1
|
de Freitas RL, Acunha RM, Bendaña-Córdoba FR, Medeiros P, Melo-Thomas L, Coimbra NC. Nitric oxide-signalling affects panic-like defensive behaviour and defensive antinociception neuromodulation in the prelimbic cerebral cortex. Brain Res 2024; 1844:149134. [PMID: 39097217 DOI: 10.1016/j.brainres.2024.149134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
RATIONALE The prelimbic division (PrL) of the medial prefrontal cortex (mPFC) is a key structure in panic. OBJECTIVES To evaluate the role of nitric oxide (NO) in defensive behaviour and antinociception. METHODS Either Nω-propyl-L-arginine (NPLA) or Carboxy-PTIO was microinjected in the PrL cortex, followed by hypothalamic treatment with bicuculline. The exploratory behaviours, defensive reactions and defensive antinociception were recorded. Encephalic c-Fos protein was immunolabelled after escape behaviour. RESULTS NPLA (an inhibition of nNOs) decreased panic-like responses and innate fear-induced antinociception. The c-PTIO (a membrane-impermeable NO scavenger) decreased the escape behaviour. PrL cortex pre-treatment with c-PTIO at all doses decreased defensive antinociception. c-Fos protein was labelled in neocortical areas, limbic system, and mesencephalic structures. CONCLUSION The NPLA and c-PTIO in the PrL/mPFC decreased the escape behaviour and defensive antinociception organised by medial hypothalamic nuclei. The oriented escape behaviour recruits neocortical areas, limbic system, and mesencephalic structures. These findings suggest that the organisation of defensive antinociception recruits NO-signalling mechanisms within the PrL cortex. Furthermore, the present findings also support the role of NO as a retrograde messenger in the PrL cortex during panic-like emotional reactions.
Collapse
Affiliation(s)
- Renato Leonardo de Freitas
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Institute of Neuroscience and Behaviour (INeC) Ophidiarium, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901, Brazil; Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy; Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Str. Gabriel Monteiro da Silva, 700, Alfenas, 37130-000 Minas Gerais (MG), Brazil.
| | - Renata Moreira Acunha
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Fernando René Bendaña-Córdoba
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Priscila Medeiros
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Department of General and Specialized Nursing, University of São Paulo at Ribeirão Preto College of Nursing (EERP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Liana Melo-Thomas
- Marburg Centre for Mind, Brain, and Behaviour (MCMBB) of the Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany; Behavioural Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, D-35032 Marburg, Germany
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Institute of Neuroscience and Behaviour (INeC) Ophidiarium, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901, Brazil.
| |
Collapse
|
2
|
Falconi-Sobrinho LL, Anjos-Garcia TD, Rebelo MA, Hernandes PM, Almada RC, Tanus-Santos JE, Coimbra NC. The anterior cingulate cortex and its interface with the dorsal periaqueductal grey regulating nitric oxide-mediated panic-like behaviour and defensive antinociception. Neuropharmacology 2024; 245:109831. [PMID: 38160873 DOI: 10.1016/j.neuropharm.2023.109831] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
The anterior cingulate cortex (ACC) Cg1 (24b) area modulates glutamate-mediated unconditioned fear and antinociception organised by hypothalamus. However, it remains unknown whether 24b area also modulates these latter defensive responses through connections with the dorsal periaqueductal grey matter (dPAG), a midbrain structure implicated in the genesis of innate fear-induced defence. The aim of this work is to examine the correlation between the behavioural effects of intra-ACC microinjections of vehicle, NMDA (1 nmol) or lidocaine (2%) with Fos protein expression and nitrergic activity in the dPAG of male C57BL/6 mice that were threatened by snakes. In addition, the 24b area-dPAG pathways were also characterised by neural tract tracing procedures. Finally, the effect of dPAG pretreatment with the neuronal nitric oxide synthase inhibitor N(omega)-propyl-l-arginine (NPLA; 0.2, 0.4 or 0.8 nmol) 10 min before 24b area treatment with NMDA on behavioural and nociceptive responses of threatened mice was studied. The activation of 24b area N-methyl-d-aspartic acid receptors facilitated escape and freezing rather than risk assessment, and enhanced Fos expression and nitrite levels in dPAG, while lidocaine decreased escape and risk assessment as well as Fos and nitrergic activity in dPAG. In addition, dPAG pretreatment with NPLA suppressed intra-24b NMDA-facilitated panicogenic effects while increased nociception. Infusions of an antegrade neurotracer into 24b area showed axonal fibres surrounding both dorsomedial and dorsolateral PAG perikarya. Neurons were identified in 24b area after deposits of a retrograde neurotracer into dPAG. Our findings suggest that the ACC/24b area modulates innate defensive responses through the recruitment of dPAG nitrergic neurons.
Collapse
Affiliation(s)
- Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Psychobiology Division, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil.
| | - Tayllon Dos Anjos-Garcia
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil; Biomedical Sciences Institute of the Federal University of Alfenas (UNIFAL), Alfenas, Minas Gerais, Brazil
| | - Macário Arosti Rebelo
- Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Paloma Molina Hernandes
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Science, Humanities and Languages, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Rafael Carvalho Almada
- Behavioural Neurosciences Institute (INeC), Psychobiology Division, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Science, Humanities and Languages, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Jose Eduardo Tanus-Santos
- Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Psychobiology Division, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil.
| |
Collapse
|
3
|
de Paula Rodrigues BM, Falconi-Sobrinho LL, de Campos AC, Kanashiro A, Coimbra NC. Panicolytic-like effects of environment enrichment on male mice threatened by Bothrops jararaca lancehead pit vipers. J Neurosci Res 2024; 102:e25300. [PMID: 38361409 DOI: 10.1002/jnr.25300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/01/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
Environment enrichment (EE) is a well-known eustress model showing beneficial effects in different psychiatric diseases, but its positive properties in panic disorders are not yet established. The confrontation between prey and predator in complex arenas has been validated as a putative panic attack model. The principal aim of this work was to investigate the role of the EE on panic-like defensive responses elicited by mice threatened by venomous snakes. After 6 weeks of exposure either to an enriched or standard environments, 36 male mice were habituated in a complex polygonal arena for snakes containing an artificial burrow and elevated platforms for escape. The animals were confronted by Bothrops jararaca for 5 min, and the following antipredatory responses were recorded: defensive attention, stretched attend posture, flat back approach, prey versus predator interaction, oriented escape behavior, time spent in a safe place, and number of crossings. Mice threatened by snakes displayed several antipredatory reactions as compared to the exploratory behavior of those animals submitted to a nonthreatening situation (toy snake) in the same environment. Notably, EE causes anxiolytic- and panicolytic-like effects significantly decreasing the defensive attention and time spent in safe places and significantly increasing both prey versus predator interaction and exploratory behavior. In conclusion, our data demonstrate that EE can alter the processing of fear modulation regarding both anxiety- and panic-like responses in a dangerous condition, significantly modifying the decision-making defensive strategy.
Collapse
Affiliation(s)
- Bruno Mangili de Paula Rodrigues
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
- NAP-USP-Neurobiology of Emotions (NuPNE) Research Center, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
- Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
- NAP-USP-Neurobiology of Emotions (NuPNE) Research Center, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
- Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
- Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil
| | - Alline Cristina de Campos
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| | - Alexandre Kanashiro
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
- Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
- Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil
- Medical Sciences Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
- NAP-USP-Neurobiology of Emotions (NuPNE) Research Center, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
- Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
- Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Neostriatum neuronal TRPV 1-signalling mediates striatal anandamide at high concentration facilitatory influence on neostriato-nigral dishinhibitory GABAergic connections. Brain Res Bull 2023; 192:128-141. [PMID: 36414159 DOI: 10.1016/j.brainresbull.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
RATIONALE Several lines of evidence have demonstrated that the cannabinoid type 1 receptor (CB1) is found in the caudate nucleus and putamen (CPu) in addition to the substantia nigra pars reticulata (SNpr). Here, we investigated the role of endocannabinoid neuromodulation of striato-nigral disinhibitory projections on the activity of nigro-collicular GABAergic pathways that control the expression of unconditioned fear-related behavioural responses elicited by microinjections of the GABAA receptor selective antagonist bicuculline (BIC) in the deep layers of the superior colliculus (dlSC). METHODS Fluorescent neural tract tracers were deposited in either CPu or in SNpr. Wistar rats received injection of vehicle, anandamide (AEA), either at low (50 pmol) or high (100 pmol) concentrations in CPu followed by bicuculline microinjections in dlSC. RESULTS Connections between CPu, the SNpr and dlSC were demonstrated. The GABAA receptor blockade in dlSC elicited panic-like behaviour. AEA at the lowest concentration caused a panicolytic-like effect that was antagonised by the CPu pretreatment with AM251 at 100 pmol. AEA at the highest concentration caused a panicogenic-like effect that was antagonised by the CPu pretreatment with 6-iodonordihydrocapsaicin (6-I-CPS) at different concentrations (0.6, 6, 60 nmol). CONCLUSION These findings suggest that while pre-synaptic CB1-signalling subserves an indirect facilitatory effect of AEA on striato-nigral pathways causing panicolytic-like responses through midbrain tectum enhanced activity, post-synaptic TRPV1-signalling in CPu mediates AEA direct activation of striato-nigral disinhibitory pathways resulting in increasing dlSC neurons activity and a panicogenic-like response. All these actions seem to depend on the interface with the nigro-collicular inhibitory GABAergic pathways.
Collapse
|
5
|
de Paula Rodrigues BM, Coimbra NC. CB 1 receptor signalling mediates cannabidiol-induced panicolytic-like effects and defensive antinociception impairment in mice threatened by Bothrops jararaca lancehead pit vipers. J Psychopharmacol 2022; 36:1384-1396. [PMID: 35946605 DOI: 10.1177/02698811221115755] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cannabis sativa-derived substances such as cannabidiol (CBD) have attracted increasing clinical interest and consist in a new perspective for treating some neurological and psychiatric diseases. AIMS The aim of this work was to investigate the effect of acute treatment with CBD on panic-like defensive responses displayed by mice threatened by the venomous snake Bothrops jararaca. METHODS Mice were habituated in the enriched polygonal arena for snake panic test. After recording the baseline responses of the tail-flick test, the prey were pretreated with intraperitoneal (i.p.) administrations of the endocannabinoid type 1 receptor (CB1) antagonist AM251 (selective cannabinoid 1 receptor antagonist with an IC50 of 8 nM) at different doses, which were followed after 10 min by i.p. treatment with CBD (3 mg/kg). Thirty minutes after treatment with CBD, mice were subjected to confrontations by B. jararaca for 5 min, and the following defensive responses were recorded: risk assessment, oriented escape behaviour, inhibitory avoidance and prey-versus-snake interactions. Immediately after the escape behaviour was exhibited, the tail-flick latencies were recorded every 5 min for 30 min. OUTCOMES Mice threatened by snakes displayed several anti-predatory defensive and innate fear-induced antinociception responses in comparison to the control. CBD significantly decreased the risk assessment and escape responses, with a consequent decrease in defensive antinociception. The CBD panicolytic effect was reversed by i.p. treatment with AM251. CONCLUSIONS These findings suggest that the anti-aversive effect of CBD depends at least in part on the recruitment of CB1 receptors.
Collapse
Affiliation(s)
- Bruno Mangili de Paula Rodrigues
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
6
|
Liu X, Huang H, Zhang Y, Wang L, Wang F. Sexual Dimorphism of Inputs to the Lateral Habenula in Mice. Neurosci Bull 2022; 38:1439-1456. [PMID: 35644002 PMCID: PMC9723051 DOI: 10.1007/s12264-022-00885-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/16/2022] [Indexed: 12/14/2022] Open
Abstract
The lateral habenula (LHb), which is a critical neuroanatomical hub and a regulator of midbrain monoaminergic centers, is activated by events resulting in negative valence and contributes to the expression of both appetitive and aversive behaviors. However, whole-brain cell-type-specific monosynaptic inputs to the LHb in both sexes remain incompletely elucidated. In this study, we used viral tracing combined with in situ hybridization targeting vesicular glutamate transporter 2 (vGlut2) and glutamic acid decarboxylase 2 (Gad2) to generate a comprehensive whole-brain atlas of inputs to glutamatergic and γ-aminobutyric acid (GABA)ergic neurons in the LHb. We found >30 ipsilateral and contralateral brain regions that projected to the LHb. Of these, there were significantly more monosynaptic LHb-projecting neurons from the lateral septum, anterior hypothalamus, dorsomedial hypothalamus, and ventromedial hypothalamus in females than in males. More interestingly, we found a stronger GABAergic projection from the medial septum to the LHb in males than in females. Our results reveal a comprehensive connectivity atlas of glutamatergic and GABAergic inputs to the LHb in both sexes, which may facilitate a better understanding of sexual dimorphism in physiological and pathological brain functions.
Collapse
Affiliation(s)
- Xue Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongren Huang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yulin Zhang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Feng Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Li X, Zhao G, Huang H, Ye J, Xu J, Zhou Y, Zhu X, Wang L, Wang F. Lifespan changes in cannabinoid 1 receptor mRNA expression in the female C57BL/6J mouse brain. J Comp Neurol 2022; 531:294-313. [PMID: 36240125 DOI: 10.1002/cne.25427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/25/2022] [Accepted: 09/23/2022] [Indexed: 11/12/2022]
Abstract
Many brain functions that underlie behavior, cognition, and emotions vary with age, as does susceptibility to neuropsychological disorders. The expression of specific genes that are involved in these functions, such as the genes encoding for oxytocin, its receptors, and apolipoprotein D, varies with age across different brain regions. The cannabinoid 1 receptor (CB1 R) is one of the most widely spread G-protein coupled receptors in the central nervous system and is increasingly recognized for its important contribution to various brain functions. Although changes in CB1 R expression with age have been reported in the male mouse brain, they have not been well investigated in the female brain. Here, we used fluorescence in situ hybridization to target CB1 R mRNA in the whole brains of female C57BL/6J mice aged 4, 6, 12, 52 (12 months) and 86 weeks (20 months), and quantified CB1 R-positive cells in 36 brain regions across the whole brain. The results showed that CB1 R-positive cells number changed with age. Specifically, CB1 R expression increased with age in some subregions of the cortex, decreased with age in the lateral septal area, and reached its lowest level at 52 weeks in the thalamus, hypothalamus, and hindbrain subregions. Cluster analysis revealed that some brain regions shared similar temporal characteristics in CB1 R-positive cell number across the lifespan. Our results provide evidence that investigation of the neural basis of age-related characteristics of female brain functions is not only warranted but required.
Collapse
Affiliation(s)
- Xulin Li
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Gaoyang Zhao
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongren Huang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jialin Ye
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Junfeng Xu
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Zhou
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Liping Wang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Feng Wang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| |
Collapse
|
8
|
Almada RC, Falconi-Sobrinho LL, da Silva JA, Wotjak CT, Coimbra NC. Augmented anandamide signalling in the substantia nigra pars reticulata mediates panicolytic-like effects in mice confronted by Crotalus durissus terrificus pit vipers. Psychopharmacology (Berl) 2022; 239:2753-2769. [PMID: 35650304 DOI: 10.1007/s00213-022-06127-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 03/26/2022] [Indexed: 12/30/2022]
Abstract
RATIONALE The endocannabinoid modulation of fear and anxiety due to the on-demand synthesis and degradation is supported by a large body of research. Although it has been proposed that anandamide (AEA) in the substantia nigra pars reticulata (SNpr) seems to be important for the organisation of innate fear-related behaviours, a role for endogenous AEA has yet to be clarified. METHODS Mice were treated with the fatty acid amide hydrolase (FAAH) selective inhibitor URB597 at different concentrations (0.01, 0.1, 1 nmol/0.1 µL) in the SNpr and confronted by rattlesnakes (Crotalus durissus terrificus). The most effective dose of URB597 (1 nmol) was also preceded by microinjections of the CB1 receptor antagonist AM251 (0.1 nmol) into the SNpr, and mice were then confronted by the venomous snake. RESULTS URB597 (0.1 and 1 nmol) in the SNpr decreased the expression of defensive behaviours such as defensive attention, escape, and time spent inside the burrow of mice confronted by rattlesnakes. Moreover, pretreatment of SNpr with AM251 suppressed these antiaversive effects of URB597 in this midbrain structure. CONCLUSION Overall, these data clearly indicate that the panicolytic consequences of endogenous AEA enhancement in the SNpr are mediated by CB1 receptor signalling.
Collapse
Affiliation(s)
- Rafael C Almada
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Department of Biological Sciences, School of Science, Humanities and Languages, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Behavioural Neurosciences Institute (INeC), São Paulo, Ribeirão Preto, Brazil.,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana A da Silva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Behavioural Neurosciences Institute (INeC), São Paulo, Ribeirão Preto, Brazil
| | - Carsten T Wotjak
- Laboratory of Neuronal Plasticity, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Central Nervous System Diseases Research, Boehringer Ingelheim Pharmaceuticals Gesellschaft Mit Beschränkter Haftung & Compagnie Kommanditgesellschaft, Biberach an der Riß, Germany
| | - Norberto C Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil. .,Behavioural Neurosciences Institute (INeC), São Paulo, Ribeirão Preto, Brazil. .,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil. .,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
9
|
Dos Anjos-Garcia T, Kanashiro A, de Campos AC, Coimbra NC. Environmental Enrichment Facilitates Anxiety in Conflict-Based Tests but Inhibits Predator Threat-Induced Defensive Behaviour in Male Mice. Neuropsychobiology 2022; 81:225-236. [PMID: 35026760 DOI: 10.1159/000521184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Environmental enrichment (EE) is a useful and sophisticated tool that improves rodents' well-being by stimulating social behaviour and cognitive, motor, and sensory functions. Exposure to EE induces neuroplasticity in different brain areas, including the limbic system, which has been implicated in the control of anxiety and fear. However, the effects of EE on ethologically relevant naturalistic behaviours, such as those displayed by prey in the presence of predators, remain largely unexplored. MATERIAL AND METHODS In the present study, we investigated anxiety- and panic attack-like behaviours in a predator (cat)-prey confrontation paradigm and compared them with those in classical assays, such as the elevated plus-maze (EPM), marble-burying, and open field tests (OFTs), using C57BL/6J male mice housed in enriched or standard environments for 6 weeks. RESULTS We observed that EE exposure caused enhancement of the levels of anxiety-like behaviours in the EPM and OFTs, increasing risk assessment (an anxiety-related response), and decreasing escape (a panic attack-like response) behaviours during exposure to the predator versus prey confrontation paradigm. CONCLUSION Taken together, our findings suggest that enriched external environments can modify the processing of fear- and anxiety-related stimuli in dangerous situations, changing the decision-making defensive strategy.
Collapse
Affiliation(s)
- Tayllon Dos Anjos-Garcia
- Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil.,Behavioural Neurosciences Institute (INeC), São Paulo, Brazil.,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, São Paulo, Brazil
| | - Alexandre Kanashiro
- Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil.,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, São Paulo, Brazil.,Division of Neurology, Department of Neuroscience and Behavioural Sciences, Post-Graduation Program in Neurology/Neurosciences, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
| | - Alline Cristina de Campos
- Department of Pharmacology, Pharmacology of Neuroplasticity Laboratory, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Norberto Cysne Coimbra
- Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil.,Behavioural Neurosciences Institute (INeC), São Paulo, Brazil.,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, São Paulo, Brazil.,Division of Neurology, Department of Neuroscience and Behavioural Sciences, Post-Graduation Program in Neurology/Neurosciences, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
| |
Collapse
|
10
|
Ferreira-Sgobbi R, de Figueiredo RM, Frias AT, Matthiesen M, Batistela MF, Falconi-Sobrinho LL, Vilela-Costa HH, Sá SI, Lovick TA, Zangrossi H, Coimbra NC. Panic-like responses of female Wistar rats confronted by Bothrops alternatus pit vipers, or exposure to acute hypoxia: Effect of oestrous cycle. Eur J Neurosci 2021; 55:32-48. [PMID: 34850475 DOI: 10.1111/ejn.15548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/22/2021] [Accepted: 11/14/2021] [Indexed: 02/02/2023]
Abstract
Anxiety-related diseases are more than twice as common in women than in men, and in women, symptoms may be exacerbated during the late luteal phase of the menstrual cycle. Despite this, most research into the underlying mechanisms, which drives drug development, have been carried out using male animals. In an effort to redress this imbalance, we compared responses of male and female Wistar rats during exposure to two unconditioned threatening stimuli that evoke panic-related defensive behaviours: confrontation with a predator (Bothrops alternatus) and acute exposure to hypoxia (7% O2 ). Threatened by venomous snake, male and female rats initially displayed defensive attention, risk assessment, and cautious interaction with the snake, progressing to defensive immobility to overt escape. Both males and females displayed higher levels of risk assessment but less interaction with the predator. They also spent more time in the burrow, displaying inhibitory avoidance, and more time engaged in defensive attention, and non-oriented escape behaviour. In females, anxiety-like behaviour was most pronounced in the oestrous and proestrus phases whereas panic-like behaviour was more pronounced during the dioestrus phase, particularly during late dioestrus. Acute hypoxia evoked panic-like behaviour (undirected jumping) in both sexes, but in females, responsiveness in late dioestrus was significantly greater than at other stages of the cycle. The results reveal that females respond in a qualitatively similar manner to males during exposure to naturally occurring threatening stimuli, but the responses of females is oestrous cycle dependent with a significant exacerbation of panic-like behaviour in the late dioestrus phase.
Collapse
Affiliation(s)
- Renata Ferreira-Sgobbi
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,Laboratory of Neuropsychopharmacology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,Department of Psychology, Division of Psychobiology, Ribeirão Preto School of Philosophy, Sciences and Literature of the University of São Paulo, Ribeirão Preto, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo, Ribeirão Preto, Brazil.,Behaviour of Snakes Division-MEDUSA Project, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil
| | - Rebeca Machado de Figueiredo
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo, Ribeirão Preto, Brazil
| | - Alana Tercino Frias
- Laboratory of Neuropsychopharmacology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| | - Melina Matthiesen
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,Laboratory of Neuropsychopharmacology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| | - Matheus Fitipaldi Batistela
- Laboratory of Neuropsychopharmacology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo, Ribeirão Preto, Brazil.,Behaviour of Snakes Division-MEDUSA Project, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil.,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo, Ribeirão Preto, Brazil
| | - Heloísa Helena Vilela-Costa
- Laboratory of Neuropsychopharmacology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| | - Susana Isabel Sá
- Unidade de Anatomia, Departamento de Biomedicina, Faculdade de Medicina da Universidade de Porto, Porto, Portugal
| | - Thelma Anderson Lovick
- Behaviour of Snakes Division-MEDUSA Project, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Hélio Zangrossi
- Laboratory of Neuropsychopharmacology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo, Ribeirão Preto, Brazil.,Behaviour of Snakes Division-MEDUSA Project, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo, Ribeirão Preto, Brazil.,Behaviour of Snakes Division-MEDUSA Project, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil.,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
11
|
Soares VPMN, de Andrade TGCS, Canteras NS, Coimbra NC, Wotjak CT, Almada RC. Orexin 1 and 2 Receptors in the Prelimbic Cortex Modulate Threat Valuation. Neuroscience 2021; 468:158-167. [PMID: 34126185 DOI: 10.1016/j.neuroscience.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
The ability to distinguish between threatening (repulsors), neutral and appetitive stimuli (attractors) stimuli is essential for survival. The orexinergic neurons of hypothalamus send projections to the limbic structures, such as different subregions of the medial prefrontal cortex (mPFC), suggesting that the orexinergic mechanism in the prelimbic cortex (PL) is involved in the processing of fear and anxiety. We investigated the role of orexin receptors type 1 (OX1R) and type 2 (OX2R) in the PL in such processes upon confrontation with an erratically moving robo-beetle in mice. The selective blockade of OX1R and OX2R in the PL with SB 334867 (3, 30, 300 nM) and TCS OX2 29 (3, 30, 300 nM), respectively, did not affect general exploratory behavior or reactive fear such as avoidance, jumping or freezing, but significantly enhances tolerance and approach behavior at the highest dose of each antagonist tested (300 nM). We interpret these findings as evidence for an altered cognitive appraisal of the potential threatening stimulus. Consequently, the orexin system seems to bias the perception of stimuli towards danger or threat via OX1R and OX2R in the PL.
Collapse
Affiliation(s)
- Victor P M N Soares
- Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Telma G C S de Andrade
- Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Newton S Canteras
- Department of Anatomy, Biomedical Sciences Institute of the University of São Paulo (ICB-USP), São Paulo, São Paulo, Brazil
| | - Norberto C Coimbra
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil; Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carsten T Wotjak
- Neuronal Plasticity Research Group, Max Planck Institute of Psychiatry, Munich, Germany; Central Nervous System Diseases Research, Boehringer Ingelheim Pharmaceuticals Die Gesellschaft mit Beschränkter Haftung & Compagnie Kommanditgesellschaft, Biberach Riss, Germany
| | - Rafael C Almada
- Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (UNESP), Assis, São Paulo, Brazil; Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
12
|
Falconi-Sobrinho LL, Dos Anjos-Garcia T, Coimbra NC. Nitric oxide-mediated defensive and antinociceptive responses organised at the anterior hypothalamus of mice are modulated by glutamatergic inputs from area 24b of the cingulate cortex. J Psychopharmacol 2021; 35:78-90. [PMID: 33300404 DOI: 10.1177/0269881120967881] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous studies suggested that Cg1 area of the cingulate cortex of rats controls glutamate-mediated fear-induced defensive behaviour and antinociception organised at the posterior hypothalamus. In turn, microinjection of the nitric oxide donor SIN-1 into the anterior hypothalamus of mice produced defensive behaviours and fear-induced antinociception. However, it remains unknown whether Cg1 also modulates the latter mechanisms in mice. AIMS The present study examined the influence of Cg1 on SIN1-evoked fear-induced defensive behaviour and antinociception organised at the anterior hypothalamus of mice. METHODS The fear-like behavioural and antinociceptive responses to the microinjection of SIN-1 (300 nmol) into the anterior hypothalamus were evaluated after the microinjection of either N-methyl-D-aspartic acid receptor agonist (0.1, 1 and 10 nmol) or physiological saline into the cingulate cortex of C57BL/6 male mice. In addition, neurotracing and immunohistochemistry were used to characterise Cg1-anterior hypothalamus glutamatergic pathways. RESULTS The data showed that activation of Cg1 N-methyl-D-aspartic acid receptors increased escape while reducing freezing and antinociceptive responses to SIN-1 microinjections into the anterior hypothalamus. Anterograde neural tract tracer co-localised with VGLUT2-labelled fibres suggests these responses are mediated by glutamatergic synapses at the anterior hypothalamus. CONCLUSIONS In contrast with previous studies showing that Cg1 facilitates both escape and antinociception to chemical stimulation of the posterior hypothalamus in rats, the present data suggest that Cg1 facilitates escape while inhibiting defensive antinociception produced by the microinjection of SIN-1 in the anterior hypothalamus of mice. Accordingly, Cg1 may have opposite effects on antinociceptive responses organised in the anterior and posterior hypothalamus of mice and rats, respectively.
Collapse
Affiliation(s)
- Luiz Luciano Falconi-Sobrinho
- Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brasil.,NAP-USP-Neurobiology of Emotions Research Centre, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brasil.,Behavioural Neurosciences Institute, Ribeirão Preto, São Paulo, Brasil
| | - Tayllon Dos Anjos-Garcia
- Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brasil.,NAP-USP-Neurobiology of Emotions Research Centre, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Norberto Cysne Coimbra
- Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brasil.,NAP-USP-Neurobiology of Emotions Research Centre, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brasil.,Behavioural Neurosciences Institute, Ribeirão Preto, São Paulo, Brasil
| |
Collapse
|