1
|
Sengprasert P, Waitayangkoon P, Kamenkit O, Sawatpanich A, Chaichana T, Wongphoom J, Ngarmukos S, Taweevisit M, Lotinun S, Tumwasorn S, Tanavalee A, Reantragoon R. Catabolic mediators from TLR2-mediated proteoglycan aggrecan peptide-stimulated chondrocytes are reduced by Lactobacillus-conditioned media. Sci Rep 2024; 14:18043. [PMID: 39103466 PMCID: PMC11300663 DOI: 10.1038/s41598-024-68404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
In osteoarthritis (OA), extracellular matrix (ECM) digestion by cartilage-degrading enzymes drives cartilage destruction and generates ECM fragments, such as proteoglycan aggrecan (PG) peptides. PG peptides have been shown to induce immunological functions of chondrocytes. However, the role of PG peptides in stimulating catabolic mediators from chondrocytes has not been investigated. Therefore, we aim to determine the effects and its mechanism by which PG peptides induce chondrocytes to produce catabolic mediators in OA. Human chondrocytes were stimulated with IFNγ and various PG peptides either (i) with or (ii) without TLR2 blockade or (iii) with Lactobacillus species-conditioned medium (LCM), a genus of bacteria with anti-inflammatory properties. Transcriptomic analysis, cartilage-degrading enzyme production and TLR2-intracellular signaling activation were investigated. Chondrocytes treated with PG peptides p16-31 and p263-280 increased expression levels of genes associated with chondrocyte hypertrophy, cartilage degradation and proteolytic enzyme production. TLR2 downstream signaling proteins (STAT3, IkBα and MAPK9) were significantly phosphorylated in p263-280 peptide-stimulated chondrocytes. MMP-1 and ADAMTS-4 were significantly reduced in p263-280 peptides-treated condition with TLR2 blockade or LCM treatment. Phosphorylation levels of IkBa, ERK1/2 and MAPK9 were significantly decreased with TLR2 blockade, but only phosphorylation levels of MAPK9 was significantly decreased with LCM treatment. Our study showed that PG peptide stimulation via TLR2 induced cartilage-degrading enzyme production via activation of MAPK, NFκB and STAT3 pathways.
Collapse
Affiliation(s)
- Panjana Sengprasert
- Immunology Division, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Bangkok, 10330, Thailand
| | - Palapun Waitayangkoon
- Immunology Division, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Bangkok, 10330, Thailand
| | - Ousakorn Kamenkit
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Ajcharaporn Sawatpanich
- Bacteriology Division, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thiamjit Chaichana
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jutamas Wongphoom
- Department of Pathology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Srihatach Ngarmukos
- Department of Orthopedics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Biologics for Knee Osteoarthritis Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Mana Taweevisit
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sutada Lotinun
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Skeletal Disorders and Enzyme Reaction Mechanism, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Somying Tumwasorn
- Bacteriology Division, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Aree Tanavalee
- Department of Orthopedics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Biologics for Knee Osteoarthritis Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rangsima Reantragoon
- Immunology Division, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Bangkok, 10330, Thailand.
- Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence in Skeletal Disorders and Enzyme Reaction Mechanism, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
2
|
Hiltzik DM, Goodwin AM, Kurapaty SS, Inglis JE, Pagadala MS, Edelstein AI, Hsu WK. The Role of the Gut Microbiome in Orthopedic Surgery-a Narrative Review. Curr Rev Musculoskelet Med 2024; 17:37-46. [PMID: 38133764 PMCID: PMC10805751 DOI: 10.1007/s12178-023-09878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE OF REVIEW The importance of the gut microbiome has received increasing attention in recent years. New literature has revealed significant associations between gut health and various orthopedic disorders, as well as the potential for interventions targeting the gut microbiome to prevent disease and improve musculoskeletal outcomes. We provide a broad overview of available literature discussing the links between the gut microbiome and pathogenesis and management of orthopedic disorders. RECENT FINDINGS Human and animal models have characterized the associations between gut microbiome dysregulation and diseases of the joints, spine, nerves, and muscle, as well as the physiology of bone formation and fracture healing. Interventions such as probiotic supplementation and fecal transplant have shown some promise in ameliorating the symptoms or slowing the progression of these disorders. We aim to aid discussions regarding optimization of patient outcomes in the field of orthopedic surgery by providing a narrative review of the available evidence-based literature involving gut microbiome dysregulation and its effects on orthopedic disease. In general, we believe that the gut microbiome is a viable target for interventions that can augment current management models and lead to significantly improved outcomes for patients under the care of orthopedic surgeons.
Collapse
Affiliation(s)
- David M Hiltzik
- Department of Orthopaedic Surgery, Northwestern University, 303 E Chicago Ave, Chicago, IL, 60622, USA
| | - Alyssa M Goodwin
- Department of Orthopaedic Surgery, Northwestern University, 303 E Chicago Ave, Chicago, IL, 60622, USA
| | - Steven S Kurapaty
- Department of Orthopaedic Surgery, Northwestern University, 303 E Chicago Ave, Chicago, IL, 60622, USA
- Department of Orthopaedic Surgery, Howard University, Washington, DC, USA
| | - Jacqueline E Inglis
- Department of Orthopaedic Surgery, Northwestern University, 303 E Chicago Ave, Chicago, IL, 60622, USA
| | - Manasa S Pagadala
- Department of Orthopaedic Surgery, Northwestern University, 303 E Chicago Ave, Chicago, IL, 60622, USA.
| | - Adam I Edelstein
- Department of Orthopaedic Surgery, Northwestern University, 303 E Chicago Ave, Chicago, IL, 60622, USA
| | - Wellington K Hsu
- Department of Orthopaedic Surgery, Northwestern University, 303 E Chicago Ave, Chicago, IL, 60622, USA
| |
Collapse
|
3
|
Rouse JR, Danner R, Wahhab A, Pereckas M, McClune ME, Steere AC, Strle K, Jutras BL, Lochhead RB. Human leukocyte antigen HLA-DR-expressing fibroblast-like synoviocytes are inducible antigen presenting cells that present autoantigens in Lyme arthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568066. [PMID: 38045407 PMCID: PMC10690166 DOI: 10.1101/2023.11.21.568066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background HLA-DR-expressing fibroblast-like synoviocytes (FLS) are a prominent cell type in synovial tissue in chronic inflammatory forms of arthritis. We recently showed that peptides from several extracellular matrix (ECM) proteins, including fibronectin-1 (FN1), contained immunogenic CD4+ T cell epitopes in patients with postinfectious Lyme arthritis (LA). However, the role of FLS in presentation of these T cell epitopes remains uncertain. Methods Primary LA FLS and primary murine FLS stimulated with interferon gamma (IFNγ), Borrelia burgdorferi, and/or B. burgdorferi peptidoglycan (PG) were assessed for properties associated with antigen presentation. HLA-DR-presented peptides from stimulated LA FLS were identified by immunopeptidomics analysis. OT-II T cells were cocultured with stimulated murine FLS in the presence of cognate ovalbumin antigen to determine the potential of FLS to act as inducible antigen presenting cells (APC). Results FLS expressed HLA-DR molecules within inflamed synovial tissue and tendons from patients with post-infectious LA patients in situ. MHC class II and costimulatory molecules were expressed by FLS following in vitro stimulation with IFNγ and B. burgdorferi and presented both foreign and self MHC-II peptides, including T cell epitopes derived from two Lyme autoantigens fibronectin-1 (FN1) and endothelial cell growth factor (ECGF). Stimulated murine FLS induced proliferation of naïve OT-II CD4+ T cells, particularly when FLS were stimulated with both IFNγ and PG. Conclusions MHC-II+ FLS are inducible APCs that can induce CD4+ T cell activation and can present Lyme autoantigens derived from ECM proteins, thereby amplifying tissue-localized autoimmune CD4+ T cell responses in LA.
Collapse
Affiliation(s)
- Joseph R Rouse
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rebecca Danner
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amanda Wahhab
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michaela Pereckas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mecaila E McClune
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Allen C Steere
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Klemen Strle
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Brandon L Jutras
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Robert B Lochhead
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Rheumatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|