1
|
Ermler S, Kortenkamp A. Systematic review of associations of polychlorinated biphenyl (PCB) exposure with declining semen quality in support of the derivation of reference doses for mixture risk assessments. Environ Health 2022; 21:94. [PMID: 36217156 PMCID: PMC9552438 DOI: 10.1186/s12940-022-00904-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Mixture risk assessments require reference doses for common health endpoints of all the chemicals to be considered together. In support of a mixture risk assessment for male reproductive health, we conducted a systematic review of the literature on associations between exposures to Polychlorinated Biphenyls (PCBs) and declines in semen quality. PCBs can act as Aryl-hydrocarbon Receptor (AhR)-agonists and Androgen Receptor (AR)-antagonists, both mechanisms which can affect sperm parameters. PCBs and other AR-antagonists can produce additive combination effects. Based on these observations our objective was to systematically gather data from animal and human studies to derive a reference dose for declines in semen quality for individual PCB. METHODS We systematically reviewed and evaluated the evidence in human epidemiological and experimental animal studies on associations between PCBs and deteriorations in semen quality. Human data and findings from animal studies with PCB mixtures were considered as supporting evidence. Information for individual congeners from animal studies was required for inclusion in mixture risk assessment. Using a robust confidence rating approach, we identified suitable studies to derive reference doses for individual PCB congeners. RESULTS Evaluation of human epidemiological studies revealed several reports of adverse effects on sperm parameters linked to PCB exposures, although some studies reported improved semen quality. Our review of experimental animal studies found that treatments with PCBs affected semen quality, in most cases adversely. We found robust evidence that PCB-118 and -169 were linked to declines in semen quality. Evidence for adverse effects of PCB-126, -132, -149, and -153 was moderate, whereas for PCB-77 it was slight and for PCB-180 indeterminate. Using widely accepted risk assessment procedures, we estimated reference dose values of 0.0029 µg/kg/day for PCB-118 and 0.00533 µg/kg/day for PCB-169. In addition, we derived values for PCB-126: 0.000073 µg/kg/day, PCB-132: 0.0228 µg/kg/day, PCB-149: 0.656 µg/kg/day, and PCB-153: 0.0058 µg/kg/day. CONCLUSIONS We found robust evidence for links between PCB exposure and deteriorations in semen quality, and derived reference doses for a set of congeners. We intend to use these values in combination with congener-specific exposure data in a mixture risk assessment for declines in semen quality, involving several other antiandrogenic chemicals.
Collapse
Affiliation(s)
- Sibylle Ermler
- College of Health, Medicine and Life Sciences, Centre for Pollution Research and Policy, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.
| | - Andreas Kortenkamp
- College of Health, Medicine and Life Sciences, Centre for Pollution Research and Policy, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| |
Collapse
|
2
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Fürst P, Håkansson H, Halldorsson T, Lundebye AK, Pohjanvirta R, Rylander L, Smith A, van Loveren H, Waalkens-Berendsen I, Zeilmaker M, Binaglia M, Gómez Ruiz JÁ, Horváth Z, Christoph E, Ciccolallo L, Ramos Bordajandi L, Steinkellner H, Hoogenboom LR. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J 2018; 16:e05333. [PMID: 32625737 PMCID: PMC7009407 DOI: 10.2903/j.efsa.2018.5333] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of dioxins (PCDD/Fs) and DL-PCBs in feed and food. The data from experimental animal and epidemiological studies were reviewed and it was decided to base the human risk assessment on effects observed in humans and to use animal data as supportive evidence. The critical effect was on semen quality, following pre- and postnatal exposure. The critical study showed a NOAEL of 7.0 pg WHO2005-TEQ/g fat in blood sampled at age 9 years based on PCDD/F-TEQs. No association was observed when including DL-PCB-TEQs. Using toxicokinetic modelling and taking into account the exposure from breastfeeding and a twofold higher intake during childhood, it was estimated that daily exposure in adolescents and adults should be below 0.25 pg TEQ/kg bw/day. The CONTAM Panel established a TWI of 2 pg TEQ/kg bw/week. With occurrence and consumption data from European countries, the mean and P95 intake of total TEQ by Adolescents, Adults, Elderly and Very Elderly varied between, respectively, 2.1 to 10.5, and 5.3 to 30.4 pg TEQ/kg bw/week, implying a considerable exceedance of the TWI. Toddlers and Other Children showed a higher exposure than older age groups, but this was accounted for when deriving the TWI. Exposure to PCDD/F-TEQ only was on average 2.4- and 2.7-fold lower for mean and P95 exposure than for total TEQ. PCDD/Fs and DL-PCBs are transferred to milk and eggs, and accumulate in fatty tissues and liver. Transfer rates and bioconcentration factors were identified for various species. The CONTAM Panel was not able to identify reference values in most farm and companion animals with the exception of NOAELs for mink, chicken and some fish species. The estimated exposure from feed for these species does not imply a risk.
Collapse
|
3
|
Eskenazi B, Rauch SA, Tenerelli R, Huen K, Holland NT, Lustig RH, Kogut K, Bradman A, Sjödin A, Harley KG. In utero and childhood DDT, DDE, PBDE and PCBs exposure and sex hormones in adolescent boys: The CHAMACOS study. Int J Hyg Environ Health 2016; 220:364-372. [PMID: 27876543 DOI: 10.1016/j.ijheh.2016.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 01/01/2023]
Abstract
Dichlorodiphenyltrichloroethane (DDT), polybrominated diphenyl ether (PBDE) flame retardants, and polychlorinated biphenyls (PCBs) are believed to be endocrine-disrupting chemicals (EDCs) in humans and animals. The purpose of this study is to examine the relationship of in utero and childhood exposure to these purported EDCs and reproductive hormones in adolescent boys who participated in CHAMACOS, an ongoing birth cohort in California's Salinas Valley. We measured o,p'- and p,p'-DDT, p,p'-DDE, PBDEs and PCBs in serum collected from mothers during pregnancy or at delivery and from their sons at 9 years. We measured concentrations of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and total testosterone (T) from 234 of their sons at 12 years. In adjusted models, we found that a 10-fold increase in maternal prenatal serum concentrations of BDE-153 was associated with a 22.2% increase (95% CI: 1.0, 47.9) in FSH, a 96.6% increase (95% CI: 35.7, 184.7) in LH, and a 92.4% increase (95% CI: 20.9, 206.2) increase in T. Similarly, BDE-100 concentrations were associated with increases in boys' LH levels. A 10-fold increase in total prenatal ΣPCBs was associated with a 64.5% increase (95% CI: 8.6, 149.0) in FSH, primarily driven by non- dioxin-like congeners. Boys' hormone levels were only marginally associated with prenatal DDT or DDE in primary models, but when boys' Tanner stage at age 12 was added to models, prenatal maternal DDT levels were associated with decreases in LH (adjusted percent change per 10-fold increase=-18.5%, 95% CI: -29.8, -5.4) and T (percent change=-18.2%, 95% CI: -30.2, -4.2) and DDE with LH (percent change=-18.3%, 95% CI: -32.9, -0.6). Exposures measured in the children's serum at 9 years also showed associations between BDE-153 and ΣPCBs. However, there is evidence that these associations appear to be mediated by child BMI. This study suggests associations on male hormones of 12year old boys related to exposure to certain EDC exposure prenatally. The implications on future reproductive function in puberty and adulthood should be determined.
Collapse
Affiliation(s)
- Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA.
| | - Stephen A Rauch
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Rachel Tenerelli
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Karen Huen
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Nina T Holland
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Robert H Lustig
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Katherine Kogut
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Asa Bradman
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Andreas Sjödin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kim G Harley
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
4
|
Tainaka H, Takahashi H, Umezawa M, Tanaka H, Nishimune Y, Oshio S, Takeda K. Evaluation of the testicular toxicity of prenatal exposure to bisphenol A based on microarray analysis combined with MeSH annotation. J Toxicol Sci 2012; 37:539-48. [PMID: 22687993 DOI: 10.2131/jts.37.539] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bisphenol A (BPA) is known to be an endocrine disruptor that affects the development of reproductive system. The aim of the present study was to investigate a group of testicular genes dysregulated by prenatal exposure to BPA. Pregnant ICR mice were treated with BPA by subcutaneous administration on days 7 and 14 of pregnancy. Tissue and blood samples were collected from 6-week-old male offspring. Testes were subjected to gene expression analysis using a testis-specific microarray (Testis2), consisting of 2,482 mouse cDNA clones annotated with Medical Subject Headings (MeSH) terms indicative of testicular components and functions. To interpret the microarray data, we used the MeSH terms significantly associated with the altered genes. As a result, MeSH terms related to androgens and Sertoli cells were extracted in BPA-treated groups. Among the genes related to Sertoli cells, downregulation of Msi1h, Ncoa1, Nid1, Hspb2, and Gata6 were detected in the testis of mice treated with BPA (twice administered 50 mg/kg). The MeSH terms associated with this group of genes may provide useful means to interpret the testicular toxicity of BPA. This article concludes that prenatal BPA exposure downregulates expression of genes associated with Sertoli cell function and affects the reproductive function of male offspring. Additionally, a method using MeSH to extract a group of genes was useful for predicting the testicular and reproductive toxicity of prenatal BPA exposure.
Collapse
Affiliation(s)
- Hitoshi Tainaka
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|