morande PE, Largeot A, Gonder S, Xian F, Ioannou N, Benzarti M, Kleine Borgmann FB, Mittelbronn M, Dittmar G, Nazarov PV, Meiser J, Stamatopoulos B, Ramsay AG, Moussay E, Paggetti J. Extracellular Vesicle Secretion by Leukemia Cells In Vivo Promotes CLL Progression by Hampering Antitumor T-cell Responses. Blood Cancer Discov 2023; 4:54-77. [PMID: 36108149 PMCID: PMC9816815 DOI: 10.1158/2643-3230.bcd-22-0029] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/04/2022] [Accepted: 09/07/2022] [Indexed: 01/11/2023] Open
Abstract
Small extracellular vesicle (sEV, or exosome) communication among cells in the tumor microenvironment has been modeled mainly in cell culture, whereas their relevance in cancer pathogenesis and progression in vivo is less characterized. Here we investigated cancer-microenvironment interactions in vivo using mouse models of chronic lymphocytic leukemia (CLL). sEVs isolated directly from CLL tissue were enriched in specific miRNA and immune-checkpoint ligands. Distinct molecular components of tumor-derived sEVs altered CD8+ T-cell transcriptome, proteome, and metabolome, leading to decreased functions and cell exhaustion ex vivo and in vivo. Using antagomiRs and blocking antibodies, we defined specific cargo-mediated alterations on CD8+ T cells. Abrogating sEV biogenesis by Rab27a/b knockout dramatically delayed CLL pathogenesis. This phenotype was rescued by exogenous leukemic sEV or CD8+ T-cell depletion. Finally, high expression of sEV-related genes correlated with poor outcomes in CLL patients, suggesting sEV profiling as a prognostic tool. In conclusion, sEVs shape the immune microenvironment during CLL progression. SIGNIFICANCE sEVs produced in the leukemia microenvironment impair CD8+ T-cell mediated antitumor immune response and are indispensable for leukemia progression in vivo in murine preclinical models. In addition, high expression of sEV-related genes correlated with poor survival and unfavorable clinical parameters in CLL patients. See related commentary by Zhong and Guo, p. 5. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Ernesto Gargiulo
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Elodie Viry
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Pablo Elías Morande
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Anne Largeot
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Susanne Gonder
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Feng Xian
- Proteomics of Cellular Signaling, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Nikolaos Ioannou
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Mohaned Benzarti
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Felix Bruno Kleine Borgmann
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Department of Neurosurgery, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg.,Luxembourg Centre of Neuropathology, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Michel Mittelbronn
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Luxembourg Centre of Neuropathology, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Luxembourg Centre of Neuropathology, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,National Center of Pathology, Laboratoire national de santé (LNS), Dudelange, Luxembourg.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Gunnar Dittmar
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Proteomics of Cellular Signaling, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Petr V. Nazarov
- Multiomics Data Science Group, Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Alan G. Ramsay
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Etienne Moussay
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Corresponding Authors: Jérôme Paggetti, Department of Cancer Research, Luxembourg Institute of Health, 6, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg. Phone: 352-26970-344; E-mail: ; and Etienne Moussay. Phone: 352-26970-232; E-mail:
| | - Jérôme Paggetti
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Corresponding Authors: Jérôme Paggetti, Department of Cancer Research, Luxembourg Institute of Health, 6, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg. Phone: 352-26970-344; E-mail: ; and Etienne Moussay. Phone: 352-26970-232; E-mail:
| |
Collapse
|
8
|
Hu YZ, Li Q, Wang PF, Li XP, Hu ZL. Multiple functions and regulatory network of miR-150 in B lymphocyte-related diseases. Front Oncol 2023; 13:1140813. [PMID: 37182123 PMCID: PMC10172652 DOI: 10.3389/fonc.2023.1140813] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
MicroRNAs (miRNAs) play vital roles in the post-transcriptional regulation of gene expression. Previous studies have shown that miR-150 is a crucial regulator of B cell proliferation, differentiation, metabolism, and apoptosis. miR-150 regulates the immune homeostasis during the development of obesity and is aberrantly expressed in multiple B-cell-related malignant tumors. Additionally, the altered expression of MIR-150 is a diagnostic biomarker of various autoimmune diseases. Furthermore, exosome-derived miR-150 is considered as prognostic tool in B cell lymphoma, autoimmune diseases and immune-mediated disorders, suggesting miR-150 plays a vital role in disease onset and progression. In this review, we summarized the miR-150-dependent regulation of B cell function in B cell-related immune diseases.
Collapse
Affiliation(s)
- Yue-Zi Hu
- Clinical Laboratory, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Qiao Li
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
| | - Peng-Fei Wang
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhao-Lan Hu,
| |
Collapse
|
9
|
Karami Fath M, Azami J, Jaafari N, Akbari Oryani M, Jafari N, Karim poor A, Azargoonjahromi A, Nabi-Afjadi M, Payandeh Z, Zalpoor H, Shanehbandi D. Exosome application in treatment and diagnosis of B-cell disorders: leukemias, multiple sclerosis, and arthritis rheumatoid. Cell Mol Biol Lett 2022; 27:74. [PMID: 36064322 PMCID: PMC9446857 DOI: 10.1186/s11658-022-00377-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
Exosomes, known as a type of extracellular vesicles (EVs), are lipid particles comprising heterogeneous contents such as nucleic acids, proteins, and DNA. These bi-layered particles are naturally released into the extracellular periphery by a variety of cells such as neoplastic cells. Given that exosomes have unique properties, they can be used as vectors and carriers of biological and medicinal particles like drugs for delivering to the desired areas. The proteins and RNAs being encompassed by the circulating exosomes in B-cell malignancies are deemed as the promising sources for diagnostic and prognostic biomarkers, as well as therapeutic agents. Exosomes can also provide a "snapshot" view of the tumor and metastatic landscape at any particular time. Further, clinical research has shown that exosomes are produced by immune cells such as dendritic cells can stimulate the immune system, so these exosomes can be used in antitumor vaccines. Despite the great potential of exosomes in the fields of diagnostic and treatment, further studies are in need for these purposes to reach a convergence notion. This review highlights the applications of exosomes in multiple immune-related diseases, including chronic lymphocytic leukemia, multiple sclerosis, and arthritis rheumatoid, as well as explaining sundry aspects of exosome therapy and the function of exosomes in diagnosing diseases.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Jalil Azami
- Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh Jafari
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | | | | | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
- Immunology Research center, Tabriz University of Medical Science, Tabriz, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Dariush Shanehbandi
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
- Immunology Research center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
10
|
Bazzoni R, Tanasi I, Turazzi N, Krampera M. Update on the role and utility of extracellular vesicles in hematological malignancies. Stem Cells 2022; 40:619-629. [PMID: 35442447 DOI: 10.1093/stmcls/sxac032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/12/2022] [Indexed: 11/12/2022]
Abstract
Extracellular vesicles (EVs) are membrane-surrounded cellular particles released by virtually any cell type, containing numerous bioactive molecules, including lipids, proteins, and nucleic acids. EVs act as a very efficient intercellular communication system by releasing their content into target cells, thus affecting their fate and influencing several biological processes. EVs are released both in physiological and pathological conditions, including several types of cancers. In hematological malignancies (HM), EVs have emerged as new critical players, contributing to tumor-to-stroma, stroma-to-tumor, and tumor-to-tumor cell communication. Therefore, EVs have been shown to play a crucial role in the pathogenesis and clinical course of several HM, contributing to tumor development, progression, and drug resistance. Furthermore, tumor EVs can reprogram the bone marrow (BM) microenvironment and turn it into a sanctuary, in which cancer cells suppress both the normal hematopoiesis and the immunological anti-tumor activity, conferring a therapy-resistant phenotype. Due to their physicochemical characteristics and pro-tumor properties, EVs have been suggested as new diagnostic biomarkers, therapeutic targets, and pharmacological nanocarriers. This review aims to provide an update on the pathogenetic contribution and the putative therapeutic utility of EVs in hematological diseases.
Collapse
Affiliation(s)
- Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, P. le Scuro 10, 37134 Verona, Italy
| | - Ilaria Tanasi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, P. le Scuro 10, 37134 Verona, Italy
| | - Nice Turazzi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, P. le Scuro 10, 37134 Verona, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, P. le Scuro 10, 37134 Verona, Italy
| |
Collapse
|
11
|
Drillis G, Goulielmaki M, Spandidos DA, Aggelaki S, Zoumpourlis V. Non-coding RNAs (miRNAs and lncRNAs) and their roles in lymphogenesis in all types of lymphomas and lymphoid malignancies. Oncol Lett 2021; 21:393. [PMID: 33777216 PMCID: PMC7988683 DOI: 10.3892/ol.2021.12654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Contemporary developments in molecular biology have been combined with discoveries on the analysis of the role of all non-coding RNAs (ncRNAs) in human diseases, particularly in cancer, by examining their roles in cells. Currently, included among these common types of cancer, are all the lymphomas and lymphoid malignancies, which represent a diverse group of neoplasms and malignant disorders. Initial data suggest that non-coding RNAs, particularly long ncRNAs (lncRNAs), play key roles in oncogenesis and that lncRNA-mediated biology is an important key pathway to cancer progression. Other non-coding RNAs, termed microRNAs (miRNAs or miRs), are very promising cancer molecular biomarkers. They can be detected in tissues, cell lines, biopsy material and all biological fluids, such as blood. With the number of well-characterized cancer-related lncRNAs and miRNAs increasing, the study of the roles of non-coding RNAs in cancer is bringing forth new hypotheses of the biology of cancerous cells. For the first time, to the best of our knowledge, the present review provides an up-to-date summary of the recent literature referring to all diagnosed ncRNAs that mediate the pathogenesis of all types of lymphomas and lymphoid malignancies.
Collapse
Affiliation(s)
- Georgios Drillis
- 1st Internal Medicine Clinic, Medical School, Laiko University Hospital of Athens, 115 27 Athens, Greece
| | - Maria Goulielmaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 116 35 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Sofia Aggelaki
- Oncology Unit, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 116 35 Athens, Greece
| |
Collapse
|
12
|
Katsaraki K, Karousi P, Artemaki PI, Scorilas A, Pappa V, Kontos CK, Papageorgiou SG. MicroRNAs: Tiny Regulators of Gene Expression with Pivotal Roles in Normal B-Cell Development and B-Cell Chronic Lymphocytic Leukemia. Cancers (Basel) 2021; 13:cancers13040593. [PMID: 33546241 PMCID: PMC7913321 DOI: 10.3390/cancers13040593] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary The involvement of miRNAs in physiological cellular processes has been well documented. The development of B cells, which is dictated by a miRNA-transcription factor regulatory network, suggests a typical process partly orchestrated by miRNAs. Besides their contribution in normal hematopoiesis, miRNAs have been severally reported to be implicated in hematological malignancies, a typical example of which is B-cell chronic lymphocytic leukemia (B-CLL). Numerous studies have attempted to highlight the regulatory role of miRNAs in B-CLL or establish some of them as molecular biomarkers or therapeutic targets. Thus, a critical review summarizing the current knowledge concerning the multifaceted role of miRNAs in normal B-cell development and B-CLL progression, prognosis, and therapy, is urgent. Moreover, this review aims to highlight important miRNAs in both normal B-cell development and B-CLL and discuss future perspectives concerning their regulatory potential and establishment in clinical practice. Abstract MicroRNAs (miRNAs) represent a class of small non-coding RNAs bearing regulatory potency. The implication of miRNAs in physiological cellular processes has been well documented so far. A typical process orchestrated by miRNAs is the normal B-cell development. A stage-specific expression pattern of miRNAs has been reported in the developmental procedure, as well as interactions with transcription factors that dictate B-cell development. Besides their involvement in normal hematopoiesis, miRNAs are severally implicated in hematological malignancies, a typical paradigm of which is B-cell chronic lymphocytic leukemia (B-CLL). B-CLL is a highly heterogeneous disease characterized by the accumulation of abnormal B cells in blood, bone marrow, lymph nodes, and spleen. Therefore, timely, specific, and sensitive assessment of the malignancy is vital. Several studies have attempted to highlight the remarkable significance of miRNAs as regulators of gene expression, biomarkers for diagnosis, prognosis, progression, and therapy response prediction, as well as molecules with potential therapeutic utility. This review seeks to outline the linkage between miRNA function in normal and malignant hematopoiesis by demonstrating the main benchmarks of the implication of miRNAs in the regulation of normal B-cell development, and to summarize the key findings about their value as regulators, biomarkers, or therapeutic targets in B-CLL.
Collapse
Affiliation(s)
- Katerina Katsaraki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (K.K.); (P.K.); (P.I.A.); (A.S.)
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (K.K.); (P.K.); (P.I.A.); (A.S.)
| | - Pinelopi I. Artemaki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (K.K.); (P.K.); (P.I.A.); (A.S.)
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (K.K.); (P.K.); (P.I.A.); (A.S.)
| | - Vasiliki Pappa
- Second Department of Internal Medicine and Research Unit, University General Hospital “Attikon”, 12462 Athens, Greece;
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (K.K.); (P.K.); (P.I.A.); (A.S.)
- Correspondence: (C.K.K.); (S.G.P.); Tel.: +30-210-727-4616 (C.K.K.); +30-210-583-2519 (S.G.P.)
| | - Sotirios G. Papageorgiou
- Second Department of Internal Medicine and Research Unit, University General Hospital “Attikon”, 12462 Athens, Greece;
- Correspondence: (C.K.K.); (S.G.P.); Tel.: +30-210-727-4616 (C.K.K.); +30-210-583-2519 (S.G.P.)
| |
Collapse
|
13
|
Elcheva IA, Spiegelman VS. The Role of cis- and trans-Acting RNA Regulatory Elements in Leukemia. Cancers (Basel) 2020; 12:E3854. [PMID: 33419342 PMCID: PMC7766907 DOI: 10.3390/cancers12123854] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
RNA molecules are a source of phenotypic diversity and an operating system that connects multiple genetic and metabolic processes in the cell. A dysregulated RNA network is a common feature of cancer. Aberrant expression of long non-coding RNA (lncRNA), micro RNA (miRNA), and circular RNA (circRNA) in tumors compared to their normal counterparts, as well as the recurrent mutations in functional regulatory cis-acting RNA motifs have emerged as biomarkers of disease development and progression, opening avenues for the design of novel therapeutic approaches. This review looks at the progress, challenges and future prospects of targeting cis-acting and trans-acting RNA elements for leukemia diagnosis and treatment.
Collapse
Affiliation(s)
- Irina A. Elcheva
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, P.O. Box 850, MC H085, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, P.O. Box 850, MC H085, 500 University Drive, Hershey, PA 17033-0850, USA
| |
Collapse
|
14
|
Nisticò N, Maisano D, Iaccino E, Vecchio E, Fiume G, Rotundo S, Quinto I, Mimmi S. Role of Chronic Lymphocytic Leukemia (CLL)-Derived Exosomes in Tumor Progression and Survival. Pharmaceuticals (Basel) 2020; 13:E244. [PMID: 32937811 PMCID: PMC7557731 DOI: 10.3390/ph13090244] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a B-lymphoproliferative disease, which consists of the abnormal proliferation of CD19/CD5/CD20/CD23 positive lymphocytes in blood and lymphoid organs, such as bone marrow, lymph nodes and spleen. The neoplastic transformation and expansion of tumor B cells are commonly recognized as antigen-driven processes, mediated by the interaction of antigens with the B cell receptor (BCR) expressed on the surface of B-lymphocytes. The survival and progression of CLL cells largely depend on the direct interaction of CLL cells with receptors of accessory cells of tumor microenvironment. Recently, much interest has been focused on the role of tumor release of small extracellular vesicles (EVs), named exosomes, which incorporate a wide range of biologically active molecules, particularly microRNAs and proteins, which sustain the tumor growth. Here, we will review the role of CLL-derived exosomes as diagnostic and prognostic biomarkers of the disease.
Collapse
Affiliation(s)
- Nancy Nisticò
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Domenico Maisano
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Salvatore Rotundo
- Department of Health Sciences–University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Selena Mimmi
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| |
Collapse
|
15
|
Fuertes T, Ramiro AR, de Yebenes VG. miRNA-Based Therapies in B Cell Non-Hodgkin Lymphoma. Trends Immunol 2020; 41:932-947. [PMID: 32888820 DOI: 10.1016/j.it.2020.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
Non-Hodgkin lymphoma (NHL) is a diverse class of hematological cancers, many of which arise from germinal center (GC)-experienced B cells. Thus GCs, the sites of antibody affinity maturation triggered during immune responses, also provide an environment that facilitates B cell oncogenic transformation. miRNAs provide attractive and mechanistically different strategies to treat these malignancies based on their potential for simultaneous modulation of multiple targets. Here, we discuss the scientific rationale for miRNA-based therapeutics in B cell neoplasias and review recent advances that may help establish a basis for novel candidate miRNA-based therapies for B cell-NHL (B-NHL).
Collapse
Affiliation(s)
- Teresa Fuertes
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Virginia G de Yebenes
- Universidad Complutense de Madrid School of Medicine, Department of Immunology, Ophthalmology and ENT, 12 de Octubre Health Research Institute (imas12), Madrid, Spain.
| |
Collapse
|
16
|
Casabonne D, Benavente Y, Seifert J, Costas L, Armesto M, Arestin M, Besson C, Hosnijeh FS, Duell EJ, Weiderpass E, Masala G, Kaaks R, Canzian F, Chirlaque MD, Perduca V, Mancini FR, Pala V, Trichopoulou A, Karakatsani A, La Vecchia C, Sánchez MJ, Tumino R, Gunter MJ, Amiano P, Panico S, Sacerdote C, Schmidt JA, Boeing H, Schulze MB, Barricarte A, Riboli E, Olsen A, Tjønneland A, Vermeulen R, Nieters A, Lawrie CH, de Sanjosé S. Serum levels of hsa-miR-16-5p, hsa-miR-29a-3p, hsa-miR-150-5p, hsa-miR-155-5p and hsa-miR-223-3p and subsequent risk of chronic lymphocytic leukemia in the EPIC study. Int J Cancer 2020; 147:1315-1324. [PMID: 32012253 DOI: 10.1002/ijc.32894] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/18/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable disease accounting for almost one-third of leukemias in the Western world. Aberrant expression of microRNAs (miRNAs) is a well-established characteristic of CLL, and the robust nature of miRNAs makes them eminently suitable liquid biopsy biomarkers. Using a nested case-control study within the European Prospective Investigation into Cancer and Nutrition (EPIC), the predictive values of five promising human miRNAs (hsa-miR-16-5p, hsa-miR-29a-3p, hsa-miR-150-5p, hsa-miR-155-5p and hsa-miR-223-3p), identified in a pilot study, were examined in serum of 224 CLL cases (diagnosed 3 months to 18 years after enrollment) and 224 matched controls using Taqman based assays. Conditional logistic regressions were applied to adjust for potential confounders. The median time from blood collection to CLL diagnosis was 10 years (p25-p75: 7-13 years). Overall, the upregulation of hsa-miR-150-5p, hsa-miR-155-5p and hsa-miR-29a-3p was associated with subsequent risk of CLL [OR1∆Ct-unit increase (95%CI) = 1.42 (1.18-1.72), 1.64 (1.31-2.04) and 1.75 (1.31-2.34) for hsa-miR-150-5p, hsa-miR-155-5p and hsa-miR-29a-3p, respectively] and the strongest associations were observed within 10 years of diagnosis. However, the predictive performance of these miRNAs was modest (area under the curve <0.62). hsa-miR-16-5p and hsa-miR-223-3p levels were unrelated to CLL risk. The findings of this first prospective study suggest that hsa-miR-29a, hsa-miR-150-5p and hsa-miR-155-5p were upregulated in early stages of CLL but were modest predictive biomarkers of CLL risk.
Collapse
MESH Headings
- Biomarkers, Tumor/blood
- Case-Control Studies
- Europe/epidemiology
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology
- Male
- MicroRNAs/blood
- Middle Aged
- Odds Ratio
- Predictive Value of Tests
- Prospective Studies
- Up-Regulation
Collapse
Affiliation(s)
- Delphine Casabonne
- Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Unit of Molecular and Genetic Epidemiology in Infections and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Yolanda Benavente
- Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Unit of Molecular and Genetic Epidemiology in Infections and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Julia Seifert
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - Laura Costas
- Unit of Molecular and Genetic Epidemiology in Infections and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - María Armesto
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - María Arestin
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - Caroline Besson
- CESP, Faculté de Médecine, Université Paris-Sud, UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France
- Department of Hematology and Oncology, Hospital of Versailles, Le Chesnay, France
| | - Fatemeh S Hosnijeh
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, The Netherlands
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Eric J Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - María-Dolores Chirlaque
- Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Vittorio Perduca
- CESP, Faculté de Médecine, Université Paris-Sud, UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France
- Department of Hematology and Oncology, Hospital of Versailles, Le Chesnay, France
- Laboratoire de Mathématiques Appliquées MAP5 (UMR CNRS 8145), Université Paris Descartes, Paris, France
| | - Francesca R Mancini
- CESP, Faculté de Médecine, Université Paris-Sud, UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Valeria Pala
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | | | - Anna Karakatsani
- Hellenic Health Foundation, Athens, Greece
- Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, "ATTIKON" University Hospital, Haidari, Greece
| | - Carlo La Vecchia
- Hellenic Health Foundation, Athens, Greece
- Dept. of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Maria-Jose Sánchez
- Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Andalusian School of Public Health (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Universidad de Granada, Granada, Spain
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Azienda Sanitaria Provinciale (ASP), Ragusa, Italy
| | - Marc J Gunter
- Section of Nutrition and Metabolism, IARC, International Agency for Research on Cancer, Lyon, France
| | - Pilar Amiano
- Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, San Sebastian, Spain
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città Della Salute e Della Scienza University-Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition (DIfE) Postdam-Rehbrücke, Nuthetal, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Aurelio Barricarte
- Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Elio Riboli
- School of Public Health, Imperial College London, London, United Kingdom
| | - Anja Olsen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, The Copenhagen University, Copenhagen, Denmark
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, The Netherlands
| | - Alexandra Nieters
- Institute for Immunodeficiency (IFI) Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Charles H Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Silvia de Sanjosé
- Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Unit of Molecular and Genetic Epidemiology in Infections and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
- Reproductive Health, PATH, Seattle, WA
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW MiRNAs are critical regulators for gene expression. Numerous studies have revealed how miRNAs contribute to the pathogenesis of hematologic malignancies. RECENT FINDINGS The identification of novel miRNA regulatory factors and pathways crucial for miRNA dysregulation has been linked to hematologic malignancies. miRNA expression profiling has shown their potential to predict outcomes and treatment responses. Recently, targeting miRNA biogenesis or pathways has become a promising therapeutic strategy with recent miRNA-therapeutics being developed. SUMMARY We provide a comprehensive overview of the role of miRNAs for diagnosis, prognosis, and therapeutic potential in hematologic malignancies.
Collapse
Affiliation(s)
- Zhen Han
- Division of Dermatology, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Steven T. Rosen
- Dept of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Christiane Querfeld
- Division of Dermatology, City of Hope, Duarte, CA, USA
- Department of Pathology, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| |
Collapse
|
18
|
Dubois N, Crompot E, Meuleman N, Bron D, Lagneaux L, Stamatopoulos B. Importance of Crosstalk Between Chronic Lymphocytic Leukemia Cells and the Stromal Microenvironment: Direct Contact, Soluble Factors, and Extracellular Vesicles. Front Oncol 2020; 10:1422. [PMID: 32974152 PMCID: PMC7466743 DOI: 10.3389/fonc.2020.01422] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is caused by the accumulation of malignant B cells due to a defect in apoptosis and the presence of small population of proliferating cells principally in the lymph nodes. The abnormal survival of CLL B cells is explained by a plethora of supportive stimuli produced by the surrounding cells of the microenvironment, including follicular dendritic cells (FDCs), and mesenchymal stromal cells (MSCs). This crosstalk between malignant cells and normal cells can take place directly by cell-to-cell contact (assisted by adhesion molecules such as VLA-4 or CD100), indirectly by soluble factors (chemokines such as CXCL12, CXCL13, or CCL2) interacting with their receptors or by the exchange of material (protein, microRNAs or long non-coding RNAs) via extracellular vesicles. These different communication methods lead to different activation pathways (including BCR and NFκB pathways), gene expression modifications (chemokines, antiapoptotic protein increase, prognostic biomarkers), chemotaxis, homing in lymphoid tissues and survival of leukemic cells. In addition, these interactions are bidirectional, and CLL cells can manipulate the normal surrounding stromal cells in different ways to establish a supportive microenvironment. Here, we review this complex crosstalk between CLL cells and stromal cells, focusing on the different types of interactions, activated pathways, treatment strategies to disrupt this bidirectional communication, and the prognostic impact of these induced modifications.
Collapse
Affiliation(s)
- Nathan Dubois
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Emerence Crompot
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Department of Hematology, Jules Bordet Institute, Brussels, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Department of Hematology, Jules Bordet Institute, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
19
|
Terrinoni A, Calabrese C, Basso D, Aita A, Caporali S, Plebani M, Bernardini S. The circulating miRNAs as diagnostic and prognostic markers. Clin Chem Lab Med 2020; 57:932-953. [PMID: 30838832 DOI: 10.1515/cclm-2018-0838] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
A large portion of the human genome transcribes RNA sequences that do not code for any proteins. The first of these sequences was identified in 1993, and the best known noncoding RNAs are microRNA (miRNAs). It is now fully established that miRNAs regulate approximately 30% of the known genes that codify proteins. miRNAs are involved in several biological processes, like cell proliferation, differentiation, apoptosis and metastatization. These RNA products regulate gene expression at the post-transcriptional level, modulating or inhibiting protein expression by interacting with specific sequences of mRNAs. Mature miRNAs can be detected in blood plasma, serum and also in a wide variety of biological fluids. They can be found associated with proteins, lipids as well as enclosed in exosome vesicles. We know that circulating miRNAs (C-miRNAs) can regulate several key cellular processes in tissues different from the production site. C-miRNAs behave as endogenous mediators of RNA translation, and an extraordinary knowledge on their function has been obtained in the last years. They can be secreted in different tissue cells and associated with specific pathological conditions. Significant evidence indicates that the initiation and progression of several pathologies are "highlighted" by the presence of specific C-miRNAs, underlining their potential diagnostic relevance as clinical biomarkers. Here we review the current literature on the possible use of this new class of molecules as clinical biomarkers of diseases.
Collapse
Affiliation(s)
- Alessandro Terrinoni
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy
| | - Cosimo Calabrese
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Daniela Basso
- Department of Medicine - DIMED; Department of Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - Ada Aita
- Department of Medicine - DIMED; Department of Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - Sabrina Caporali
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mario Plebani
- Department of Medicine - DIMED; Department of Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
20
|
Sabre L, Punga T, Punga AR. Circulating miRNAs as Potential Biomarkers in Myasthenia Gravis: Tools for Personalized Medicine. Front Immunol 2020; 11:213. [PMID: 32194544 PMCID: PMC7065262 DOI: 10.3389/fimmu.2020.00213] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease caused by antibodies which attack receptors at the neuromuscular junction. One of the main difficulties in predicting the clinical course of MG is the heterogeneity of the disease, where disease progression differs greatly depending on the subgroup that the patient is classified into. MG subgroups are classified according to: age of onset [early-onset MG (EOMG; onset ≤ 50 years) versus late-onset MG (LOMG; onset > 50 years]; the presence of a thymoma (thymoma-associated MG); antibody subtype [acetylcholine receptor antibody seropositive (AChR+) and muscle-specific tyrosine kinase antibody seropositive (MuSK+)]; as well as clinical subtypes (ocular versus generalized MG). The diagnostic tests for MG, such as antibody titers, neurophysiological tests, and objective clinical fatigue score, do not necessarily reflect disease progression. Hence, there is a great need for reliable objective biomarkers in MG to follow the disease course as well as the individualized response to therapy toward personalized medicine. In this regard, circulating microRNAs (miRNAs) have emerged as promising potential biomarkers due to their accessibility in body fluids and unique profiles in different diseases, including autoimmune disorders. Several studies on circulating miRNAs in MG subtypes have revealed specific miRNA profiles in patients’ sera. In generalized AChR+ EOMG, miR-150-5p and miR-21-5p are the most elevated miRNAs, with lower levels observed upon treatment with immunosuppression and thymectomy. In AChR+ generalized LOMG, the miR-150-5p, miR-21-5p, and miR-30e-5p levels are elevated and decrease in accordance with the clinical response after immunosuppression. In ocular MG, higher levels of miR-30e-5p discriminate patients who will later generalize from those remaining ocular. In contrast, in MuSK+ MG, the levels of the let-7 miRNA family members are elevated. Studies of circulating miRNA profiles in Lrp4 or agrin antibody-seropositive MG are still lacking. This review summarizes the present knowledge of circulating miRNAs in different subgroups of MG.
Collapse
Affiliation(s)
- Liis Sabre
- Department of Neurology and Neurosurgery, University of Tartu, Tartu, Estonia.,Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anna Rostedt Punga
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Javandoost E, Firoozi-Majd E, Rostamian H, Khakpoor-Koosheh M, Mirzaei HR. Role of microRNAs in Chronic Lymphocytic Leukemia Pathogenesis. Curr Med Chem 2020; 27:282-297. [PMID: 31544709 DOI: 10.2174/0929867326666190911114842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a group of small endogenous non-coding RNAs involved in many cancers and various cellular processes such as cellular growth, DNA methylation, apoptosis, and differentiation. 13q14.3 chromosomal region contains miR-15 and miR-16 and deletion of this region is a commonly reported aberration in Chronic Lymphoblastic Leukemia (CLL), suggesting miRNAs involvement in CLL pathogenesis. MicroRNAs are known as oncogenes and tumor suppressors in CLL which may also serve as markers of onset and progression of the disease. The most prevalent form of leukemia diagnosed in adults in the western world, chronic lymphocytic leukemia, accounts for one-third of all leukemias. CLL is characterized by the presence of B Cell Malignant Clones in secondary lymphoid tissues, peripheral blood and bone marrow. The precise etiology of CLL is remained to be known, however, a number of Chromosomal Abnormalities such as deletions of 13q14.3, 11q and 17p and trisomy 12 have been detected. In this review, we offer our prospect on how miRNAs are involved in the CLL pathogenesis and disease progression. Further understanding of the underlying mechanisms and regulation of CLL pathogenesis has underscored the need for further research regarding their role in this disease.
Collapse
Affiliation(s)
- Ehsan Javandoost
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Firoozi-Majd
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosein Rostamian
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Khakpoor-Koosheh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Abstract
Even though the treatment of childhood cancer has evolved significantly in recent decades, aggressive central nervous system (CNS) tumors are still a leading cause of morbidity and mortality in this population. Consequently, the identification of molecular targets that can be incorporated into diagnostic practice, effectively predict prognosis, follow treatment response, and materialize into potential targeted therapeutic approaches are still warranted. Since the first evidence of the participation of miRNAs in cancer development and progression 20 years ago, notable progress has been made in the basic understanding of the contribution of their dysregulation as epigenetic driver of tumorigenesis. Nevertheless, among the plethora of articles in the literature, microRNA profiling of pediatric tumors are scarce. This article gives an overview of the recent advances in the diagnostic/prognostic potential of miRNAs in a selection of pediatric CNS tumors: medulloblastoma, ependymoma, pilocytic astrocytoma, glioblastoma, diffuse intrinsic pontine glioma, atypical teratoid/rhabdoid tumors, and choroid plexus tumors.
Collapse
|
23
|
Quirico L, Orso F. The power of microRNAs as diagnostic and prognostic biomarkers in liquid biopsies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:117-139. [PMID: 35582611 PMCID: PMC9090592 DOI: 10.20517/cdr.2019.103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
In the last decades, progresses in medical oncology have ameliorated the treatment of patients and their outcome. However, further improvements are still necessary, in particular for certain types of tumors such as pancreatic, gastric, and lung cancer as well as acute myeloid leukemia where early detection and monitoring of the disease are crucial for final patient outcome. Liquid biopsy represents a great advance in the field because it is less invasive, less time-consuming, and safer compared to classical biopsies and it can be useful to monitor the evolution of the disease as well as the response of patients to therapy. Liquid biopsy allows the detection of circulating tumor cells, nucleic acids, and exosomes not only in blood but also in different biological fluids: urine, saliva, pleural effusions, cerebrospinal fluid, and stool. Among the potential biomarkers detectable in liquid biopsies, microRNAs (miRNAs) are gaining more and more attention, since they are easily detectable, quite stable in biological fluids, and show high sensitivity. Many data demonstrate that miRNAs alone or in combination with other biomarkers could improve the diagnostic and prognostic power for many different tumors. Despite this, standardization of methods, sample preparation, and analysis remain challenging and a huge effort should be made to address these issues before miRNA biomarkers can enter the clinic. This review summarizes the main findings in the field of circulating miRNAs in both solid and hematological tumors.
Collapse
Affiliation(s)
- Lorena Quirico
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
- Molecular Biotechnology Center (MBC), University of Torino, Torino 10126, Italy
| | - Francesca Orso
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
- Molecular Biotechnology Center (MBC), University of Torino, Torino 10126, Italy
- Center for Complex Systems in Molecular Biology and Medicine, University of Torino, Torino 10126, Italy
| |
Collapse
|
24
|
Role of Non-Coding RNAs in the Development of Targeted Therapy and Immunotherapy Approaches for Chronic Lymphocytic Leukemia. J Clin Med 2020; 9:jcm9020593. [PMID: 32098192 PMCID: PMC7074107 DOI: 10.3390/jcm9020593] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/15/2022] Open
Abstract
In the past decade, novel targeted therapy approaches, such as BTK inhibitors and Bcl2 blockers, and innovative treatments that regulate the immune response against cancer cells, such as monoclonal antibodies, CAR-T cell therapy, and immunomodulatory molecules, have been established to provide support for the treatment of patients. However, drug resistance development and relapse are still major challenges in CLL treatment. Several studies revealed that non-coding RNAs have a main role in the development and progression of CLL. Specifically, microRNAs (miRs) and tRNA-derived small-RNAs (tsRNAs) were shown to be outstanding biomarkers that can be used to diagnose and monitor the disease and to possibly anticipate drug resistance and relapse, thus supporting physicians in the selection of treatment regimens tailored to the patient needs. In this review, we will summarize the most recent discoveries in the field of targeted therapy and immunotherapy for CLL and discuss the role of ncRNAs in the development of novel drugs and combination regimens for CLL patients.
Collapse
|
25
|
Cron MA, Maillard S, Truffault F, Gualeni AV, Gloghini A, Fadel E, Guihaire J, Behin A, Berrih-Aknin S, Le Panse R. Causes and Consequences of miR-150-5p Dysregulation in Myasthenia Gravis. Front Immunol 2019; 10:539. [PMID: 30984166 PMCID: PMC6450174 DOI: 10.3389/fimmu.2019.00539] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/27/2019] [Indexed: 12/31/2022] Open
Abstract
Autoimmune Myasthenia gravis (MG) is a chronic neuromuscular disease mainly due to antibodies against the acetylcholine receptor (AChR) at the neuromuscular junction that induce invalidating muscle weaknesses. In early-onset MG, the thymus is the effector organ and is often characterized by B-cell infiltrations leading to ectopic germinal center (GC) development. The microRNA miR-150-5p has been previously characterized as a biomarker in MG due to its increase in the serum of patients and its decrease after thymectomy, correlated with an improvement of symptoms. Here, we investigated the causes and consequences of the miR-150 increase in the serum of early-onset MG patients. We observed that miR-150 expression was upregulated in MG thymuses in correlation with the presence of thymic B cells and showed by in situ hybridization experiments, that miR-150 was mainly expressed by cells of the mantle zone of GCs. However, we did not observe any correlation between the degree of thymic hyperplasia and the serum levels in MG patients. In parallel, we also investigated the expression of miR-150 in peripheral blood mononuclear cells (PBMCs) from MG patients. We observed that miR-150 was down-regulated, especially in CD4+ T cells compared to controls. These results suggest that the increased serum levels of miR-150 could result from a release from activated peripheral CD4+ T cells. Next, we demonstrated that the in vitro treatment of PBMCs with miR-150 or antimiR-150 oligonucleotides, respectively, decreased or increased the expression of one of its major target gene: the proto-oncogene MYB, a well-known actor of hematopoiesis. These results revealed that increased serum levels of miR-150 in MG patients could have a functional effect on PBMCs. We also showed that antimiR-150 caused increased cellular death of CD4+ and CD8+ T cells, along with the overexpression of pro-apoptotic genes targeted by miR-150 suggesting that miR-150 controlled the survival of these cells. Altogether, these results showed that miR-150 could play a role in MG both at the thymic level and in periphery by modulating the expression of target genes and peripheral cell survival.
Collapse
Affiliation(s)
- Mélanie A Cron
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology - UMRS 974, Paris, France
| | - Solène Maillard
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology - UMRS 974, Paris, France
| | - Frédérique Truffault
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology - UMRS 974, Paris, France
| | - Ambra Vittoria Gualeni
- Department of Pathology and Laboratory Medicine, Istituto Nazionale dei Tumori, Milan, Italy
| | - Annunziata Gloghini
- Department of Pathology and Laboratory Medicine, Istituto Nazionale dei Tumori, Milan, Italy
| | - Elie Fadel
- Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France
| | - Julien Guihaire
- Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France
| | - Anthony Behin
- Neuromuscular Disease Center, AIM, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Sonia Berrih-Aknin
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology - UMRS 974, Paris, France
| | - Rozen Le Panse
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology - UMRS 974, Paris, France
| |
Collapse
|
26
|
Lu Q, Guo Z, Qian H. Role of microRNA-150-5p/SRCIN1 axis in the progression of breast cancer. Exp Ther Med 2019; 17:2221-2229. [PMID: 30867707 PMCID: PMC6396020 DOI: 10.3892/etm.2019.7206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022] Open
Abstract
In China, breast cancer is the most commonly occurring cancer in women. MicroRNAs (miRs) are a group of endogenous small non-coding RNAs, which serve a role in many biological processes through the regulation of target genes. In the current study, miR-150-5p expression was significantly up-regulated in breast cancer tissues and cell lines. To investigate the cellular function and underlying molecular mechanism of miR-150-5p in breast cancer, TargetScan7.2 was used to identify miR-150-5p target genes. SRC kinase signaling inhibitor 1 (SRCIN1) was identified as a direct target gene of miR-150-5p and the current study demonstrated that SRCIN1 was negatively regulated by miR-150-5p in breast cancer cells. Furthermore, SRCIN1 expression was significantly down-regulated in breast cancer tissues and cell lines. Taken together, these results demonstrated that there was a negative association between miR-150-5p and SRCIN1 in breast cancer. The CCK-8 and Transwell assays were used to examine breast cancer cell viability, invasion and migration ability. The current study demonstrated that over-expression of miR-150-5p enhanced breast cancer cell proliferation, invasion and migration. In addition, miR-150-5p over-expression increased the expression of mesenchymal cell markers (vimentin, N-cadherin and β-catenin) and decreased the expression of epithelial cell markers (E-cadherin and zonula occludens-1). By contrast, miR-150-5p knockdown inhibited breast cancer cell viability, invasion and migration. Additionally, miR-150-5p knockdown decreased the expression of mesenchymal cell markers and increased the expression of epithelial cell markers. Taken together, these results suggest that the miR-150-5p/SRCIN1 axis may be a potential target in the treatment of breast cancer.
Collapse
Affiliation(s)
- Qingfu Lu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhaoji Guo
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Haixin Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
27
|
Mardani R, Jafari Najaf Abadi MH, Motieian M, Taghizadeh-Boroujeni S, Bayat A, Farsinezhad A, Gheibi Hayat SM, Motieian M, Pourghadamyari H. MicroRNA in leukemia: Tumor suppressors and oncogenes with prognostic potential. J Cell Physiol 2018; 234:8465-8486. [PMID: 30515779 DOI: 10.1002/jcp.27776] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023]
Abstract
Leukemia is known as a progressive malignant disease, which destroys the blood-forming organs and results in adverse effects on the proliferation and development of leukocytes and their precursors in the blood and bone marrow. There are four main classes of leukemia including acute leukemia, chronic leukemia, myelogenous leukemia, and lymphocytic leukemia. Given that a variety of internal and external factors could be associated with the initiation and progression of different types of leukemia. One of the important factors is epigenetic regulators such as microRNAs (miRNAs) and long noncoding RNAs (ncRNA). MiRNAs are short ncRNAs which act as tumor suppressor (i.e., miR-15, miR-16, let-7, and miR-127) or oncogene (i.e., miR-155, miR-17-92, miR-21, miR-125b, miR-93, miR-143-p3, miR-196b, and miR-223) in leukemia. It has been shown that deregulation of these molecules are associated with the initiation and progression of leukemia. Hence, miRNAs could be used as potential therapeutic candidates in the treatment of patients with leukemia. Moreover, increasing evidence revealed that miRNAs could be used as diagnostic and prognostic biomarkers in monitoring patients in early stages of disease or after received chemotherapy regimen. It seems that identification and development of new miRNAs could pave to the way to the development new therapeutic platforms for patients with leukemia. Here, we summarized various miRNAs as tumor suppressor and oncogene which could be introduced as therapeutic targets in treatment of leukemia.
Collapse
Affiliation(s)
- Rajab Mardani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mahsa Motieian
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sima Taghizadeh-Boroujeni
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Borujen, Iran
| | - Amir Bayat
- Hematology, Oncology, and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Cell and Molecular Biology, College of Science, Kish International Campus, University of Tehran, Kish, Iran
| | - Alireza Farsinezhad
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahtab Motieian
- Department of Internal Medicine, Montefiore New Rochelle Hospital, Albert Einstein College of Medicine, New York, New York
| | - Hossein Pourghadamyari
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
28
|
Delsin LEA, Salomao KB, Pezuk JA, Brassesco MS. Expression profiles and prognostic value of miRNAs in retinoblastoma. J Cancer Res Clin Oncol 2018; 145:1-10. [PMID: 30350021 DOI: 10.1007/s00432-018-2773-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/16/2018] [Indexed: 01/01/2023]
Abstract
Current cure rates for retinoblastoma (RB) are very high in developed countries. Nonetheless, in less privileged places worldwide, delayed diagnosis and refusal to adhere to treatment still endure an obstacle to improve overall patient survival. Thus, the access to consistent biomarkers for diagnosis at an earlier stage may facilitate treatment and improve outcomes. Over recent years, much attention has been focused on miRNAs, key post-transcriptional regulators that when altered, largely contribute to carcinogenesis and tumor progression. Many of the ~ 2500 microRNAs described in humans have shown differential expression profiles in tumors. In this review, we summarize current data about the roles of miRNAs in RB along with their value as diagnostic/prognostic factors using electronic databases such as PubMed. We reviewed the importance of miRNA in RB biology and discussed their implications in clinic intervention. Several miRNAs have pointed out reliable diagnostic and prognostic molecular biomarkers. The emergence of targeted therapies has significantly improved cancer treatment. In the near future, the modulation of miRNAs will represent a good treatment strategy.
Collapse
Affiliation(s)
| | | | - Julia Alejandra Pezuk
- Anhanguera University of Sao Paulo, UNIAN, Av. Raimundo Pereira de Magalhaes 3305, Sao Paulo, SP, CEP 05145-200, Brazil.
| | - Maria Sol Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
29
|
Solé C, Arnaiz E, Lawrie CH. MicroRNAs as Biomarkers of B-cell Lymphoma. Biomark Insights 2018; 13:1177271918806840. [PMID: 30349178 PMCID: PMC6195009 DOI: 10.1177/1177271918806840] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
B-cell lymphomas represent a diverse group of neoplasms classified primarily by histopatholgy and are often challenging to accurately diagnose. Despite having been recognized less than 20 years ago, microRNAs (miRNAs) have emerged as one of the most promising class of cancer molecular biomarkers and are particularly attractive as they can be readily detected in formalin-fixed paraffin-embedded biopsy material and biological fluids such as blood. Many of the identified B-cell lymphoma miRNA biomarkers also play crucial regulatory roles in normal B-cell development. Below we consider the identity, function, and biomarker potential of miRNAs in B-cell lymphoma and most importantly the barriers that remain to be overcome if they are really to become part of routine clinical practice.
Collapse
Affiliation(s)
- Carla Solé
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - Esther Arnaiz
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - Charles H Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain.,Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, UK.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
30
|
miR-150 downregulation contributes to the high-grade transformation of follicular lymphoma by upregulating FOXP1 levels. Blood 2018; 132:2389-2400. [PMID: 30213873 DOI: 10.1182/blood-2018-06-855502] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
Follicular lymphoma (FL) is a common indolent B-cell malignancy with a variable clinical course. An unfavorable event in its course is histological transformation to a high-grade lymphoma, typically diffuse large B-cell lymphoma. Recent studies show that genetic aberrations of MYC or its overexpression are associated with FL transformation (tFL). However, the precise molecular mechanisms underlying tFL are unclear. Here we performed the first profiling of expression of microRNAs (miRNAs) in paired samples of FL and tFL and identified 5 miRNAs as being differentially expressed. We focused on one of these miRNAs, namely miR-150, which was uniformly downmodulated in all examined tFLs (∼3.5-fold), and observed that high levels of MYC are responsible for repressing miR-150 in tFL by binding in its upstream region. This MYC-mediated repression of miR-150 in B cells is not dependent on LIN28A/B proteins, which influence the maturation of miR-150 precursor (pri-miR-150) in myeloid cells. We also demonstrated that low miR-150 levels in tFL lead to upregulation of its target, namely FOXP1 protein, which is a known positive regulator of cell survival, as well as B-cell receptor and NF-κB signaling in malignant B cells. We revealed that low levels of miR-150 and high levels of its target, FOXP1, are associated with shorter overall survival in FL and suggest that miR-150 could serve as a good biomarker measurable in formalin-fixed paraffin-embedded tissue. Overall, our study demonstrates the role of the MYC/miR-150/FOXP1 axis in malignant B cells as a determinant of FL aggressiveness and its high-grade transformation.
Collapse
|
31
|
Carvalho de Oliveira J, Molinari Roberto G, Baroni M, Bezerra Salomão K, Alejandra Pezuk J, Sol Brassesco M. MiRNA Dysregulation in Childhood Hematological Cancer. Int J Mol Sci 2018; 19:ijms19092688. [PMID: 30201877 PMCID: PMC6165337 DOI: 10.3390/ijms19092688] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/03/2018] [Accepted: 09/08/2018] [Indexed: 12/14/2022] Open
Abstract
For decades, cancer biology focused largely on the protein-encoding genes that have clear roles in tumor development or progression: cell-cycle control, apoptotic evasion, genome instability, drug resistance, or signaling pathways that stimulate growth, angiogenesis, or metastasis. MicroRNAs (miRNAs), however, represent one of the more abundant classes of cell modulators in multicellular organisms and largely contribute to regulating gene expression. Many of the ~2500 miRNAs discovered to date in humans regulate vital biological processes, and their aberrant expression results in pathological and malignant outcomes. In this review, we highlight what has been learned about the roles of miRNAs in some of the most common human pediatric leukemias and lymphomas, along with their value as diagnostic/prognostic factors.
Collapse
Affiliation(s)
| | - Gabriela Molinari Roberto
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Mirella Baroni
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Karina Bezerra Salomão
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Julia Alejandra Pezuk
- Programa de Pós-graduação em Farmácia, Anhanguera University of São Paulo, UNIAN/SP, 05145-200 São Paulo, Brazil.
| | - María Sol Brassesco
- Departamento de Biologia, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, Brazil.
| |
Collapse
|
32
|
Papageorgiou SG, Diamantopoulos MA, Kontos CK, Bouchla A, Vasilatou D, Bazani E, Scorilas A, Pappa V. MicroRNA-92a-3p overexpression in peripheral blood mononuclear cells is an independent predictor of prolonged overall survival of patients with chronic lymphocytic leukemia. Leuk Lymphoma 2018; 60:658-667. [PMID: 29911923 DOI: 10.1080/10428194.2018.1461861] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
MicroRNA-92a-3p (miR-92a-3p) derives from the oncogenic miR-17/92 cluster and its highly homologous miR-106a/363 cluster. miR-92a-3p regulates the expression of key transcription factors such as HIF1 and inhibits SOCS1 to enhance the anti-apoptotic STAT3/IL6 signaling pathway. In this study, we assessed the putative usefulness of miR-92a-3p as a prognostic and/or diagnostic biomarker in chronic lymphocytic leukemia (CLL). For this purpose, total RNA was extracted from mononuclear cells isolated from the peripheral blood of 88 CLL patients and 36 non-leukemic blood donors, was polyadenylated and reversely transcribed. miR-92a-3p expression was quantified using an accurate qPCR method. miR-92a-3p levels were significantly lower in peripheral blood mononuclear cells of CLL patients. Overall survival (OS) analysis revealed that high miR-92a-3p expression predicts significantly prolonged OS of CLL patients. Interestingly, miR-92a-3p overexpression remains a significant prognosticator in subgroups of CLL patients with distinct prognosis. In conclusion, miR-92a-3p overexpression is a potential surrogate biomarker of favorable outcome of CLL patients.
Collapse
Affiliation(s)
- Sotirios G Papageorgiou
- a Second Department of Internal Medicine and Research Unit , University General Hospital "Attikon" , Athens , Greece
| | - Marios A Diamantopoulos
- b Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens , Athens , Greece
| | - Christos K Kontos
- b Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens , Athens , Greece
| | - Anthi Bouchla
- a Second Department of Internal Medicine and Research Unit , University General Hospital "Attikon" , Athens , Greece
| | - Diamantina Vasilatou
- a Second Department of Internal Medicine and Research Unit , University General Hospital "Attikon" , Athens , Greece
| | - Efthymia Bazani
- a Second Department of Internal Medicine and Research Unit , University General Hospital "Attikon" , Athens , Greece
| | - Andreas Scorilas
- b Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens , Athens , Greece
| | - Vasiliki Pappa
- a Second Department of Internal Medicine and Research Unit , University General Hospital "Attikon" , Athens , Greece
| |
Collapse
|
33
|
Elevated miR-20b-5p expression in peripheral blood mononuclear cells: A novel, independent molecular biomarker of favorable prognosis in chronic lymphocytic leukemia. Leuk Res 2018; 70:1-7. [PMID: 29715621 DOI: 10.1016/j.leukres.2018.04.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 12/21/2022]
Abstract
MicroRNA-20b-5p (miR-20b-5p) is part of the miR-106a/363 cluster and a member of the cancer-related miR-17 family. miR-20b-5p regulates important transcription factors, including hypoxia-inducible factor 1 (HIF1) and signal transducer and activator of transcription 3 (STAT3). Recently, the dysregulation of miR-20b-5p expression has been observed in many B-cell lymphomas and T-cell leukemias. In this research study, we examined the putative prognostic value of miR-20b-5p in CLL. Therefore, total RNA was isolated from peripheral blood mononuclear cells (PBMCs) collected from 88 CLL patients; next, total RNA was polyadenylated and first-strand cDNA was synthesized, using an oligo-dT-adapter primer. miR-20b-5p expression was quantified using an in-house-developed real-time quantitative PCR assay. Kaplan-Meier OS analysis and bootstrap univariate Cox regression showed that high miR-20b-5p expression predicts better OS for CLL patients (p < 0.001). Interestingly, miR-20b-5p overexpression retains its favorable prognostic role in CLL patients of intermediate risk or stratified according to established prognostic factors [CD38 expression and mutational status of the immunoglobulin heavy chain variable (IGHV) region]. In conclusion, miR-20b-5p is a potential independent molecular biomarker of favorable prognosis in CLL.
Collapse
|
34
|
Xing L, Xu W, Qu Y, Zhao M, Zhu H, Liu H, Wang H, Su X, Shao Z. miR-150 regulates B lymphocyte in autoimmune hemolytic anemia/Evans syndrome by c-Myb. Int J Hematol 2018; 107:666-672. [DOI: 10.1007/s12185-018-2429-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 01/11/2023]
|
35
|
Papageorgiou SG, Kontos CK, Diamantopoulos MA, Bouchla A, Glezou E, Bazani E, Pappa V, Scorilas A. MicroRNA-155-5p Overexpression in Peripheral Blood Mononuclear Cells of Chronic Lymphocytic Leukemia Patients Is a Novel, Independent Molecular Biomarker of Poor Prognosis. DISEASE MARKERS 2017; 2017:2046545. [PMID: 29463948 PMCID: PMC5804407 DOI: 10.1155/2017/2046545] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/20/2017] [Indexed: 12/28/2022]
Abstract
MicroRNA-155-5p (miR-155-5p) is a proinflammatory, oncogenic miRNA, involved in various physiological processes, including hematopoiesis, immunity, inflammation, and cell lineage differentiation. It regulates important transcription factors, such as E2F2, hypoxia-inducible factor 1 (HIF1), and FOXO3. Recently, the dysregulation of miR-155-5p expression has been linked to chronic lymphocytic leukemia (CLL) pathogenesis. In this research study, we investigated the potential diagnostic and prognostic value of miR-155-5p in CLL. To achieve our goal, we isolated total RNA from peripheral blood mononuclear cells (PBMCs) collected from 88 CLL patients and 36 nonleukemic blood donors and performed polyadenylation of total RNA and reverse transcription. Next, we quantified miR-155-5p levels using an in-house-developed real-time quantitative PCR method, before proceeding to extensive biostatistical analysis. Thus, it appears that miR-155-5p is significantly overexpressed in PBMCs of CLL patients and can distinguish them from nonleukemic population. Kaplan-Meier OS analysis and bootstrap univariate Cox regression showed that high miR-155-5p expression predicts inferior OS for CLL patients (p < 0.001). Interestingly, miR-155-5p overexpression retains its unfavorable prognostic role in CLL patients stratified according to established prognostic factors [CD38 expression and mutational status of the immunoglobulin heavy chain variable region (IGHV)]. Thus, miR-155-5p appears as a promising, independent molecular biomarker of unfavorable prognosis in CLL.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Male
- MicroRNAs/blood
- MicroRNAs/genetics
- Middle Aged
- Prognosis
- Survival Analysis
- Up-Regulation
Collapse
Affiliation(s)
- Sotirios G. Papageorgiou
- Second Department of Internal Medicine and Research Unit, University General Hospital “Attikon”, 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Marios A. Diamantopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Anthi Bouchla
- Second Department of Internal Medicine and Research Unit, University General Hospital “Attikon”, 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Eirini Glezou
- Second Department of Internal Medicine and Research Unit, University General Hospital “Attikon”, 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Efthymia Bazani
- Second Department of Internal Medicine and Research Unit, University General Hospital “Attikon”, 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Vasiliki Pappa
- Second Department of Internal Medicine and Research Unit, University General Hospital “Attikon”, 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| |
Collapse
|
36
|
Solé C, Larrea E, Di Pinto G, Tellaetxe M, Lawrie CH. miRNAs in B-cell lymphoma: Molecular mechanisms and biomarker potential. Cancer Lett 2017; 405:79-89. [DOI: 10.1016/j.canlet.2017.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/06/2017] [Accepted: 07/14/2017] [Indexed: 12/16/2022]
|
37
|
Evaluation of MiR-15a and MiR-16-1 as prognostic biomarkers in chronic lymphocytic leukemia. Biomed Pharmacother 2017; 92:864-869. [DOI: 10.1016/j.biopha.2017.05.144] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022] Open
|
38
|
Crompot E, Van Damme M, Pieters K, Vermeersch M, Perez-Morga D, Mineur P, Maerevoet M, Meuleman N, Bron D, Lagneaux L, Stamatopoulos B. Extracellular vesicles of bone marrow stromal cells rescue chronic lymphocytic leukemia B cells from apoptosis, enhance their migration and induce gene expression modifications. Haematologica 2017; 102:1594-1604. [PMID: 28596280 PMCID: PMC5685228 DOI: 10.3324/haematol.2016.163337] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 06/05/2017] [Indexed: 12/13/2022] Open
Abstract
Interactions between chronic lymphocytic leukemia (CLL) B cells and the bone marrow (BM) microenvironment play a major function in the physiopathology of CLL. Extracellular vesicles (EVs), which are composed of exosomes and microparticles, play an important role in cell communication. However, little is known about their role in CLL / microenvironment interactions. In the present study, EVs purified by ultracentrifugation from BM mesenchymal stromal cell (BM-MSC) cultures were added to CLL B cells. After their integration into CLL B cells, we observed a decrease of leukemic cell spontaneous apoptosis and an increase in their chemoresistance to several drugs, including fludarabine, ibrutinib, idelalisib and venetoclax after 24 hours. Spontaneous (P=0.0078) and stromal cell-derived factor 1α -induced migration capacities of CLL B cells were also enhanced (P=0.0020). A microarray study highlighted 805 differentially expressed genes between leukemic cells cultured with or without EVs. Of these, genes involved in the B-cell receptor pathway such as CCL3/4, EGR1/2/3, and MYC were increased. Interestingly, this signature presents important overlaps with other microenvironment stimuli such as B-cell receptor stimulation, CLL/nurse-like cells co-culture or those provided by a lymph node microenvironment. Finally, we showed that EVs from MSCs of leukemic patients also rescue leukemic cells from spontaneous or drug-induced apoptosis. However, they induce a higher migration and also a stronger gene modification compared to EVs of healthy MSCs. In conclusion, we show that EVs play a crucial role in CLL B cells/BM microenvironment communication.
Collapse
Affiliation(s)
- Emerence Crompot
- Laboratory of Clinical Cell Therapy, Université Libre de Bruxelles (ULB), Jules Bordet Institute, Belgium
| | - Michael Van Damme
- Laboratory of Clinical Cell Therapy, Université Libre de Bruxelles (ULB), Jules Bordet Institute, Belgium
| | - Karlien Pieters
- Laboratory of Clinical Cell Therapy, Université Libre de Bruxelles (ULB), Jules Bordet Institute, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - David Perez-Morga
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Philippe Mineur
- Department of Hemato-Oncology, Grand Hôpital de Charleroi, Gilly, Belgium
| | - Marie Maerevoet
- Hematology Department, Jules Bordet Institute, Brussels, Belgium
| | | | - Dominique Bron
- Hematology Department, Jules Bordet Institute, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Université Libre de Bruxelles (ULB), Jules Bordet Institute, Belgium
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, Université Libre de Bruxelles (ULB), Jules Bordet Institute, Belgium
| |
Collapse
|
39
|
Fatima F, Nawaz M. Vesiculated Long Non-Coding RNAs: Offshore Packages Deciphering Trans-Regulation between Cells, Cancer Progression and Resistance to Therapies. Noncoding RNA 2017; 3:ncrna3010010. [PMID: 29657282 PMCID: PMC5831998 DOI: 10.3390/ncrna3010010] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized vesicles secreted from virtually all cell types and are thought to transport proteins, lipids and nucleic acids including non-coding RNAs (ncRNAs) between cells. Since, ncRNAs are central to transcriptional regulation during developmental processes; eukaryotes might have evolved novel means of post-transcriptional regulation by trans-locating ncRNAs between cells. EV-mediated transportation of regulatory elements provides a novel source of trans-regulation between cells. In the last decade, studies were mainly focused on microRNAs; however, functions of long ncRNA (lncRNA) have been much less studied. Here, we review the regulatory roles of EV-linked ncRNAs, placing a particular focus on lncRNAs, how they can foster dictated patterns of trans-regulation in recipient cells. This refers to envisaging novel mechanisms of epigenetic regulation, cellular reprogramming and genomic instability elicited in recipient cells, ultimately permitting the generation of cancer initiating cell phenotypes, senescence and resistance to chemotherapies. Conversely, such trans-regulation may introduce RNA interference in recipient cancer cells causing the suppression of oncogenes and anti-apoptotic proteins; thus favoring tumor inhibition. Collectively, understanding these mechanisms could be of great value to EV-based RNA therapeutics achieved through gene manipulation within cancer cells, whereas the ncRNA content of EVs from cancer patients could serve as non-invasive source of diagnostic biomarkers and prognostic indicators in response to therapies.
Collapse
Affiliation(s)
- Farah Fatima
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14049-900, Brazil.
| | - Muhammad Nawaz
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14049-900, Brazil.
| |
Collapse
|
40
|
Ma P, Pan Y, Li W, Sun C, Liu J, Xu T, Shu Y. Extracellular vesicles-mediated noncoding RNAs transfer in cancer. J Hematol Oncol 2017; 10:57. [PMID: 28231804 PMCID: PMC5324273 DOI: 10.1186/s13045-017-0426-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/21/2017] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are small membranous vesicles secreted from numerous cell types and have been found involved in cell-to-cell communication by transferring noncoding RNAs (ncRNAs) including microRNAs, long noncoding RNAs, and circular RNAs. Emerging evidence shows that EV-associated ncRNAs play important roles in a wide range of diseases, particularly in cancer where they function through regulating protein expression of the pivotal genes that make contributions to tumorigenesis. Given their stability and abundance in serum, EV-associated ncRNAs can act as new diagnostic biomarkers and new therapeutic targets for cancer. Herein, we review the properties of EV-associated ncRNAs, their functions, and potential significance in cancer.
Collapse
Affiliation(s)
- Pei Ma
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Yutian Pan
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Wei Li
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Chongqi Sun
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Jie Liu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Tongpeng Xu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Yongqian Shu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
41
|
Filip AA, Grenda A, Popek S, Koczkodaj D, Michalak-Wojnowska M, Budzyński M, Wąsik-Szczepanek E, Zmorzyński S, Karczmarczyk A, Giannopoulos K. Expression of circulating miRNAs associated with lymphocyte differentiation and activation in CLL-another piece in the puzzle. Ann Hematol 2017; 96:33-50. [PMID: 27730344 PMCID: PMC5203831 DOI: 10.1007/s00277-016-2840-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/25/2016] [Indexed: 11/28/2022]
Abstract
Expression of microRNAs is altered in cancer. Circulating miRNA level assessed in body fluids commonly reflects their expression in tumor cells. In leukemias, however, both leukemic and nonleukemic cells compose circulating miRNA expression profile of peripheral blood. The latter contribution to extracellular miRNA pool may result in specific microenvironmental signaling, which promotes proliferation and survival. In our study, we used qT-PCR to assay peripheral blood serum of 22 chronic lymphocytic leukemia (CLL) patients for the expression of 84 miRNAs associated with activation and differentiation of B and T lymphocytes. Results were analyzed regarding the most important prognostic factors. We have found that the general expression of examined miRNAs in CLL patients was lower as compared to healthy volunteers. Only miR-34a-5p, miR31-5p, miR-155-5p, miR-150-5p, miR-15a-3p, and miR-29a-3p were expressed on a higher level. Alterations of expression observed in CLL patients involved miRNAs associated both with B and T lymphocyte differentiation and activation. The most important discriminating factors for all functional miRNA groups were trisomy 12, CD38 expression, B2M level, WBC, and NOTCH1 gene mutation. Correlation of expression of miRNAs related to T lymphocytes with prognostic factors proves their supportive function in a leukemic microenvironment. Further studies utilizing a larger test group of patients may warrant the identification of circulating miRNAs that are key players in intercellular interactions and should be considered in the design of microenvironment-targeted therapies.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- B-Lymphocytes/physiology
- Base Sequence
- Cell Differentiation/physiology
- Cells, Cultured
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Male
- MicroRNAs/biosynthesis
- MicroRNAs/blood
- MicroRNAs/genetics
- Middle Aged
- T-Lymphocytes/physiology
Collapse
Affiliation(s)
- Agata A Filip
- Department of Cancer Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland.
| | - Anna Grenda
- Department of Cancer Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Sylwia Popek
- Department of Cancer Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Dorota Koczkodaj
- Department of Cancer Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland
| | | | - Michał Budzyński
- Department of Cancer Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Ewa Wąsik-Szczepanek
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Szymon Zmorzyński
- Department of Cancer Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland
| | | | | |
Collapse
|
42
|
Kontos CK, Papageorgiou SG, Diamantopoulos MA, Scorilas A, Bazani E, Vasilatou D, Gkontopoulos K, Glezou E, Stavroulaki G, Dimitriadis G, Pappa V. mRNA overexpression of the hypoxia inducible factor 1 alpha subunit gene (HIF1A): An independent predictor of poor overall survival in chronic lymphocytic leukemia. Leuk Res 2016; 53:65-73. [PMID: 28038356 DOI: 10.1016/j.leukres.2016.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 12/17/2022]
Abstract
The hypoxia inducible factor 1 (HIF1) is a heterodimeric transcription factor that ultimately regulates cellular responses to changes in oxygen tension. In this study, we examined the potential diagnostic and prognostic potential of the mRNA expression of HIF1 regulatory α-subunit (HIF1A) in chronic lymphocytic leukemia (CLL). For this purpose, total RNA was isolated from peripheral blood mononuclear cells collected from 88 CLL patients and 33 non-leukemic blood donors, and poly(A)-RNA was reversely transcribed. HIF1A mRNA levels were quantified using real-time PCR. Kaplan-Meier survival analysis showed that high HIF1A mRNA expression predicts inferior overall survival for CLL patients (p=0.001). Bootstrap univariate Cox regression analysis confirmed that HIF1A mRNA overexpression is a significant unfavorable prognosticator in CLL (hazard ratio=3.75, bias-corrected and accelerated 95% confidence interval=1.43-24.36, bootstrap p<0.001), independent of other established prognostic factors, including CD38 expression, the mutational status of the immunoglobulin heavy chain variable region (IGHV), and the clinical stage (Binet or Rai stage) or risk group (p<0.001 in all cases). Interestingly, HIF1A mRNA positivity retains its unfavorable prognostic value in distinct subgroups of patients, stratified according to established prognostic factors. Thus, HIF1A mRNA overexpression can be regarded as a promising, independent molecular biomarker of unfavorable prognosis in CLL.
Collapse
Affiliation(s)
- Christos K Kontos
- Second Department of Internal Medicine and Research Unit, University General Hospital "Attikon", 1 Rimini St., Haidari, 12462 Athens, Greece; Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Sotirios G Papageorgiou
- Second Department of Internal Medicine and Research Unit, University General Hospital "Attikon", 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Efthimia Bazani
- Second Department of Internal Medicine and Research Unit, University General Hospital "Attikon", 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Diamantina Vasilatou
- Second Department of Internal Medicine and Research Unit, University General Hospital "Attikon", 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Konstantinos Gkontopoulos
- Second Department of Internal Medicine and Research Unit, University General Hospital "Attikon", 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Eirini Glezou
- Second Department of Internal Medicine and Research Unit, University General Hospital "Attikon", 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Georgia Stavroulaki
- Second Department of Internal Medicine and Research Unit, University General Hospital "Attikon", 1 Rimini St., Haidari, 12462 Athens, Greece
| | - George Dimitriadis
- Second Department of Internal Medicine and Research Unit, University General Hospital "Attikon", 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Vasiliki Pappa
- Second Department of Internal Medicine and Research Unit, University General Hospital "Attikon", 1 Rimini St., Haidari, 12462 Athens, Greece.
| |
Collapse
|
43
|
Xu DD, Zhou PJ, Wang Y, Zhang Y, Zhang R, Zhang L, Chen SH, Fu WY, Ruan BB, Xu HP, Hu CZ, Tian L, Qin JH, Wang S, Wang X, Liu QY, Ren Z, Gu XK, Li YH, Liu Z, Wang YF. miR-150 Suppresses the Proliferation and Tumorigenicity of Leukemia Stem Cells by Targeting the Nanog Signaling Pathway. Front Pharmacol 2016; 7:439. [PMID: 27917123 PMCID: PMC5114241 DOI: 10.3389/fphar.2016.00439] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 11/03/2016] [Indexed: 12/18/2022] Open
Abstract
Proliferation, a key feature of cancer cells, accounts for the majority of cancer-related diseases resulting in mortality. MicroRNAs (miRNAs) plays important post-transcriptional modulation roles by acting on multiple signaling pathways, but the underlying mechanism in proliferation and tumorigenicity is unclear. Here, we identified the role of miR-150 in proliferation and tumorigenicity in leukemia stem cells (LSCs; CD34+CD38- cells). miR-150 expression was significantly down-regulated in LSCs from leukemia cell lines and clinical samples. Functional assays demonstrated that increased miR-150 expression inhibited proliferation and clonal and clonogenic growth, enhanced chemosensitivity, and attenuated tumorigenic activity of LSCs in vitro. Transplantation animal studies revealed that miR-150 overexpression progressively abrogates tumor growth. Immunohistochemistry assays demonstrated that miR-150 overexpression enhanced caspase-3 level and reduced Ki-67 level. Moreover, luciferase reporter assays indicated Nanog is a direct and functional target of miR-150. Nanog silencing using small interfering RNA recapitulated anti-proliferation and tumorigenicity inhibition effects. Furthermore, miR-150 directly down-regulated the expression of other cancer stem cell factors including Notch2 and CTNNB1. These results provide insights into the specific biological behavior of miR-150 in regulating LSC proliferation and tumorigenicity. Targeting this miR-150/Nanog axis would be a helpful therapeutic strategy to treat acute myeloid leukemia.
Collapse
Affiliation(s)
- Dan-Dan Xu
- College of Life Science and Technology, Jinan UniversityGuangzhou, China; College of Biology Technolgy, Guangdong Food and Drug Vocational CollegeGuangzhou, China
| | - Peng-Jun Zhou
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Ying Wang
- College of Life Science and Technology, Jinan UniversityGuangzhou, China; Faculty of Environmental and Biological Engineering, Guangdong University of Petrochemical TechnologyMaoming, China
| | - Yi Zhang
- Section of Otolaryngology, Department of Surgery, Yale School of Medicine, New Haven CT, USA
| | - Rong Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center Guangzhou, China
| | - Li Zhang
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Su-Hong Chen
- College of Biology Technolgy, Guangdong Food and Drug Vocational College Guangzhou, China
| | - Wu-Yu Fu
- Faculty of Environmental and Biological Engineering, Guangdong University of Petrochemical Technology Maoming, China
| | - Bi-Bo Ruan
- Faculty of Environmental and Biological Engineering, Guangdong University of Petrochemical Technology Maoming, China
| | - Hai-Peng Xu
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Chao-Zhi Hu
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Lu Tian
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Jin-Hong Qin
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Sheng Wang
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Xiao Wang
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Qiu-Ying Liu
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Zhe Ren
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Xue-Kui Gu
- The First Affiliated Hospital, Guangzhou Hospital of Traditional Chinese Medicine Guangzhou, China
| | - Yao-He Li
- The First Affiliated Hospital, Guangzhou Hospital of Traditional Chinese Medicine Guangzhou, China
| | - Zhong Liu
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Yi-Fei Wang
- College of Life Science and Technology, Jinan University Guangzhou, China
| |
Collapse
|
44
|
Targeted deep sequencing reveals clinically relevant subclonal IgHV rearrangements in chronic lymphocytic leukemia. Leukemia 2016; 31:837-845. [PMID: 27795555 DOI: 10.1038/leu.2016.307] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/15/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
The immunoglobulin heavy-chain variable region gene (IgHV) mutational status is considered the gold standard of prognostication in chronic lymphocytic leukemia (CLL) and is currently determined by Sanger sequencing that allows the analysis of the major clone. Using next-generation sequencing (NGS), we sequenced the IgHV gene from two independent cohorts: (A) 270 consecutive patient samples obtained at diagnosis and (B) 227 patients from the UK ARCTIC-AdMIRe clinical trials. Using complementary DNA from purified CD19+CD5+ cells, we demonstrate the presence of multiple rearrangements in independent experiments and showed that 24.4% of CLL patients express multiple productive clonally unrelated IgHV rearrangements. On the basis of IgHV-NGS subclonal profiles, we defined five different categories: patients with (a) multiple hypermutated (M) clones, (b) 1 M clone, (c) a mix of M-unmutated (UM) clones, (d) 1 UM clone and (e) multiple UM clones. In population A, IgHV-NGS classification stratified patients into five different subgroups with median treatment-free survival (TFS) of >280(a), 131(b), 94(c), 29(d), 15(e) months (P<0.0001) and a median OS of >397(a), 292(b), 196(c), 137(d) and 100(e) months (P<0.0001). In population B, the poor prognosis of multiple UM patients was confirmed with a median TFS of 2 months (P=0.0038). In conclusion, IgHV-NGS highlighted one quarter of CLL patients with multiple productive IgHV subclones and improves disease stratification and raises important questions concerning the pre-leukemic cellular origin of CLL.
Collapse
|
45
|
Hocking J, Mithraprabhu S, Kalff A, Spencer A. Liquid biopsies for liquid tumors: emerging potential of circulating free nucleic acid evaluation for the management of hematologic malignancies. Cancer Biol Med 2016; 13:215-25. [PMID: 27458529 PMCID: PMC4944540 DOI: 10.20892/j.issn.2095-3941.2016.0025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Circulating free nucleic acids; cell free DNA and circulating micro-RNA, are found in the
plasma of patients with hematologic and solid malignancies at levels higher than that of
healthy individuals. In patients with hematologic malignancy cell free DNA reflects the
underlying tumor mutational profile, whilst micro-RNAs reflect genetic interference
mechanisms within a tumor and potentially the surrounding microenvironment and immune
effector cells. These circulating nucleic acids offer a potentially simple, non-invasive,
repeatable analysis that can aid in diagnosis, prognosis and therapeutic decisions in
cancer treatment.
Collapse
Affiliation(s)
- Jay Hocking
- Myeloma Research Group, Australian Center for Blood Diseases, Monash University, Melbourne 3004, Australia; Malignant Haematology & Stem Cell Transplantation Service, Alfred Hospital, Melbourne 3004, Australia
| | - Sridurga Mithraprabhu
- Myeloma Research Group, Australian Center for Blood Diseases, Monash University, Melbourne 3004, Australia
| | - Anna Kalff
- Malignant Haematology & Stem Cell Transplantation Service, Alfred Hospital, Melbourne 3004, Australia
| | - Andrew Spencer
- Myeloma Research Group, Australian Center for Blood Diseases, Monash University, Melbourne 3004, Australia; Malignant Haematology & Stem Cell Transplantation Service, Alfred Hospital, Melbourne 3004, Australia
| |
Collapse
|
46
|
Izzotti A, Carozzo S, Pulliero A, Zhabayeva D, Ravetti JL, Bersimbaev R. Extracellular MicroRNA in liquid biopsy: applicability in cancer diagnosis and prevention. Am J Cancer Res 2016; 6:1461-1493. [PMID: 27508091 PMCID: PMC4969398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 06/06/2023] Open
Abstract
One of the goals of contemporary cancer research is the development of new markers that facilitate earlier and non-invasive diagnosis. MicroRNAs are non-coding RNA molecules that regulate gene expression; studies have shown that their expression levels are altered in cancer. Recently, extra-cellular microRNAs have been detected in biological fluids and studied as possible cancer markers that can be detected by noninvasive procedures. In this review, we analyze the current understanding of extracellular miRNAs based on clinical studies to establish their possible use for the prevention of the most common tumors. Despite discrepancies among different studies of the same cancers, panels of specific extracellular microRNAs are emerging as a new tool for the secondary (selection of high-risk individuals to undergo screening) and tertiary (relapse) prevention of cancer.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of GenoaItaly
- IRCCS AOU San Martino ISTGenoa Italy
| | | | | | - Dinara Zhabayeva
- Department of General Biology and Genomics, Inst. of Cell Biology and Biotechnology, L.N. Gumyliov Eurasian National UniversityAstana, Kazakhstan
| | | | - Rakhmet Bersimbaev
- Department of General Biology and Genomics, Inst. of Cell Biology and Biotechnology, L.N. Gumyliov Eurasian National UniversityAstana, Kazakhstan
| |
Collapse
|
47
|
Yeh CH, Moles R, Nicot C. Clinical significance of microRNAs in chronic and acute human leukemia. Mol Cancer 2016; 15:37. [PMID: 27179712 PMCID: PMC4867976 DOI: 10.1186/s12943-016-0518-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/01/2016] [Indexed: 01/01/2023] Open
Abstract
Small non-coding microRNAs (miRNAs) are epigenetic regulators that target specific cellular mRNA to modulate gene expression patterns and cellular signaling pathways. miRNAs are involved in a wide range of biological processes and are frequently deregulated in human cancers. Numerous miRNAs promote tumorigenesis and cancer progression by enhancing tumor growth, angiogenesis, invasion and immune evasion, while others have tumor suppressive effects (Hayes, et al., Trends Mol Med 20(8): 460-9, 2014; Stahlhut and Slack, Genome Med 5 (12): 111, 2013). The expression profile of cancer miRNAs can be used to predict patient prognosis and clinical response to treatment (Bouchie, Nat Biotechnol 31(7): 577, 2013). The majority of miRNAs are intracellular localized, however circulating miRNAs have been detected in various body fluids and represent new biomarkers of solid and hematologic cancers (Fabris and Calin, Mol Oncol 10(3):503-8, 2016; Allegra, et al., Int J Oncol 41(6): 1897-912, 2012). This review describes the clinical relevance of miRNAs, lncRNAs and snoRNAs in the diagnosis, prognosis and treatment response in patients with chronic lymphocytic leukemia (CLL), chronic myeloid leukemia (CML), acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML) and acute adult T-cell leukemia (ATL).
Collapse
Affiliation(s)
- Chien-Hung Yeh
- Department of Pathology, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Ramona Moles
- Department of Pathology, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Christophe Nicot
- Department of Pathology, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
48
|
Abstract
Chronic lymphocytic leukemia (CLL) is a heterogeneous disease and has a highly variable clinical course with survival ranging from a couple of months to several decades. MicroRNAs (miRNAs), small non-coding RNAs that regulate transcription and translation of genes, have been found to be involved in CLL initiation, progression, and resistance to therapy. In addition, they can be used as prognostic biomarkers and as targets for novel therapies. In this review, we describe the association between miRNAs and the cytogenetic aberrations commonly found in CLL, as well as with other prognostic factors. We describe the presence of miRNAs as extracellular entities in the plasma and serum of CLL patients and discuss their role in resistance to therapy. Finally, we will explore the potential of targeted miRNA therapy for the treatment of CLL, with a special emphasis on MRX34, the first miRNA mimic that is currently being evaluated for clinical use.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Chromosome Aberrations
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Genetic Therapy/methods
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- MicroRNAs/blood
- MicroRNAs/genetics
- MicroRNAs/therapeutic use
- Prognosis
Collapse
Affiliation(s)
- Katrien Van Roosbroeck
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
49
|
Wang W, Wang X, Zhang Y, Wang D, Gao H, Wang L, Gao S. Prognostic role of microRNA-150 in various carcinomas: a meta-analysis. Onco Targets Ther 2016; 9:1371-9. [PMID: 27042106 PMCID: PMC4795660 DOI: 10.2147/ott.s97969] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective MicroRNA-150 (miR-150) was revealed to be an attractive prognostic biomarker in recent studies. However, the prognostic significance of miR-150 expression in cancer remains inconclusive. The aim of this study was to summarize the global predicting role of miR-150 in survival in patients with various carcinomas. Methods Eligible studies were identified through multiple search strategies. Data were extracted from the studies by investigating the relationship between miR-150 expression and survival in patients with cancer. A meta-analysis of the hazard ratio (HR) was then performed to evaluate the prognostic role of miR-150 in different tumors. Pooled HRs of miR-150 for overall survival and progression-free survival were calculated to measure the effect of miR-150 expression on prognosis. Results This meta-analysis included nine published studies concerning various carcinomas. Our results indicate that an elevated miR-150 expression is associated with an enhanced overall survival in the digestive tract cancer subgroup (HR =0.57, 95% confidence interval [CI]: 0.37–0.90) and a poor progression-free survival in various cancers (HR =3.08, 95% CI: 2.00–4.75). Conclusion miR-150 may have the potential to become a new useful prognostic factor to monitor cancer prognosis and progression. However, given the current insufficient relevant data, further clinical studies are needed.
Collapse
Affiliation(s)
- Wei Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Xinshuai Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Yali Zhang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Dan Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Hui Gao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Lijuan Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Shegan Gao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| |
Collapse
|
50
|
Stankova M, Kubaczkova V, Sedlarikova L, Sevcikova S. Circulating microRNA as Biomarkers in Hematological Malignancies. EXPERIENTIA SUPPLEMENTUM (2012) 2015; 106:123-138. [PMID: 26608201 DOI: 10.1007/978-3-0348-0955-9_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hematopoiesis is a highly regulated process controlled by a complex network of molecular mechanisms that simultaneously regulate differentiation, proliferation, and apoptosis of hematopoietic stem cells. Aberrant microRNA (miRNA) expression could affect normal hematopoiesis, leading to the development of hematological malignancies. Hematologic cancers, which are caused by malignant transformation of cells of the bone marrow and the lymphatic system, are usually divided into three major groups: leukemias, lymphomas, and monoclonal gammopathies. Hematologic malignancies are highly aggressive diseases with high morbidity and mortality. For these reasons, early and easily obtainable markers for diagnosis, risk stratification, and follow-up are essential for improvement of outcome and survival of these patients. Recent studies have provided new insights about the diagnostic value of expression patterns of miRNAs in serum/plasma in these diseases. While the use of circulating miRNAs is only at the experimental level, it appears to have a great potential. This chapter deals with the use of circulating miRNAs as minimally invasive biomarkers in hematologic malignancies.
Collapse
Affiliation(s)
- Monika Stankova
- Babak Myeloma Group, Department of Pathological Physiology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Veronika Kubaczkova
- Babak Myeloma Group, Department of Pathological Physiology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Lenka Sedlarikova
- Babak Myeloma Group, Department of Pathological Physiology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Sabina Sevcikova
- Babak Myeloma Group, Department of Pathological Physiology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| |
Collapse
|