1
|
Zhu X, Kong W, Wang Z, Liu X, Liu L. Prediction of SPT-07A Pharmacokinetics in Rats, Dogs, and Humans Using a Physiologically-Based Pharmacokinetic Model and In Vitro Data. Pharmaceutics 2024; 16:1596. [PMID: 39771574 PMCID: PMC11676658 DOI: 10.3390/pharmaceutics16121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/30/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: SPT-07A, a D-borneol, is currently being developed in China for the treatment of ischemic stroke. We aimed to create a whole-body physiologically-based pharmacokinetic (PBPK) model to predict the pharmacokinetics of SPT-07A in rats, dogs, and humans. Methods: The in vitro metabolism of SPT-07A was studied using hepatic, renal, and intestinal microsomes. The pharmacokinetics of SPT-07A in rats were simulated using the developed PBPK model and in vitro data. Following validation using pharmacokinetic data in rats, the developed PBPK model was scaled up to dogs and humans. Results: Data from hepatic microsomes revealed that SPT-07A was primarily metabolized by UDP-glucuronosyltransferase (UGTs). Glucuronidation of SPT-07A also occurred in the kidney and intestine. The in vitro to in vivo extrapolation analysis showed that hepatic clearance of SPT-07A in rats, dogs, and humans accounted for 62.2%, 87.3%, and 76.5% of the total clearance, respectively. The renal clearance of SPT-07A in rats, dogs, and humans accounted for 32.6%, 12.7%, and 23.1% of the total clearance, respectively. Almost all of the observed concentrations of SPT-07A following single or multi-dose to rats, dogs, and humans were within the 5th-95th percentiles of simulations from 100 virtual subjects. Sensitivity analysis showed that hepatic metabolic velocity, renal metabolic velocity, and hepatic blood flow remarkably affected the exposure to SPT-07A in humans. Dedrick plots were also used to predict the pharmacokinetics of SPT-07A in humans. Prediction accuracy using the PBPK model is superior to that of Dedrick plots. Conclusions: We elucidate UGT-mediated SPT-07A metabolism in the liver, kidney, and intestine of rats, dogs, and humans. The pharmacokinetics of SPT-07A were successfully simulated using the developed PBPK model.
Collapse
Affiliation(s)
- Xiaoqiang Zhu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (X.Z.); (Z.W.)
| | - Weimin Kong
- School of Pharmacy, Bengbu Medical University, Bengbu 233030, China;
| | - Zehua Wang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (X.Z.); (Z.W.)
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (X.Z.); (Z.W.)
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (X.Z.); (Z.W.)
| |
Collapse
|
2
|
Dong S, Yang F, Zhang Y, Teng Y, Tang W, Liu J, Fan H. Effect of X-ray irradiation on renal excretion of bestatin through down-regulating organic anion transporters via the vitamin D receptor in rats. Chem Biol Interact 2024; 399:111123. [PMID: 38964638 DOI: 10.1016/j.cbi.2024.111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Pharmacokinetic changes induced by radiation following radiotherapy ("RT-PK" phenomenon) are of great significance to the effectiveness and safety of chemotherapeutic agents in clinical settings. The aims of this study were to clarify the organic anion transporters (Oats) involved in the "RT-PK" phenomenon of bestatin in rats following X-ray irradiation and to elucidate its potential mechanism via vitamin D signalling. Pharmacokinetic studies, uptake assays using rat kidney slices and primary proximal tubule cells, and molecular biological studies were performed. Significantly increased plasma concentrations and systemic exposure to bestatin were observed at 24 and 48 h following abdominal X-ray irradiation, regardless of oral or intravenous administration of the drugs in rats. Reduced renal clearance and cumulative urinary excretion of bestatin were observed at 24 and 48 h post-irradiation in rats following intravenous administration. The uptake of the probe substrates p-aminohippuric acid and oestrone 3-sulfate sodium in vitro and the expression of Oat1 and Oat3 in vivo were reduced in the corresponding models following irradiation. Moreover, the upregulation of the vitamin D receptor (Vdr) in mRNA and protein levels negatively correlated with the expressions and functions of Oat1 and Oat3 following irradiation. Additionally, elevated plasma urea nitrogen levels and histopathological changes were observed in rats after exposure to irradiation. The "RT-PK" phenomenon of bestatin occurs in rats after exposure to irradiation, possibly resulting in the regulation of the expressions and activities of renal Oats via activation of the Vdr signalling pathway.
Collapse
Affiliation(s)
- Shiqi Dong
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 238, Baidi Road, Tianjin, 300192, China
| | - Fanlong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 238, Baidi Road, Tianjin, 300192, China
| | - Yufeng Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yunhua Teng
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 238, Baidi Road, Tianjin, 300192, China
| | - Weisheng Tang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 238, Baidi Road, Tianjin, 300192, China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 238, Baidi Road, Tianjin, 300192, China
| | - Huirong Fan
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 238, Baidi Road, Tianjin, 300192, China.
| |
Collapse
|
3
|
Estradiol regulation of P-glycoprotein expression in mouse kidney and human tubular epithelial cells, implication for renal clearance of drugs. Biochem Biophys Res Commun 2019; 519:613-619. [PMID: 31540689 DOI: 10.1016/j.bbrc.2019.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/07/2019] [Indexed: 11/23/2022]
Abstract
P-glycoprotein (P-gp/ABCB1) is an ATP-binding cassette drug efflux transporter expressed in a variety of tissues that affects the pharmacokinetic disposition of many drugs. Although several studies have reported gender-dependent differences in the expression of P-gp, the role of sex hormones in regulating the expression of P-gp and its transport activity has not been well understood. In this study, we demonstrated that 17β-estradiol has the ability to induce the expression of P-pg in mouse kidneys and cultured human renal proximal tubular epithelial cells. After intravenous injection of a typical P-gp substrate, digoxin, renal clearance in female mice was approximately 2-fold higher than that in male mice. The expression of murine P-gp and its mRNA (Abcb1a and Abcb1b) were also higher in female mice than in male mice. The expression of P-gp in cultured renal tissues prepared from female and male mice was significantly increased by 17β-estradiol, but not testosterone. Similar 17β-estradiol-induced expression of P-gp was also detected in cultured human tubular epithelial cells, accompanied by the enhancement of its transport activity of digoxin. The present findings suggest the contribution of estradiol to female-predominant expression of P-gp in renal cells, which is associated with sex-related disparities in the renal elimination of digoxin.
Collapse
|
4
|
Fullerton EF, Doyle HH, Murphy AZ. Impact of sex on pain and opioid analgesia: a review. Curr Opin Behav Sci 2018; 23:183-190. [PMID: 30906823 DOI: 10.1016/j.cobeha.2018.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic pain is a debilitating condition that impacts tens of millions each year, resulting in lost wages for workers and exacting considerable costs in health care and rehabilitation. A thorough understanding of the neural mechanisms underlying pain and analgesia is critical to facilitate the development of therapeutic strategies and personalized medicine. Clinical and epidemiological studies report that women experience greater levels of pain than men and have higher rates of pain-related disorders. Studies in both rodents and humans report sex differences in the anatomical and physiologic properties of the descending antinociceptive circuit, mu opioid receptor (MOR) expression and binding, morphine metabolism, and immune system activation, all of which likely contribute to the observed sex differences in pain and opioid analgesia. Although more research is needed to elucidate the underlying mechanisms, these sex differences present potential therapeutic targets to optimize pain management strategies for both sexes.
Collapse
Affiliation(s)
- Evan F Fullerton
- Neuroscience Institute, Georgia State University, Atlanta GA, 30303
| | - Hillary H Doyle
- Neuroscience Institute, Georgia State University, Atlanta GA, 30303
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta GA, 30303
| |
Collapse
|
5
|
Doyle HH, Murphy AZ. Sex-dependent influences of morphine and its metabolites on pain sensitivity in the rat. Physiol Behav 2017; 187:32-41. [PMID: 29199028 DOI: 10.1016/j.physbeh.2017.11.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022]
Abstract
Preclinical studies report that the effective dose for morphine is approximately 2-fold higher in females than males. Following systemic administration, morphine is metabolized via Phase II glucuronidation in the liver and brain into two active metabolites: morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G), each possessing distinct pharmacological profiles. M6G binds to μ opioid receptors and acts as a potent analgesic. In contrast, M3G binds to toll-like receptor 4 (TLR4), initiating a neuroinflammatory response that directly opposes the analgesic effects of morphine and M6G. M3G serum concentrations are 2-fold higher in females than males, however, sex-specific effects of morphine metabolites on analgesia and glial activation in vivo remain unknown. The present studies test the hypothesis that increased M3G, and subsequent TLR4-mediated activation of glia, is a primary mechanism driving the attenuated response to morphine in females. We demonstrate that intra-PAG M6G results in a greater analgesic response in females than morphine alone. M6G analgesia was reversed with co-administration of (-)-naloxone, but not (+)-naloxone, suggesting that this effect is μ opioid receptor mediated. In contrast, intra-PAG administration of M3G significantly attenuated the analgesic effects of systemic morphine in males only, increasing the 50% effective dose of morphine two-fold (5.0 vs 10.3mg/kg) and eliminating the previously observed sex difference. An increase in IL-1β, IL-6 and TNF was observed in females following intra-PAG morphine or M6G. In males, only IL-1β levels increased following morphine. Changes in cytokine levels following M3G were limited to TNF in females. Together, these data implicate sex differences in morphine metabolism, specifically M3G, as a contributing factor in the attenuated response to morphine observed in females.
Collapse
Affiliation(s)
- H H Doyle
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States
| | - A Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
6
|
Tain YL, Wu MS, Lin YJ. Sex differences in renal transcriptome and programmed hypertension in offspring exposed to prenatal dexamethasone. Steroids 2016; 115:40-46. [PMID: 27521802 DOI: 10.1016/j.steroids.2016.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/20/2022]
Abstract
Glucocorticoids, predominantly dexamethasone (DEX), are widely used to reduce the risk of prematurity-related chronic lung disease. However, prenatal DEX treatment links to adverse effects in later life, including hypertension. Given that sex differences exist in the blood pressure (BP) control, and that renal transcriptome is sex-specific, thus we intended to elucidate whether prenatal DEX-induced programmed hypertension is in a sex-specific manner and identify candidate genes and pathways using the whole-genome RNA next-generation sequencing (NGS) approach. Offspring were assigned to 4 groups (n=7-8/group): male control (MC), female control (FC), male DEX (MD), and female DEX (FD). Dexamethasone (0.1mg/kg body weight) or vehicle was intraperitoneally administered to pregnant SD rats from gestational day 16-22, to construct a DEX model. Rats were killed at 16weeks of age. Prenatal DEX induced sex-specific increase in BPs in male but not female adult offspring. Prenatal DEX elicited renal programming in a sex-specific fashion as demonstrated by 8 and 18 DEGs in male and female offspring, respectively. Among them, two genes, Hbb and Hba-a2, were shared. The resistance of female offspring to prenatal DEX-induced programmed hypertension is related to a lower Agt expression. Prenatal DEX induced programmed hypertension in adult male but not female offspring, which was related to renal programming affecting sex-biased genes and the RAS. Early identification of sex-specific underlying mechanisms could provide novel deprogramming strategy to reach maximal optimization in both sexes.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan.
| | - Meng-Shan Wu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Liang X, Wang L, Ou R, Nie X, Yang Y, Wang F, Li K. Effects of norfloxacin on hepatic genes expression of P450 isoforms (CYP1A and CYP3A), GST and P-glycoprotein (P-gp) in Swordtail fish (Xiphophorus Helleri). ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:1566-1573. [PMID: 25893329 DOI: 10.1007/s10646-015-1457-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/31/2015] [Indexed: 06/04/2023]
Abstract
The presence of antibiotics including norfloxacin in the aquatic environment may cause adverse effects in non-target organisms. But the toxic mechanisms of fluoroquinolone to fish species are still not completely elucidated. Thus, it is essential to investigate the response of fish to the exposure of fluoroquinolone at molecular or cellular level for better and earlier prediction of these environmental pollutants toxicity. The sub-chronic toxic effects of norfloxacin (NOR) on swordtail fish (Xiphophoru s helleri) were investigated by measuring mRNA expression of cytochrome P450 1A (CYP1A), cytochrome P450 3A (CYP3A), glutathione S-transferase (GST) and P-glycoprotein (P-gp) and their corresponding enzyme activities (including ethoxyresorufin O-deethylase, erythromycin N-demethylase and GST. Results showed that NOR significantly affected the expression of CYP1A, CYP3A, GST and P-gp genes in swordtails. The gene expressions were more responsive to NOR exposure than their corresponding enzyme activities. Moreover, sexual differences were found in gene expression and enzyme activities of swordtails exposed to NOR. Females displayed more dramatic changes than males. The study further demonstrated that the combined biochemical and molecular parameters were considered as useful biomarkers to improve our understanding of potential ecotoxicological risks of NOR exposure to aquatic organisms.
Collapse
Affiliation(s)
- Ximei Liang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Lan Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Ruikang Ou
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
- Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Minister of Education, Guangzhou, 510632, China.
| | - YuFeng Yang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Fang Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Kaibin Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| |
Collapse
|
8
|
Sun YS. Use of Microarrays as a High-Throughput Platform for Label-Free Biosensing. ACTA ACUST UNITED AC 2015; 20:334-53. [DOI: 10.1177/2211068215577570] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 12/28/2022]
|
9
|
Oda K, Nakada N, Nagasaka Y. In vitro/in vivoinvestigations to examine the gender differences in the pharmacokinetics of novel oral Janus kinase (JAK) inhibitor ASP015K and sulfate metabolite M2 in rats. Xenobiotica 2014; 45:488-94. [DOI: 10.3109/00498254.2014.995747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Feng B, Zhu H, Guan J, Zhao L, Gu J, Yin L, Fawcett JP, Liu W. A rapid and sensitive UFLC-MS/MS method for the simultaneous determination of gentiopicroside and swertiamarin in rat plasma and its application in pharmacokinetics. J Pharm Pharmacol 2014; 66:1369-76. [PMID: 24780079 DOI: 10.1111/jphp.12266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/16/2014] [Indexed: 02/05/2023]
Abstract
Abstract
Objectives
R adix G entianae is a traditional Chinese medicine derived from medicinal plants of the family Gentianaceae. Its pharmacological effects have been primarily attributed to the presence of a number of secoiridoid glycosides, in particular gentiopicroside and swertiamarin. In this study, a rapid and sensitive method based on ultrafast liquid chromatography-tandem mass spectrometry has been developed for the simultaneous determination of gentiopicroside and swertiamarin in rat plasma using paeoniflorin as internal standard (IS).
Methods
After liquid-liquid extraction with ethyl acetate-isopropanol (95 : 5, v/v), separation was achieved on a Shim-pack XR-ODS C18 column (75 mm × 3.0 mm, 2.2 μm) with a mobile phase consisting of methanol : 0.1% formic acid (30 : 70, v/v) at a flow rate of 0.4 ml/min. Detection on an API 3200 QTRAP mass spectrometer equipped with an electrospray ionization source operated in the negative ionization mode was performed by multiple reaction monitoring of the precursor-to-product ion transitions of gentiopicroside, swertiamarin and IS at m/z 401.0 → 179.0, 419.0 → 179.1 and 525.1 → 121.0 respectively. The calibration curves were linear over the concentration range of 20–10 000 and 2–1000 ng/ml for gentiopicroside and swertiamarin with corresponding lower limits of quantification of 20 and 2 ng/ml. The limits of detection were 4 and 0.5 ng/ml for gentiopicroside and swertiamarin, respectively. The intraday and interday precisions were below 11.9% for gentiopicroside and below 9.5% for swertiamarin in terms of relative standard deviation, and the accuracy was within ±8.3% for gentiopicroside and within ±10.2% for swertiamarin in terms of relative error. Extraction recovery, matrix effect and stability were satisfactory in rat plasma. The method was fully validated and applied to a pharmacokinetic study involving oral administration of a RadixGentianae extract to groups of male and female rats.
Key findings
Results showed that in female rats, both compounds were absorbed to a greater extent and eliminated more slowly than in male rats, although the rate of absorption was similar in the two groups.
Conclusions
There were remarkable differences in pharmacokinetic properties of gentiopicroside and swertiamarin between male and female rats. The results will provide helpful information for the development of suitable dosage forms and clinical references on rational administration.
Collapse
Affiliation(s)
- Bo Feng
- Research Center for Drug Metabolism, College of Life Science, Jilin University, China
- School of Pharmacy, Jilin Medical College, China
| | - Heyun Zhu
- School of Pharmacy, Jilin Medical College, China
| | - Jiao Guan
- School of Pharmacy, Jilin Medical College, China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Jingkai Gu
- Research Center for Drug Metabolism, College of Life Science, Jilin University, China
| | - Lei Yin
- Research Center for Drug Metabolism, College of Life Science, Jilin University, China
- Department of Stomatology, First Hospital of Jilin University, Changchun, Jilin, China
| | - J Paul Fawcett
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Wenshu Liu
- Department of Stomatology, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Sex differences in kidney gene expression during the life cycle of F344 rats. Biol Sex Differ 2013; 4:14. [PMID: 23902594 PMCID: PMC3844475 DOI: 10.1186/2042-6410-4-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 07/06/2013] [Indexed: 02/03/2023] Open
Abstract
Background The kidney functions in key physiological processes to filter blood and regulate blood pressure via key molecular transporters and ion channels. Sex-specific differences have been observed in renal disease incidence and progression, as well as acute kidney injury in response to certain drugs. Although advances have been made in characterizing the molecular components involved in various kidney functions, the molecular mechanisms responsible for sex differences are not well understood. We hypothesized that the basal expression levels of genes involved in various kidney functions throughout the life cycle will influence sex-specific susceptibilities to adverse renal events. Methods Whole genome microarray gene expression analysis was performed on kidney samples collected from untreated male and female Fischer 344 (F344) rats at eight age groups between 2 and 104 weeks of age. Results A combined filtering approach using statistical (ANOVA or pairwise t test, FDR 0.05) and fold-change criteria (>1.5 relative fold change) was used to identify 7,447 unique differentially expressed genes (DEGs). Principal component analysis (PCA) of the 7,447 DEGs revealed sex-related differences in mRNA expression at early (2 weeks), middle (8, 15, and 21 weeks), and late (104 weeks) ages in the rat life cycle. Functional analysis (Ingenuity Pathway Analysis) of these sex-different genes indicated over-representation of specific pathways and networks including renal tubule injury, drug metabolism, and immune cell and inflammatory responses. The mRNAs that code for the qualified urinary protein kidney biomarkers KIM-1, Clu, Tff3, and Lcn2 were also observed to show sex differences. Conclusions These data represent one of the most comprehensive in-life time course studies to be published, assessing sex differences in global gene expression in the F344 rat kidney. PCA and Venn analyses reveal specific periods of sexually dimorphic gene expression which are associated with functional categories (xenobiotic metabolism and immune cell and inflammatory responses) of key relevance to acute kidney injury and chronic kidney disease, which may underlie sex-specific susceptibility. Analysis of the basal gene expression patterns of renal genes throughout the life cycle of the rat will improve the use of current and future renal biomarkers and inform our assessments of kidney injury and disease.
Collapse
|
12
|
Choong E, Loryan I, Lindqvist M, Nordling Å, el Bouazzaoui S, van Schaik RH, Johansson I, Jakobsson J, Ingelman-Sundberg M. Sex Difference in Formation of Propofol Metabolites: A Replication Study. Basic Clin Pharmacol Toxicol 2013; 113:126-31. [DOI: 10.1111/bcpt.12070] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/07/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Eva Choong
- Section of Pharmacogenetics; Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm; Sweden
| | - Irena Loryan
- Section of Pharmacogenetics; Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm; Sweden
| | - Marja Lindqvist
- Section of Pharmacogenetics; Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm; Sweden
| | - Åsa Nordling
- Section of Pharmacogenetics; Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm; Sweden
| | - Samira el Bouazzaoui
- Department of Clinical Chemistry; Erasmus MC Rotterdam; Rotterdam; The Netherlands
| | - Ron H. van Schaik
- Department of Clinical Chemistry; Erasmus MC Rotterdam; Rotterdam; The Netherlands
| | - Inger Johansson
- Section of Pharmacogenetics; Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm; Sweden
| | - Jan Jakobsson
- Section of Pharmacogenetics; Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm; Sweden
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics; Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm; Sweden
| |
Collapse
|
13
|
Xu H, Gan J, Liu X, Wu R, Jin Y, Li M, Yuan B. Gender-dependent pharmacokinetics of lignans in rats after single and multiple oral administration of Schisandra chinensis extract. JOURNAL OF ETHNOPHARMACOLOGY 2013; 147:224-231. [PMID: 23501155 DOI: 10.1016/j.jep.2013.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/18/2013] [Accepted: 03/04/2013] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis (S. chinensis), a traditional Chinese medicine, has been widely used as sedatives and tonics in clinic. Schisandra lignans are believed to be the major bioactive components in S. chinensis. However, there is a lack of information about the effects of gender and repeated-dose on the pharmacokinetic properties of the schisandra lignans. AIM OF THE STUDY The study was performed to investigate the influence of gender on the pharmacokinetics of schisandra lignans after administration of S. chinensis extract and to compare their pharmacokinetic behaviors between single and multiple administration. MATERIALS AND METHODS Two groups of rats (half male and half female) were received a single dose or multiple doses of S. chinensis extract, respectively. A liquid chromatography-tandem mass spectrometry method was developed and validated to determine the plasma concentrations of schisandra lignans. RESULTS The pharmacokinetic parameters of schisandrin, schisandrol B, deoxyschisandrin, γ-schisandrin and schisantherin A were significantly different by gender difference. The t1/2 of all the tested schisandra lignans in female rats were 2-9 times longer than the corresponding values in male rats. The Cmax and AUC0-t of these schisandra lignans except schisantherin A in female rats were 5-50 times higher than those in male rats. The pharmacokinetic profiles of schisandrin, schisandrol B, deoxyschisandrin and schisantherin A in both gender rats after multiple doses were similar to the corresponding profile after single dose. CONCLUSION All the tested schisandra lignans showed slower elimination and higher bioavailability in female rats after single or multiple administration of S. chinensis extract compared with male rats. Their pharmacokinetic profiles were not affected by repeated-dose except γ-schisandrin, which was eliminated more slowly in female rats after multiple administration.
Collapse
Affiliation(s)
- Haiyan Xu
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Xie H, Sun S, Cheng X, Yan T, Zheng X, Li F, Qi Q, Wang G, Hao H. Dysregulations of Intestinal and Colonic UDP-glucuronosyltransferases in Rats with Type 2 Diabetes. Drug Metab Pharmacokinet 2013; 28:427-34. [DOI: 10.2133/dmpk.dmpk-13-rg-020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|