1
|
Lin L, Huang T, Li L, Lin Y, Chen F, Zheng Z, Zhou J, Wang Y, You W, Duan Y, An Y, He S, Ye W. Single-cell profiling reveals a reduced epithelial defense system, decreased immune responses and the immune regulatory roles of different fibroblast subpopulations in chronic atrophic gastritis. J Transl Med 2025; 23:159. [PMID: 39905493 DOI: 10.1186/s12967-025-06150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/18/2025] [Indexed: 02/06/2025] Open
Abstract
PURPOSE To identify key cellular changes and molecular events in atrophic mucosa, we aimed to elucidate the molecular mechanisms driving the occurrence of chronic atrophic gastritis (CAG). METHODS We used single-cell RNA sequencing (scRNA-seq) to characterize changes in the epithelial state and tissue microenvironment associated with CAG. The molecular changes were identified by comparing differentially expressed genes (DEGs) between the two mucosa states. Gene Ontology (GO) pathway enrichment analysis was used to explore the potential functional changes in each cell subtype in atrophic mucosa. Gene set score analysis was conducted to compare the functional roles of different fibroblast subtypes and functional changes in cell subtypes between the CAG and control groups. Metabolic analysis was performed to compare the metabolic activity of C1Q+ macrophages under different conditions. NichNet analysis was used to analyze the regulatory relationships between CCL11+APOE+ fibroblasts and C1Q+ macrophages and between CCL11+APOE+ fibroblasts and CD8+ effector T cells. Transcription factor (TF) analysis was performed to determine the transcription status of different T-cell subtypes in atrophic and normal mucosa. RESULTS We generated a single-cell transcriptomic atlas from 3 CAG biopsy samples and paired adjacent normal tissues. Our analysis revealed that chief cells and parietal cells exhibited a loss of detoxification ability and that surface mucous cells displayed a reduced antimicrobial defense ability in CAG lesions. The mucous neck cells in CAG lesions showed upregulation of genes related to cell cycle transition, which may lead to aberrant DNA replication. Additionally, cells with the T exhaustion phenotype infiltrated under CAG condition. C1Q+ macrophages exhibited reduced phagocytosis, downregulated expression of pattern recognition receptors and decreased metabolic activity. NichNet analysis revealed that a subpopulation of CXCL11+APOE+ fibroblasts regulated the inflammatory response in the pathogenesis of atrophic gastritis. APSN+CXCL11+APOE+ fibroblasts were found to be associated with gastric cancer (GC) development. CONCLUSIONS The main goal of this study was to comprehensively elucidate the cellular changes in CAG lesions. We observed an immune decline in the mucosal microenvironment during the development of CAG, including a reduced immune response of C1Q+ macrophages, reduced cytotoxicity of T cells, and increased infiltration of exhausted T cells. Specifically, we demonstrated that different epithelial subtypes aberrantly express genes related to susceptibility to external bacterial infection and aberrant cell cycle progression. Our study provides new insights into the functions of epithelial changes and immune alterations during the development of CAG.
Collapse
Affiliation(s)
- Lin Lin
- Institute of Population Medicine, School of Public Health, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, China
| | - Tingxuan Huang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, 350001, China
| | - Lizhi Li
- Department of Pediatric Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Yang Lin
- Department of Pediatric Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Feng Chen
- Department of Pediatric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Ziyi Zheng
- Department of Pediatric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jie Zhou
- Department of Pediatric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yizhe Wang
- Institute of Population Medicine, School of Public Health, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, China
| | - Weihao You
- Institute of Population Medicine, School of Public Health, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, China
| | - Yujie Duan
- Institute of Population Medicine, School of Public Health, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, China
| | - Yawen An
- Institute of Population Medicine, School of Public Health, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, China
| | - Shiwei He
- Institute of Population Medicine, School of Public Health, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, China.
| | - Weimin Ye
- Institute of Population Medicine, School of Public Health, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, China.
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177, Sweden.
| |
Collapse
|
2
|
Cai H, Xiao Y, Chen S, Lu Y, Du J, You Y, Zhu J, Zhou J, Cai W, Wang Y. Heterozygous Actg2 R257C mice mimic the phenotype of megacystis microcolon intestinal hypoperistalsis syndrome. Neurogastroenterol Motil 2023; 35:e14472. [PMID: 36264152 DOI: 10.1111/nmo.14472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/27/2022] [Accepted: 09/08/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a rare and serious congenital disorder with poor outcomes, where a heterozygous missense mutation is present in the ACTG2 gene. Here, we aimed to investigate the pathogenesis of ACTG2 in MMIHS. METHODS A cohort with 20 patients with MMIHS was screened. Actg2R257C heterozygous mutant mice were generated using the CRISPR/Cas9 system. Gastrointestinal (GI) motility, voluntary urination, collagen gel contraction, and G-actin/F-actin analysis were performed. KEY RESULTS The R257C variant of ACTG2 most frequently occurred in patients with MMIHS and demonstrated the typical symptoms of MMIHS. Actg2R257C heterozygous mutant mice had dilated intestines and bladders. The functional assay showed a prolonged total time of GI transit and decreased urine spot area. Collagen gel contraction assay and G-actin/F-actin analysis indicated that mutant mice showed reduced area of contraction of smooth muscle cells (SMCs) and impaired actin polymerization. CONCLUSIONS & INFERENCES A mouse model demonstrating MMIHS-like symptoms was generated. The Actg2R257C heterozygous variant impairs SMCs contraction by interfering with actin polymerization, leading to GI motility disorders.
Collapse
Affiliation(s)
- Hui Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongtao Xiao
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Shanshan Chen
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Lu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Jun Du
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yaying You
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Zhu
- Shanghai Institute of Pediatric Research, Shanghai, China
| | - Jie Zhou
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| |
Collapse
|
3
|
Morales-Guerrero SE, Rivas-Ortiz CI, Ponce de León-Rosales S, Gamboa-Domínguez A, Rangel-Escareño C, Uscanga-Domínguez LF, Aguilar-Gutiérrez GR, Kershenobich-Stalnikowitz D, Castillo-Rojas G, López-Vidal Y. Translation of gastric disease progression at gene level expression. J Cancer 2020; 11:520-532. [PMID: 31897247 PMCID: PMC6930440 DOI: 10.7150/jca.29038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/31/2019] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori is associated with the development of several lesions in the human stomach. This chronic infection produces gastritis, which can progress to intestinal metaplasia and gastric cancer. To date, there is very little information regarding gene-expression in the different phases of progression caused by chronic H. pylori infection. In this study, we performed a genome-wide gene-expression analysis in gastric biopsies of patients chronically infected with H. pylori, using the potential of high-throughput technologies that have not been fully exploited in this area. Here we illustrate the potential correlation of H. pylori infection with the gene expression changes in follicular gastritis, chronic gastritis and intestinal metaplasia. We also suggest its potential as biomarkers of each condition. An exploratory set of 21 biopsies from patients with follicular gastritis, chronic gastritis, and intestinal metaplasia were analyzed by gene-expression microarrays in order to identify the biological processes altered in each lesion. The microarray data was corroborated by real-time PCR, while 79 Formalin-Fixed Paraffin-Embeded samples were analyzed by immunohistochemistry. Follicular gastritis exhibited significant enrichment in genes associated with glutamate signaling, while chronic gastritis showed a down-regulation in metallothionein 1 and 2 and in oxidative phosphorylation-related genes, which could be associated with the chronic infecton of H. pylori. Intestinal metaplasia exhibited an over-expression of gastrointestinal stem cell markers, such as LGR5 and PROM1, as well as messenger RNA and nucleic acid metabolism-related genes. The gene-expression patterns found in this study provide new comparative information about chronic gastritis, follicular gastritis and intestinal metaplasia that may play an important role in the development of gastric cancer.
Collapse
Affiliation(s)
- Stephanie Euridice Morales-Guerrero
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Claudia Ivette Rivas-Ortiz
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Sergio Ponce de León-Rosales
- Dirección de Enseñanza, Departamentos de Gastroenterología, Patología y Dirección General. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, México
| | - Armando Gamboa-Domínguez
- Dirección de Enseñanza, Departamentos de Gastroenterología, Patología y Dirección General. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, México
| | - Claudia Rangel-Escareño
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| | - Luis Federico Uscanga-Domínguez
- Dirección de Enseñanza, Departamentos de Gastroenterología, Patología y Dirección General. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, México
| | - Germán Rubén Aguilar-Gutiérrez
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, México
| | - David Kershenobich-Stalnikowitz
- Dirección de Enseñanza, Departamentos de Gastroenterología, Patología y Dirección General. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, México
| | - Gonzalo Castillo-Rojas
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| |
Collapse
|
4
|
Pan Y, Lin S, Xing R, Zhu M, Lin B, Cui J, Li W, Gao J, Shen L, Zhao Y, Guo M, Wang JM, Huang J, Lu Y. Epigenetic Upregulation of Metallothionein 2A by Diallyl Trisulfide Enhances Chemosensitivity of Human Gastric Cancer Cells to Docetaxel Through Attenuating NF-κB Activation. Antioxid Redox Signal 2016; 24:839-54. [PMID: 26801633 PMCID: PMC4876530 DOI: 10.1089/ars.2014.6128] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS Metallothionein 2A (MT2A) and nuclear factor-kappaB (NF-κB) are both involved in carcinogenesis and cancer chemosensitivity. We previously showed decreased expression of MT2A and IκB-α in human gastric cancer (GC) associated with poor prognosis of GC patients. The present study investigated the effect of diallyl trisulfide (DATS), a garlic-derived compound, and docetaxel (DOC) on regulation of MT2A in relation to NF-κB in GC cells. RESULTS DATS attenuated NF-κB signaling in GC cells, resulting in G2/M cell cycle arrest and apoptosis, culminating in the inhibition of cell proliferation and tumorigenesis in nude mice. The anti-GC effect of DATS was attributable to its capacity to epigenetically upregulate MT2A, which in turn enhanced transcription of IκB-α to suppress NF-κB activation in GC cells. The combination of DATS with DOC exhibited a synergistic anti-GC activity accompanied by MT2A upregulation and NF-κB inactivation. Histopathologic analysis of GC specimens from patients showed a significant increase in MT2A expression following DOC treatment. GC patients with high MT2A expression in tumor specimens showed significantly improved response to chemotherapy and prolonged survival compared with those with low MT2A expression in tumors. INNOVATION AND CONCLUSION We conclude that DATS exerts its anti-GC activity and enhances chemosensitivity of GC to DOC by epigenetic upregulation of MT2A to attenuate NF-κB signaling. Our findings delineate a mechanistic basis of MT2A/NF-κB signaling for DATS- and DOC-mediated anti-GC effects, suggesting that MT2A may be a chemosensitivity indicator in GC patients receiving DOC-based treatment and a promising target for more effective treatment of GC by combination of DATS and DOC. Antioxid. Redox Signal. 24, 839-854.
Collapse
Affiliation(s)
- Yuanming Pan
- 1 Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute , Beijing, P.R. China
| | - Shuye Lin
- 2 College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, 3 Shangyuancun, Haidian District, Beijing, P.R. China .,3 Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Rui Xing
- 1 Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute , Beijing, P.R. China
| | - Min Zhu
- 1 Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute , Beijing, P.R. China
| | - Bonan Lin
- 2 College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, 3 Shangyuancun, Haidian District, Beijing, P.R. China
| | - Jiantao Cui
- 1 Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute , Beijing, P.R. China
| | - Wenmei Li
- 1 Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute , Beijing, P.R. China
| | - Jing Gao
- 4 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of GI Oncology, Peking University School of Oncology , Peking Cancer Hospital, Beijing, P.R. China
| | - Lin Shen
- 4 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of GI Oncology, Peking University School of Oncology , Peking Cancer Hospital, Beijing, P.R. China
| | - Yuanyuan Zhao
- 5 CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China , Beijing, P.R. China
| | - Mingzhou Guo
- 6 Department of Gastroenterology and Hepatology, Chinese PLA General Hospital , Beijing, P.R. China
| | - Ji Ming Wang
- 3 Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Jiaqiang Huang
- 2 College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, 3 Shangyuancun, Haidian District, Beijing, P.R. China .,3 Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Youyong Lu
- 1 Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute , Beijing, P.R. China
| |
Collapse
|
5
|
Dziegiel P, Pula B, Kobierzycki C, Stasiolek M, Podhorska-Okolow M. The Role of Metallothioneins in Carcinogenesis. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2016. [DOI: 10.1007/978-3-319-27472-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Kawakami T, Nishiyama K, Kadota Y, Sato M, Inoue M, Suzuki S. Cadmium modulates adipocyte functions in metallothionein-null mice. Toxicol Appl Pharmacol 2013; 272:625-36. [PMID: 23921151 DOI: 10.1016/j.taap.2013.07.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 01/01/2023]
Abstract
Our previous study has demonstrated that exposure to cadmium (Cd), a toxic heavy metal, causes a reduction of adipocyte size and the modulation of adipokine expression. To further investigate the significance of the Cd action, we studied the effect of Cd on the white adipose tissue (WAT) of metallothionein null (MT(-/-)) mice, which cannot form atoxic Cd-MT complexes and are used for evaluating Cd as free ions, and wild type (MT(+/+)) mice. Cd administration more significantly reduced the adipocyte size of MT(-/-) mice than that of MT(+/+) mice. Cd exposure also induced macrophage recruitment to WAT with an increase in the expression level of Ccl2 (MCP-1) in the MT(-/-) mice. The in vitro exposure of Cd to adipocytes induce triglyceride release into culture medium, decrease in the expression levels of genes involved in fatty acid synthesis and lipid hydrolysis at 24 h, and at 48 h increase in phosphorylation of the lipid-droplet-associated protein perilipin, which facilitates the degradation of stored lipids in adipocytes. Therefore, the reduction in adipocyte size by Cd may arise from an imbalance between lipid synthesis and lipolysis. In addition, the expression levels of leptin, adiponectin and resistin decreased in adipocytes. Taken together, exposure to Cd may induce unusually small adipocytes and modulate the expression of adipokines differently from the case of physiologically small adipocytes, and may accelerate the risk of developing insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Takashige Kawakami
- Faculty of Pharmaceutical Science, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima 770-8514, Japan
| | | | | | | | | | | |
Collapse
|