1
|
Zeng T, Lei GL, Yu ML, Zhang TY, Wang ZB, Wang SZ. The role and mechanism of various trace elements in atherosclerosis. Int Immunopharmacol 2024; 142:113188. [PMID: 39326296 DOI: 10.1016/j.intimp.2024.113188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Atherosclerosis is a slow and complex disease that involves various factors, including lipid metabolism disorders, oxygen-free radical production, inflammatory cell infiltration, platelet adhesion and aggregation, and local thrombosis. Trace elements play a crucial role in human health. Many trace elements, especially metallic ones, not only maintain the normal functions of organs but also participate in basic metabolic processes. The latest studies have revealed a close correlation between trace elements and the occurrence and progression of atherosclerosis. The imbalance of these trace elements can induce atherosclerosis or accelerate its progression through various mechanisms, which poses a significant threat to human health. Therefore, exploring the specific mechanism of trace elements on atherosclerosis is highly significant. In this review, we summarized the roles and mechanisms of iron, copper, zinc, magnesium, and selenium homeostasis and imbalance in atherosclerosis development, in order to identify novel targets and therapeutic strategies for treating atherosclerosis.
Collapse
Affiliation(s)
- Tao Zeng
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Guan-Lan Lei
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Mei-Ling Yu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Ting-Yu Zhang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Sato K. [Elucidation and Application of Novel Action of Therapeutic Agents for Diabetic Neuropathy]. YAKUGAKU ZASSHI 2022; 142:1037-1044. [PMID: 36184437 DOI: 10.1248/yakushi.22-00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epalrestat is the only aldose reductase inhibitor that is currently available for diabetic peripheral neuropathy. Oxidative stress impairs endothelial cells, thereby leading to numerous pathological conditions. Increasing antioxidative ability is important to prevent cellular toxicity induced by reactive oxygen species. Epalrestat increases antioxidant defense factors such as glutathione and γ-glutamylcysteine ligase in vascular endothelial cells through activation of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). This increases suppression of oxidative stress-induced cellular toxicity. Cadmium is an industrial and environmental pollutant that targets the vascular endothelium. The vascular system is critically affected by cadmium toxicity. Therapeutic treatment against cadmium toxicity is chelation therapy that promotes metal excretion; however, cadmium chelators can cause renal toxicity. Therefore, safe and efficient therapeutic agents are required. Epalrestat suppresses cadmium-induced cytotoxicity in vascular endothelial cells through activation of Nrf2. In addition, epalrestat affects the intracellular levels of cadmium, cadmium transporter Zrt-Irt-like protein 8 (ZIP8), and metallothionein (MT). The upregulation of ZIP8 and MT may be involved in the suppression of cadmium-induced cytotoxicity by epalrestat. Drug repurposing is a new strategy for drug discovery in which the pharmacological action of existing medicines whose safety and pharmacokinetics have already been confirmed clinically and whose use has been approved is examined comprehensively at the molecular level. The results can be applied to the development of existing drugs for use as medicines for the treatment of other diseases. This review provides useful findings for future expansion of indications as research leading to drug repurposing of epalrestat.
Collapse
Affiliation(s)
- Keisuke Sato
- Department of Public Health, Faculty of Pharmaceutical Sciences, Hokkaido University of Science
| |
Collapse
|
3
|
Rababa'h AM, Hussein SA, Khabour OF, Alzoubi KH. The Protective Effect of Cilostazol in Genotoxicity Induced by Methotrexate in Human Cultured Lymphocytes. Curr Mol Pharmacol 2021; 13:137-143. [PMID: 31702497 DOI: 10.2174/1874467212666191023120118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Methotrexate is an antagonist of folic acid that has been shown to be genotoxic to healthy body cells via induction of oxidative stress. Cilostazol is a phosphodiesterase III inhibitor and a potent antioxidant drug. OBJECTIVE To evaluate the potential protective effect of cilostazol on methotrexate genotoxicity. METHODS The genotoxic effect of methotrexate by measuring the frequency of chromosomal aberrations (CAs) and sister chromatid exchanges (SCEs) in human cultured lymphocytes was studied. RESULTS Methotrexate significantly increased the frequency of CAs and SCEs (p < 0.0001) as compared to control cultures. This chromosomal damage induced by methotrexate was considerably decreased by pretreatment of the cells with cilostazol (P < 0.01). Moreover, the results showed that methotrexate resulted in a notable reduction (P < 0.01) in cells kinetic parameters, the mitotic index (MI) and the proliferative index (PI). Similarly, cilostazol significantly reduced the mitotic index, which could be related to the anti-proliferative effect (P < 0.01). CONCLUSION Methotrexate is genotoxic, and cilostazol could prevent the methotrexate-induced chromosomal damage with no modulation of methotrexate-induced cytotoxicity.
Collapse
Affiliation(s)
- Abeer M Rababa'h
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Samah A Hussein
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
4
|
Nakamura T, Yoshida E, Hara T, Fujie T, Yamamoto C, Fujiwara Y, Ogata F, Kawasaki N, Takita R, Uchiyama M, Kaji T. Zn(ii)2,9-dimethyl-1,10-phenanthroline stimulates cultured bovine aortic endothelial cell proliferation. RSC Adv 2020; 10:42327-42337. [PMID: 35516781 PMCID: PMC9057965 DOI: 10.1039/d0ra06731h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/15/2020] [Indexed: 01/21/2023] Open
Abstract
Vascular endothelial cells cover the luminal surface of blood vessels in a monolayer. Proliferation of these cells is crucial for the repair of damaged endothelial monolayers. In the present study, we identified a zinc complex, Zn(ii)2,9-dimethyl-1,10-phenanthroline (Zn-12), that stimulates the proliferation of bovine aortic endothelial cells in a culture system. No such stimulatory activity was observed for the ligand alone or in combination with other metals; however, the ligand combined with iron weakly stimulated the proliferation, as evidenced by the [3H]thymidine incorporation assay. Inorganic zinc weakly but significantly stimulated proliferation, and intracellular accumulation of zinc was similar between inorganic zinc and Zn-12 treatment, suggesting that the mechanisms by which Zn-12 stimulates vascular endothelial cell proliferation contain processes that differ from those by which inorganic zinc stimulates proliferation. Although expression of endogenous fibroblast growth factor-2 (FGF-2) and its receptor FGFR-1 was unchanged by Zn-12, both siRNA-mediated knockdown of FGF-2 and FGFR inhibition partly but significantly suppressed the stimulation of vascular endothelial cell proliferation by Zn-12, indicating that the zinc complex activates the FGF-2 pathway to stimulate proliferation. Phosphorylation of ERK1/2 and MAPKs was induced by Zn-12, and PD98059, a MEK1 inhibitor, significantly suppressed the stimulatory effect of Zn-12 on vascular endothelial cell proliferation. Therefore, it is suggested that Zn-12 activates the FGF-2 pathway via activation of ERK1/2 signaling to stimulate vascular endothelial cell proliferation, although FGF-2-independent mechanisms are also involved in the stimulation. Zn-12 and related compounds may be promising molecular probes to analyze biological systems of vascular endothelial cells. Stimulation of vascular endothelial cell proliferation by Zn-12 can be mediated by the ERK1/2 activation independently of the FGF-2-FGFR pathway. Additionally, there may be other pathways involved in the Zn-12 stimulation.![]()
Collapse
Affiliation(s)
- Takehiro Nakamura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science 2641 Yamazaki Noda 278-8510 Japan.,Faculty of Pharmacy, Kindai University 3-4-1 Kowakae Higashi-Osaka 577-8502 Japan
| | - Eiko Yoshida
- Faculty of Pharmaceutical Sciences, Tokyo University of Science 2641 Yamazaki Noda 278-8510 Japan
| | - Takato Hara
- Faculty of Pharmaceutical Sciences, Toho University 2-2-1 Miyama Funabashi 274-8510 Japan
| | - Tomoya Fujie
- Faculty of Pharmaceutical Sciences, Toho University 2-2-1 Miyama Funabashi 274-8510 Japan
| | - Chika Yamamoto
- Faculty of Pharmaceutical Sciences, Toho University 2-2-1 Miyama Funabashi 274-8510 Japan
| | - Yasuyuki Fujiwara
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi Hachioji 192-0392 Japan
| | - Fumihiko Ogata
- Faculty of Pharmacy, Kindai University 3-4-1 Kowakae Higashi-Osaka 577-8502 Japan
| | - Naohito Kawasaki
- Faculty of Pharmacy, Kindai University 3-4-1 Kowakae Higashi-Osaka 577-8502 Japan
| | - Ryo Takita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku 113-0033 Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku 113-0033 Japan.,Advanced Elements Chemistry Research Team, RIKEN Center for Sustainable Resource Science, Elements Chemistry Laboratory, RIKEN 2-1 Hirosawa Wako 351-0198 Japan
| | - Toshiyuki Kaji
- Faculty of Pharmaceutical Sciences, Tokyo University of Science 2641 Yamazaki Noda 278-8510 Japan
| |
Collapse
|
5
|
Chen YY, Wang CC, Kao TW, Wu CJ, Chen YJ, Lai CH, Zhou YC, Chen WL. The relationship between lead and cadmium levels and functional dependence among elderly participants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5932-5940. [PMID: 31863379 DOI: 10.1007/s11356-019-07381-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
The adverse impacts of lead and cadmium exposure on health outcomes have been reported in the past. Few studies have been conducted on the relationship between lead and cadmium exposures and disability. We evaluated whether lead and cadmium exposures were associated with functional dependence including the total number of disabilities, activities of daily living (ADL), instrumental activities of daily living (IADL), leisure and social activities (LSA), lower extremity mobility (LEM), and general physical activities (GPA) in an elderly population. A total of 5513 eligible subjects were enrolled in the study from the National Health and Nutrition Examination Survey 2001-2006. Serum lead and cadmium exposure assessments were performed using atomic absorption spectrometry. Functional dependence was assessed by 19 structured questions. The relationships between lead and cadmium exposures and functional dependence were investigated using by multivariable linear regression models. Q2, Q3, and Q4 of lead exposure were significantly associated with the total number of disabilities, with β coefficients of - 0.62 (95% CI - 0.99, - 0.24), - 0.64 (95% CI - 1.02, - 0.26), and - 0.81 (95% CI - 1.19, - 0.42), respectively. This relationship remained significant in males. Furthermore, we analyzed the relationships between lead and cadmium exposure quartiles and various functional dependence metrics, and we determined that lead content was significantly associated with decreased ADL, LEM, and GPA (p < 0.05) and cadmium content was inversely associated with ADL (p < 0.05). Our study demonstrated a strong relationship between exposure to lead and cadmium and functional dependence in an elderly population.
Collapse
Affiliation(s)
- Yuan-Yuei Chen
- Department of Internal Medicine, Tri-Service General Hospital Songshan Branch, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of General Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chung-Ching Wang
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Tung-Wei Kao
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Graduate Institute of Clinical Medical, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chen-Jung Wu
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Division of Family Medicine, Department of Community Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan, Republic of China
| | - Ying-Jen Chen
- Department of Ophthalmology, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Huang Lai
- School of Public Health, National Defense Medical Center, Taipei, Republic of China
| | - Yi-Chao Zhou
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Wei-Liang Chen
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|
6
|
Tinkov AA, Filippini T, Ajsuvakova OP, Skalnaya MG, Aaseth J, Bjørklund G, Gatiatulina ER, Popova EV, Nemereshina ON, Huang PT, Vinceti M, Skalny AV. Cadmium and atherosclerosis: A review of toxicological mechanisms and a meta-analysis of epidemiologic studies. ENVIRONMENTAL RESEARCH 2018; 162:240-260. [PMID: 29358116 DOI: 10.1016/j.envres.2018.01.008] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 05/20/2023]
Abstract
Cadmium has been proposed to be the one of the factors of atherosclerosis development, although the existing data are still controversial. The primary objective of the present study is the review and the meta-analysis of studies demonstrating the association between Cd exposure and atherosclerosis as well as review of the potential mechanisms of such association. We performed a systematic search in the PubMed-Medline database using the MeSH terms cadmium, cardiovascular disease, atherosclerosis, coronary artery disease, myocardial infarction, stroke, mortality and humans up through December 20, 2017. Elevated urinary Cd levels were associated with increased mortality for cardiovascular disease (HR = 1.34, 95% CI: 1.07-1.67) as well as elevated blood Cd levels (HR = 1.78, 95% CI: 1.24-2.56). Analysis restricted to never smokers showed similar, though more imprecise, results. Consistently, we also observed an association between Cd exposure markers (blood and urine) and coronary heart disease, stroke, and peripheral artery disease. Moreover, Cd exposure was associated with atherogenic changes in lipid profile. High Cd exposure was associated with higher TC levels (OR = 1.48, 95% CI: 1.10-2.01), higher LDL-C levels (OR = 1.31, 95% CI 0.99-1.73) and lower HDL-C levels (OR = 1.96, 95% CI: 1.09-3.55). The mechanisms of atherogenic effect of cadmium may involve oxidative stress, inflammation, endothelial dysfunction, enhanced lipid synthesis, up-regulation of adhesion molecules, prostanoid dysbalance, as well as altered glycosaminoglycan synthesis.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia.
| | - Tommaso Filippini
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Olga P Ajsuvakova
- All-Russian Research Institute of Phytopathology, Odintsovo, Moscow Region, Russia
| | | | - Jan Aaseth
- Faculty of Public Health, Inland Norway University of Applied Sciences, Elverum, Norway; Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | | | - Elizaveta V Popova
- St. Joseph University in Tanzania, St. Joseph College of Health Sciences, Dar es Salaam, Tanzania
| | | | | | - Marco Vinceti
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia; Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Orenburg State University, Orenburg, Russia; Trace Element Institute for UNESCO, Lyon, France
| |
Collapse
|
7
|
Taiyeb AM, Muhsen-Alanssari SA, Dees WL, Hiney J, Kjelland ME, Kraemer DC, Ridha-Albarzanchi MT. Improvements in oocyte competence in superovulated mice following treatment with cilostazol: Ovulation of immature oocytes with high developmental rates. Biochem Pharmacol 2017; 137:81-92. [DOI: 10.1016/j.bcp.2017.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
|
8
|
Kwon HW, Shin JH, Lim DH, Ok WJ, Nam GS, Kim MJ, Kwon HK, Noh JH, Lee JY, Kim HH, Kim JL, Park HJ. Antiplatelet and antithrombotic effects of cordycepin-enriched WIB-801CE from Cordyceps militaris ex vivo, in vivo, and in vitro. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:508. [PMID: 27927214 PMCID: PMC5142411 DOI: 10.1186/s12906-016-1463-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/16/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND A species of the fungal genus Cordyceps has been used as a complementary and alternative medicine of traditional Chinese medicine, and its major component cordycepin and cordycepin-enriched WIB-801CE are known to have antiplatelet effects in vitro. However, it is unknown whether they have also endogenous antiplatelet and antithrombotic effects. In this study, to resolve these doubts, we prepared cordycepin-enriched WIB-801CE, an ethanol extract from Cordyceps militaris-hypha, then evaluated its ex vivo, in vivo, and in vitro antiplatelet and antithrombotic effects. METHODS Ex vivo effects of WIB-801CE on collagen- and ADP-induced platelet aggregation, serotonin release, thromboxane A2 (TXA2) production and its associated activities of enzymes [cyclooxygenase-1 (COX-1), TXA2 synthase (TXAS)], arachidonic acid (AA) release and its associated phosphorylation of phospholipase Cβ3, phospholipase Cγ2 or cytosolic phospholipase A2, mitogen-activated protein kinase (MAPK) [p38 MAPK, extracellular signal-regulated kinase (ERK)], and blood coagulation time in rats were investigated. In vivo effects of WIB-801CE on collagen plus epinephrine-induced acute pulmonary thromboembolism, and tail bleeding time in mice were also inquired. In vitro effects of WIB-801CE on cytotoxicity, and fibrin clot retraction in human platelets, and nitric oxide (NO) production in RAW264.7 cells or free radical scavenging activity were studied. RESULTS Cordycepin-enriched WIB-801CE inhibited ex vivo platelet aggregation, TXA2 production, AA release, TXAS activity, serotonin release, and p38 MAPK and ERK2 phosphorylation in collagen- and ADP-activated rat platelets without affecting blood coagulation. Furthermore, WIB-801CE manifested in vivo inhibitory effect on collagen plus epinephrine-induced pulmonary thromboembolism mice model. WIB-801CE inhibited in vitro NO production and fibrin clot retraction, but elevated free radical scavenging activity without affecting cytotoxicity against human platelets. CONCLUSION WIB-801CE inhibited collagen- and ADP-induced platelet activation and its associated thrombus formation ex vivo and in vivo. These were resulted from down-regulation of TXA2 production and its related AA release and TXAS activity, and p38MAPK and ERK2 activation. These results suggest that WIB-801CE has therapeutic potential to treat platelet activation-mediated thrombotic diseases in vivo.
Collapse
Affiliation(s)
- Hyuk-Woo Kwon
- Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University, 197, Inje-ro, Gyungnam, Gimhae, 50834, Korea
| | - Jung-Hae Shin
- Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University, 197, Inje-ro, Gyungnam, Gimhae, 50834, Korea
| | - Deok Hwi Lim
- Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University, 197, Inje-ro, Gyungnam, Gimhae, 50834, Korea
| | - Woo Jeong Ok
- Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University, 197, Inje-ro, Gyungnam, Gimhae, 50834, Korea
| | - Gi Suk Nam
- Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University, 197, Inje-ro, Gyungnam, Gimhae, 50834, Korea
| | - Min Ji Kim
- Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University, 197, Inje-ro, Gyungnam, Gimhae, 50834, Korea
| | - Ho-Kyun Kwon
- Central Research Center, Whanin Pharm. Co., Ltd., 107, Gwanggyo-ro, Suwon, Gyeonggi-do, 16229, Korea
| | - Jun-Hee Noh
- Central Research Center, Whanin Pharm. Co., Ltd., 107, Gwanggyo-ro, Suwon, Gyeonggi-do, 16229, Korea
| | - Je-Young Lee
- Central Research Center, Whanin Pharm. Co., Ltd., 107, Gwanggyo-ro, Suwon, Gyeonggi-do, 16229, Korea
| | - Hyun-Hong Kim
- Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University, 197, Inje-ro, Gyungnam, Gimhae, 50834, Korea
| | - Jong-Lae Kim
- Central Research Center, Whanin Pharm. Co., Ltd., 107, Gwanggyo-ro, Suwon, Gyeonggi-do, 16229, Korea.
| | - Hwa-Jin Park
- Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University, 197, Inje-ro, Gyungnam, Gimhae, 50834, Korea.
| |
Collapse
|
9
|
Inhibitory Effects of Cytosolic Ca(2+) Concentration by Ginsenoside Ro Are Dependent on Phosphorylation of IP3RI and Dephosphorylation of ERK in Human Platelets. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:764906. [PMID: 26355658 PMCID: PMC4556879 DOI: 10.1155/2015/764906] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/27/2015] [Indexed: 01/21/2023]
Abstract
Intracellular Ca2+ ([Ca2+]i) is platelet aggregation-inducing molecule and is involved in activation of aggregation associated molecules. This study was carried out to understand the Ca2+-antagonistic effect of ginsenoside Ro (G-Ro), an oleanane-type saponin in Panax ginseng. G-Ro, without affecting leakage of lactate dehydrogenase, dose-dependently inhibited thrombin-induced platelet aggregation, and the half maximal inhibitory concentration was approximately 155 μM. G-Ro inhibited strongly thrombin-elevated [Ca2+]i, which was strongly increased by A-kinase inhibitor Rp-8-Br-cAMPS compared to G-kinase inhibitor Rp-8-Br-cGMPS. G-Ro increased the level of cAMP and subsequently elevated the phosphorylation of inositol 1, 4, 5-triphosphate receptor I (IP3RI) (Ser1756) to inhibit [Ca2+]i mobilization in thrombin-induced platelet aggregation. Phosphorylation of IP3RI (Ser1756) by G-Ro was decreased by PKA inhibitor Rp-8-Br-cAMPS. In addition, G-Ro inhibited thrombin-induced phosphorylation of ERK 2 (42 kDa), indicating inhibition of Ca2+ influx across plasma membrane. We demonstrate that G-Ro upregulates cAMP-dependent IP3RI (Ser1756) phosphorylation and downregulates phosphorylation of ERK 2 (42 kDa) to decrease thrombin-elevated [Ca2+]i, which contributes to inhibition of ATP and serotonin release, and p-selectin expression. These results indicate that G-Ro in Panax ginseng is a beneficial novel Ca2+-antagonistic compound and may prevent platelet aggregation-mediated thrombotic disease.
Collapse
|
10
|
Miura N, Ashimori A, Takeuchi A, Ohtani K, Takada N, Yanagiba Y, Mita M, Togawa M, Hasegawa T. Mechanisms of cadmium-induced chronotoxicity in mice. J Toxicol Sci 2014; 38:947-57. [PMID: 24284284 DOI: 10.2131/jts.38.947] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Biological defense factors show diurnal variations in their expression levels or activities. These variations can induce the different sensitivity to external toxicants of a day. We reported earlier that mice showed clear diurnal variation of cadmium (Cd)-induced toxicity, i.e., chronotoxicity. In this report, we investigated additional new evidences for the cadmium (Cd)-induced chronotoxicity, and considered the mechanisms contributed to this chronotoxicity. Male C57BL/6J mice were injected with CdCl₂ (6.4 mg/kg, one shot) intraperitoneally at 6 different time points of a day (zeitgeber time (ZT); ZT2, ZT6, ZT10, ZT14, ZT18 or ZT22) followed by monitoring the mortality until 14 days after the injection. We observed extreme difference in survival numbers: surprisingly, all mice died at ZT2 injection while all mice survived at ZT18 injection. Moreover, in non-lethal dose of Cd (4.5 mg/kg), the values of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) used as indexes of hepatotoxicity markedly increased at ZT6 injection while mostly unchanged at ZT18 injection. To consider the mechanisms of this extreme diurnal variation, we examined biochemical studies and concluded that the diurnal variation was not caused by the differences in hepatic Cd level, basal hepatic metallothionein (MT) level, and induction level or induction speed of hepatic MT. We suggested that one of the candidate determination factors was glutathione. We believe that the "chronotoxicology" for metal toxicity may be classic, yet new viewpoint in modern toxicology field.
Collapse
Affiliation(s)
- Nobuhiko Miura
- Division of Health Effects Research, Japan National Institute of Occupational Safety and Health
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Taiyeb AM, Dees WL, Ridha-Albarzanchi MT, Sayes CM, Kraemer DC. In vitroeffects of cilostazol, a phosphodiesterase 3A inhibitor, on mouse oocyte maturation and morphology. Clin Exp Pharmacol Physiol 2014; 41:147-53. [DOI: 10.1111/1440-1681.12193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/01/2013] [Accepted: 11/05/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Ahmed M Taiyeb
- College of Veterinary Medicine and Biomedical Sciences; Texas A&M University; College Station TX USA
- Barz IVF Center for Embryo Research and Infertility Treatment; Erbil Iraq
| | - William L Dees
- College of Veterinary Medicine and Biomedical Sciences; Texas A&M University; College Station TX USA
| | | | - Christie M Sayes
- College of Veterinary Medicine and Biomedical Sciences; Texas A&M University; College Station TX USA
- Nanotoxicology & Nanopharmacology Laboratory; Center for Aerosol & Nanomaterials Engineering; RTI International; Research Triangle NC USA
| | - Duane C Kraemer
- College of Veterinary Medicine and Biomedical Sciences; Texas A&M University; College Station TX USA
| |
Collapse
|
12
|
Baek AE, Kanthi Y, Sutton NR, Liao H, Pinsky DJ. Regulation of ecto-apyrase CD39 (ENTPD1) expression by phosphodiesterase III (PDE3). FASEB J 2013; 27:4419-28. [PMID: 23901069 DOI: 10.1096/fj.13-234625] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The ectoenzyme CD39 suppresses thrombosis and inflammation by suppressing ATP and ADP to AMP. However, mechanisms of CD39 transcriptional and post-translational regulation are not well known. Here we show that CD39 levels are modulated by inhibition of phosphodiesterase 3 (PDE3). RAW macrophages and human umbilical vein endothelial cells (HUVECs) were treated with the PDE3 inhibitors cilostazol and milrinone, then analyzed using qRT-PCR, immunoprecipitation/Western blot, immunofluorescent staining, radio-thin-layer chromatography, a malachite green assay, and ELISA. HUVECs expressed elevated CD39 protein (2-fold [P<0.05] for cilostazol and 2.5-fold [P<0.01] for milrinone), while macrophage CD39 mRNA and protein were both elevated after PDE3 inhibition. HUVEC ATPase activity increased by 25% with cilostazol and milrinone treatment (P<0.05 and P<0.01, respectively), as did ADPase activity (47% and 61%, P<0.001). There was also a dose-dependent elevation of soluble CD39 after treatment with 8-Br-cAMP, with maximal elevation of 60% more CD39 present compared to controls (1 mM, P<0.001). Protein harvested after 8-Br-cAMP treatment showed that ubiquitination of CD39 was decreased by 43% compared to controls. A DMSO or PBS vehicle control was included for each experiment based on solubility of cilostazol, milrinone, and 8-Br-cAMP. These results indicate that PDE3 inhibition regulates endothelial CD39 at a post-translational level.
Collapse
Affiliation(s)
- Amy E Baek
- 17240 Medical Science Research Bldg. III, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
13
|
Tellez-Plaza M, Guallar E, Howard BV, Umans JG, Francesconi KA, Goessler W, Silbergeld EK, Devereux RB, Navas-Acien A. Cadmium exposure and incident cardiovascular disease. Epidemiology 2013; 24:421-9. [PMID: 23514838 PMCID: PMC4142588 DOI: 10.1097/ede.0b013e31828b0631] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cadmium is a widespread toxic metal with potential cardiovascular effects, but no studies have evaluated cadmium and incident cardiovascular disease. We evaluated the association of urine cadmium concentration with cardiovascular disease incidence and mortality in a large population-based cohort. METHODS We conducted a prospective cohort study of 3348 American Indian adults 45-74 years of age from Arizona, Oklahoma, and North and South Dakota, who participated in the Strong Heart Study in 1989-1991. Urine cadmium was measured using inductively coupled plasma mass spectrometry. Follow-up extended through 31 December 2008. RESULTS The geometric mean cadmium level in the study population was 0.94 μg/g (95% confidence interval [CI] = 0.92-0.96). We identified 1084 cardiovascular events, including 400 deaths. After adjustment for sociodemographic and cardiovascular risk factors, the hazard ratios (HRs) (comparing the 80th to the 20th percentile of urine cadmium concentrations) was 1.43 for cardiovascular mortality (95% CI = 1.21-1.70) and 1.34 for coronary heart disease mortality (1.10-1.63). The corresponding HRs for incident cardiovascular disease, coronary heart disease, stroke, and heart failure were 1.24 (1.11-1.38), 1.22 (1.08-1.38), 1.75 (1.17-2.59), and 1.39 (1.01-1.94), respectively. The associations were similar in most study subgroups, including never-smokers. CONCLUSIONS Urine cadmium, a biomarker of long-term exposure, was associated with increased cardiovascular mortality and increased incidence of cardiovascular disease. These findings support that cadmium exposure is a cardiovascular risk factor.
Collapse
Affiliation(s)
- Maria Tellez-Plaza
- Department of Epidemiology and Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fujiwara Y, Yamamoto C, Inagaki T, Satoh M, Kaji T. Bismuth protects against arsenite-induced inhibition of proteoglycan synthesis in cultured vascular endothelial cells. J Toxicol Sci 2012; 37:837-43. [PMID: 22863863 DOI: 10.2131/jts.37.837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chronic ingestion of arsenic is associated with an increased risk of vascular disease such as atherosclerosis. Previously, we showed that arsenite inhibits the synthesis of general proteoglycans (PGs), which are key molecules in the progression of atherosclerosis, in vascular endothelial cells. In the present study, we investigated the effect of several metals on arsenite-induced inhibitory effect in endothelial cells. The results indicate that, after 24-hr incubation, the inhibition of PG synthesis caused by sodium arsenite was protected by bismuth nitrate but not zinc sulfate, manganese chloride, nickel chloride or cobalt chloride. The accumulation of arsenic in the cell layer was significantly decreased by bismuth after 12-hr incubation and that of bismuth was also decreased by arsenite. It was therefore suggested that the protective effect of bismuth against the inhibitory effect of arsenite on PG synthesis in vascular endothelial cells may be due, at least in part, to the decrease in cellular arsenic accumulation.
Collapse
|
15
|
Zafeer MF, Waseem M, Chaudhary S, Parvez S. Cadmium-induced hepatotoxicity and its abrogation by thymoquinone. J Biochem Mol Toxicol 2012; 26:199-205. [DOI: 10.1002/jbt.21402] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/18/2011] [Accepted: 12/04/2011] [Indexed: 12/22/2022]
|
16
|
Modulatory effects of Thymbra spicata L. different extracts against the mercury induced genotoxicity in human lymphocytes in vitro. Cytotechnology 2011; 64:181-6. [PMID: 22134772 DOI: 10.1007/s10616-011-9406-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 10/31/2011] [Indexed: 12/16/2022] Open
Abstract
Mercury, a xenobiotic metal, is a highly deleterious environmental pollutant. Moreover, in any form mercury is reported to be toxic. On the other hand, Thymbra spicata L., a member of the Lamiaceae family, has long been investigated popularly of biological roles; mainly antimicrobial and antioxidant activities. However, there are very scarce data on the cytogenetic effects of thyme species. The purpose of this study was to investigate the genetic safety of different extracts from T. spicata (water extract, methanol extract, and ethanol extract) and the effects of T. spicata on mercury (as HgCl(2)) induced genotoxicity. Sister chromatid exchange (SCE) and micronucleus (MN) assays were performed to assess DNA damages in cultured human lymphocytes (n = 5). Our results clearly revealed that, the SCE and MN rates induced by HgCl(2) were alleviated by the presence of T. spicata. As conclusion, this study demonstrated for the first time that the T. spicata provided increased resistance of DNA against HgCl(2) induced genetic damage in human lymphocytes. Based on the results of this study, it may be concluded that the T. spicata is a nontoxic material that could be used as a suppressor of heavy metal-induced genotoxicity.
Collapse
|