1
|
Meckler JF, Levis DJ, Kong Y, O’Donnell RT, Vang DP, Tuscano JM. Fermented Wheat Germ Protein with Histone Deacetylase Inhibitor AR42 Demonstrates Enhanced Cytotoxicity against Lymphoma Cells In Vitro and In Vivo. Int J Mol Sci 2024; 25:7866. [PMID: 39063110 PMCID: PMC11277024 DOI: 10.3390/ijms25147866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Current treatments for lymphoma are plagued by substantial toxicity and the inability to overcome drug resistance, leading to eventual relapse and rationalizing the development of novel, less toxic therapeutics and drug combinations. Histone deacetylase inhibitors (HDACis) are a broad class of epigenetic modulators that have been studied in multiple tumor types, including lymphoma. Currently, HDACis are FDA-approved for treating relapsed T-cell lymphomas and multiple myeloma, with ongoing trials in other lymphomas and solid tumors. As single agents, HDACis frequently elicit toxic side effects and have limited efficacy; therefore, many current treatment strategies focus on combinations to boost efficacy while attempting to minimize toxicity. Fermented wheat germ extract (FWGE) is a complementary agent that has shown efficacy in several malignancies, including lymphoma. Here, we utilize a more potent FWGE derivative, known as fermented wheat germ protein (FWGP), in combination with the HDACi AR42, to assess for enhanced activity. We report increased in vitro killing, cell cycle arrest, and in vivo efficacy for this combination compared to each agent alone with minimal toxicity, suggesting a potentially new, minimally toxic treatment modality for lymphoma.
Collapse
Affiliation(s)
- Joshua F. Meckler
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (J.F.M.); (D.J.L.)
| | - Daniel J. Levis
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (J.F.M.); (D.J.L.)
| | - Yanguo Kong
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (J.F.M.); (D.J.L.)
| | - Robert T. O’Donnell
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (J.F.M.); (D.J.L.)
| | - Daniel P. Vang
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (J.F.M.); (D.J.L.)
| | - Joseph M. Tuscano
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (J.F.M.); (D.J.L.)
- Department of Veterans Affairs, Northern California Healthcare System, Sacramento, CA 95652, USA
| |
Collapse
|
2
|
Dias JNR, André AS, Aguiar SI, Gil S, Tavares L, Aires-da-Silva F. Immunotherapeutic Strategies for Canine Lymphoma: Changing the Odds Against Non-Hodgkin Lymphoma. Front Vet Sci 2021; 8:621758. [PMID: 34513964 PMCID: PMC8427286 DOI: 10.3389/fvets.2021.621758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
The new era of immune-oncology has brought complexities and challenges that emphasize the need to identify new strategies and models to develop successful and cost-effective therapies. The inclusion of a canine model in the drug development of cancer immunotherapies is being widely recognized as a valid solution to overcome several hurdles associated with conventional preclinical models. Driven by the success of immunotherapies in the treatment of human non-Hodgkin lymphoma (NHL) and by the remarkable similarities of canine NHL to its human counterpart, canine NHL has been one of the main focus of comparative research. Under the present review, we summarize a general overview of the challenges and prospects of today's cancer immunotherapies and the role that comparative medicine might play in solving the limitations brought by this rapidly expanding field. The state of art of both human and canine NHL and the rationale behind the use of the canine model to bridge the translational gap between murine preclinical studies and human clinical trials are addressed. Finally, a review of currently available immunotherapies for canine NHL is described, highlighting the potential of these therapeutic options.
Collapse
Affiliation(s)
| | | | | | | | | | - Frederico Aires-da-Silva
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisbon, Portugal
| |
Collapse
|
3
|
Celecoxib Prevents Doxorubicin-Induced Multidrug Resistance in Canine and Mouse Lymphoma Cell Lines. Cancers (Basel) 2020; 12:cancers12051117. [PMID: 32365663 PMCID: PMC7280963 DOI: 10.3390/cancers12051117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 11/30/2022] Open
Abstract
Background: Treatment of malignancies is still a major challenge in human and canine cancer, mostly due to the emergence of multidrug resistance (MDR). One of the main contributors of MDR is the overexpression P-glycoprotein (Pgp), which recognizes and extrudes various chemotherapeutics from cancer cells. Methods: To study mechanisms underlying the development of drug resistance, we established an in vitro treatment protocol to rapidly induce Pgp-mediated MDR in cancer cells. Based on a clinical observation showing that a 33-day-long, unplanned drug holiday can reverse the MDR phenotype of a canine diffuse large B-cell lymphoma patient, our aim was to use the established assay to prevent the emergence of drug resistance in the early stages of treatment. Results: We showed that an in vitro drug holiday results in the decrease of Pgp expression in MDR cell lines. Surprisingly, celecoxib, a known COX-2 inhibitor, prevented the emergence of drug-induced MDR in murine and canine lymphoma cell lines. Conclusions: Our findings suggest that celecoxib could significantly improve the efficiency of chemotherapy by preventing the development of MDR in B-cell lymphoma.
Collapse
|
4
|
Dias JN, Aguiar SI, Pereira DM, André AS, Gano L, Correia JD, Carrapiço B, Rütgen B, Malhó R, Peleteiro C, Goncalves J, Rodrigues CM, Gil S, Tavares L, Aires-da-Silva F. The histone deacetylase inhibitor panobinostat is a potent antitumor agent in canine diffuse large B-cell lymphoma. Oncotarget 2018; 9:28586-28598. [PMID: 29983882 PMCID: PMC6033347 DOI: 10.18632/oncotarget.25580] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/19/2018] [Indexed: 12/18/2022] Open
Abstract
Non-Hodgkin lymphoma (NHL) is one of the most common causes of cancer-related death in the United States and Europe. Although the outcome of NHL patients has improved over the last years with current therapies, the rate of mortality is still high. A plethora of new drugs is entering clinical development for NHL treatment; however, the approval of new treatments remains low due in part to the paucity of clinically relevant models for validation. Canine lymphoma shares remarkable similarities with its human counterpart, making the dog an excellent animal model to explore novel therapeutic molecules and approaches. Histone deacetylase inhibitors (HDACis) have emerged as a powerful new class of anti-cancer drugs for human therapy. To investigate HDACi antitumor properties on canine diffuse large B-cell lymphoma, a panel of seven HDACi compounds (CI-994, panobinostat, SBHA, SAHA, scriptaid, trichostatin A and tubacin) was screened on CLBL-1 canine B-cell lymphoma cell line. Our results demonstrated that all HDACis tested exhibited dose-dependent inhibitory effects on proliferation of CLBL-1 cells, while promoting increased H3 histone acetylation. Amongst all HDACis studied, panobinostat proved to be the most promising compound and was selected for further in vitro and in vivo evaluation. Panobinostat cytotoxicity was linked to H3 histone and α-tubulin acetylation, and to apoptosis induction. Importantly, panobinostat efficiently inhibited CLBL-1 xenograft tumor growth, and strongly induced acetylation of H3 histone and apoptosis in vivo. In conclusion, these results provide new data validating HDACis and, especially, panobinostat as a novel anti-cancer therapy for veterinary applications, while contributing to comparative oncology.
Collapse
Affiliation(s)
- Joana N.R. Dias
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra I. Aguiar
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Diane M. Pereira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S. André
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional, Bobadela LRS, Portugal
| | - João D.G. Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional, Bobadela LRS, Portugal
| | - Belmira Carrapiço
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Barbara Rütgen
- Department of Pathobiology, Clinical Pathology Unit, University of Veterinary Medicine, Vienna, Austria
| | - Rui Malhó
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Conceição Peleteiro
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - João Goncalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Cecília M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Solange Gil
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Luís Tavares
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Frederico Aires-da-Silva
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|