1
|
Lawson A, Annunziato M, Bashirova N, Eeza MNH, Matysik J, Alia A, Berry JP. High-Resolution Magic-Angle Spinning Nuclear Magnetic Resonance Identifies Impairment of Metabolism by T-2 Toxin, in Relation to Toxicity, in Zebrafish Embryo Model. Toxins (Basel) 2024; 16:424. [PMID: 39453200 PMCID: PMC11511446 DOI: 10.3390/toxins16100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Among the widespread trichothecene mycotoxins, T-2 toxin is considered the most toxic congener. In the present study, we utilized high-resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR), coupled to the zebrafish (Danio rerio) embryo model, as a toxicometabolomics approach to elucidate the cellular, molecular and biochemical pathways associated with T-2 toxicity. Aligned with previous studies in the zebrafish embryo model, exposure to T-2 toxin was lethal in the high parts-per-billion (ppb) range, with a median lethal concentration (LC50) of 105 ppb. Exposure to the toxins was, furthermore, associated with system-specific alterations in the production of reactive oxygen species (ROS), including decreased ROS production in the liver and increased ROS in the brain region, in the exposed embryos. Moreover, metabolic profiling based on HRMAS NMR revealed the modulation of numerous, interrelated metabolites, specifically including those associated with (1) phase I and II detoxification, and antioxidant pathways; (2) disruption of the phosphocholine lipids of cell membranes; (3) mitochondrial energy metabolism, including apparent disruption of the tricarboxylic acid (TCA) cycle, and the electron transport chain of oxidative phosphorylation, as well as "upstream" effects on carbohydrate, i.e., glucose metabolism; and (4) several compensatory catabolic pathways. Taken together, these observations enabled development of an integrated, system-level model of T-2 toxicity in relation to human and animal health.
Collapse
Affiliation(s)
- Ariel Lawson
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA; (A.L.); (M.A.)
| | - Mark Annunziato
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA; (A.L.); (M.A.)
- Institute of Environment, Florida International University, Miami, FL 33181, USA
| | - Narmin Bashirova
- Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany; (N.B.); (M.N.H.E.); (J.M.)
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany;
| | - Muhamed N. Hashem Eeza
- Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany; (N.B.); (M.N.H.E.); (J.M.)
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany;
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany; (N.B.); (M.N.H.E.); (J.M.)
| | - A. Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany;
- Leiden Institute of Chemistry, Leiden University, 2333 Leiden, The Netherlands
| | - John. P. Berry
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA; (A.L.); (M.A.)
- Institute of Environment, Florida International University, Miami, FL 33181, USA
- Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
2
|
Lin X, Qiao L, Liu H, Bao M, Deng H, Jia L, Wen X, Deng F, Wan P, Lyu Y, Han J. An untargeted metabolomics study of cardiac pathology damage in rats caused by low selenium diet alone or in combination with T-2 toxin. Food Chem Toxicol 2024; 189:114759. [PMID: 38796086 DOI: 10.1016/j.fct.2024.114759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
T-2 toxin is a highly cardiotoxic environmental contaminant. Selenium can uphold the cardiovascular system's functionality. Selenium insufficiency is common. The aim of this study was to elucidate the effects of low selenium diet alone or in combination with T-2 toxin on myocardial tissue damage. Thirty-two Sprague-Dawley rats of 3 weeks of age were randomized into control, low selenium diet, low selenium diet combined with T-2 toxin groups (at doses of 10 ng/g and 100 ng/g body weight) for 12-weeks intervention. Pathohistology and ultrastructural changes in cardiac tissue were observed. Changes in cardiac metabolites were analyzed using untargeted metabolomics. The findings demonstrated that cardiac tissue abnormalities, interstitial bleeding, inflammatory cell infiltration, and mitochondrial damage can be brought on by low selenium diet alone or in combination with the T-2 toxin. A low selenium diet alone or in combination with the T-2 toxin affected cardiac metabolic profiles and resulted in aberrant modifications in many metabolic pathways, including the metabolism of amino acids, cholesterol, and thiamine. Accordingly, low selenium diet and T-2 toxin may have a synergistic effect. Our findings provide fresh insights into the processes of cardiac injury by revealing the effects of low selenium diet and T-2 toxin on cardiac metabolism.
Collapse
Affiliation(s)
- Xue Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Lichun Qiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Haobiao Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Miaoye Bao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Huan Deng
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Lianxu Jia
- Xi'an Gem Flower Chang Qing Hospital, Xi'an, Shaanxi, 710201, China.
| | - Xinyue Wen
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Feidan Deng
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Ping Wan
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Yizhen Lyu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China.
| | - Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
3
|
Wang P, Sun LH, Wang X, Wu Q, Liu A. Effective protective agents against the organ toxicity of T-2 toxin and corresponding detoxification mechanisms: A narrative review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:251-266. [PMID: 38362519 PMCID: PMC10867609 DOI: 10.1016/j.aninu.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/28/2023] [Accepted: 12/01/2023] [Indexed: 02/17/2024]
Abstract
T-2 toxin is one of the most widespread and toxic fungal toxins in food and feed. It can cause gastrointestinal toxicity, hepatotoxicity, immunotoxicity, reproductive toxicity, neurotoxicity, and nephrotoxicity in humans and animals. T-2 toxin is physicochemically stable and does not readily degrade during food and feed processing. Therefore, suppressing T-2 toxin-induced organ toxicity through antidotes is an urgent issue. Protective agents against the organ toxicity of T-2 toxin have been recorded widely in the literature, but these protective agents and their molecular mechanisms of detoxification have not been comprehensively summarized. In this review, we provide an overview of the various protective agents to T-2 toxin and the molecular mechanisms underlying the detoxification effects. Targeting appropriate targets to antagonize T-2 toxin toxicity is also an important option. This review will provide essential guidance and strategies for the better application and development of T-2 toxin antidotes specific for organ toxicity in the future.
Collapse
Affiliation(s)
- Pengju Wang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Lv-hui Sun
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Aimei Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
4
|
Li T, Sun W, Zhu S, He C, Chang T, Zhang J, Chen Y. T-2 Toxin-Mediated β-Arrestin-1 O-GlcNAcylation Exacerbates Glomerular Podocyte Injury via Regulating Histone Acetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307648. [PMID: 38083975 PMCID: PMC10870076 DOI: 10.1002/advs.202307648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Indexed: 02/17/2024]
Abstract
T-2 toxin causes renal dysfunction with proteinuria and glomerular podocyte damage. This work explores the role of metabolic disorder/reprogramming-mediated epigenetic modification in the progression of T-2 toxin-stimulated podocyte injury. A metabolomics experiment is performed to assess metabolic responses to T-2 toxin infection in human podocytes. Roles of protein O-linked-N-acetylglucosaminylation (O-GlcNAcylation) in regulating T-2 toxin-stimulated podocyte injury in mouse and podocyte models are assessed. O-GlcNAc target proteins are recognized by mass spectrometry and co-immunoprecipitation experiments. Moreover, histone acetylation and autophagy levels are measured. T-2 toxin infection upregulates glucose transporter type 1 (GLUT1) expression and enhances hexosamine biosynthetic pathway in glomerular podocytes, resulting in a significant increase in β-arrestin-1 O-GlcNAcylation. Decreasing β-arrestin-1 or O-GlcNAc transferase (OGT) effectively prevents T-2 toxin-induced renal dysfunction and podocyte injury. Mechanistically, O-GlcNAcylation of β-arrestin-1 stabilizes β-arrestin-1 to activate the mammalian target of rapamycin (mTOR) pathway as well as to inhibit autophagy during podocyte injury by promoting H4K16 acetylation. To sum up, OGT-mediated β-arrestin-1 O-GlcNAcylation is a vital regulator in the development of T-2 toxin-stimulated podocyte injury via activating the mTOR pathway to suppress autophagy. Targeting β-arrestin-1 or OGT can be a potential therapy for T-2 toxin infection-associated glomerular injury, especially podocyte injury.
Collapse
Affiliation(s)
- Tushuai Li
- School of Biology and Food EngineeringChangshu Institute of TechnologySuzhou215500P.R. China
- Wuxi School of MedicineJiangnan UniversityWuxi214013P.R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi BranchWuxi214013P.R. China
| | - Wenxue Sun
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJining272000P.R. China
- Postdoctoral of Shandong University of Traditional Chinese MedicineJi'nan250355P.R. China
- Institute of Translational PharmacyJining Medical Research AcademyJining272000P.R. China
| | - Shenglong Zhu
- Wuxi School of MedicineJiangnan UniversityWuxi214013P.R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi BranchWuxi214013P.R. China
| | - Chengsheng He
- School of Biology and Food EngineeringChangshu Institute of TechnologySuzhou215500P.R. China
| | - Tong Chang
- School of Biology and Food EngineeringChangshu Institute of TechnologySuzhou215500P.R. China
| | - Jie Zhang
- School of Biology and Food EngineeringChangshu Institute of TechnologySuzhou215500P.R. China
| | - Yongquan Chen
- Wuxi School of MedicineJiangnan UniversityWuxi214013P.R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi BranchWuxi214013P.R. China
| |
Collapse
|
5
|
He J, Zhang Q, Xia X, Yang L. Lagopsis supina ameliorates myocardial ischemia injury by regulating angiogenesis, thrombosis, inflammation, and energy metabolism through VEGF, ROS and HMGB1 signaling pathways in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155050. [PMID: 37708818 DOI: 10.1016/j.phymed.2023.155050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Lagopsis supina (Steph. ex. Willd.) Ikonn.-Gal. is an important traditional Chinese medicine used to treat various ailments. However, its impact on myocardial ischemia (MI) injury remains unknown. PURPOSE This research aimed to reveal the therapeutic effect, potential mechanism, and metabolomics of L. supina against MI injury in rats. METHODS The therapeutic effects of the ethanolic extract of L. supina (LS) and its four fractions (LSA∼D) on a left anterior descending (LAD) artery occlusion-induced MI model rat were explored. The pharmacodynamics including myocardial infraction area, myocardial tissue pathology and apoptosis, and serum biochemical parameters (CK, CK-MB, CTn-T, SOD, ET-1, NO, eNOS, VEGF, TXB2, 6-keto-PGF1α, TNF-α, IL-6, and CRP) were evaluated. The 24 related protein expressions were detected using western blotting assay. Simultaneously, the qualitative and quantitative analyses of microporous adsorption resin with 30% (LSC) and 60% (LSD) aqueous ethanol fractions were performed using UHPLC-MS and HPLC. Moreover, the serum metabolomics analysis of rats was profiled using UHPLC-MS. RESULTS LS exerted remarkable alleviating effect on MI in rats. Importantly, LSC and LSD, two effective fractions of LS, significantly reduced myocardial infraction area, alleviated myocardial tissue pathology and apoptosis, regulated serum biochemical parameters. Furthermore, LSC and LSD markedly up-regulated the levels of VEGF-A, VEGFR-2, PKC, Bcl-2, Nrf2, HO-1, and thrombin, as well as prominently down-regulated the protein expression of Notch 1, p-PI3K, p-PI3K/PI3K, p-Akt, p-Akt/Akt, Bax, cleaved-caspase-3, cleaved-caspase-3/caspase-3, vWF, p-Erk, p-Erk/Erk, HMGB1, p-p38, p-p38/p38, p-p65, and p-p65/p65. A total of 26 candidate biomarkers were significantly regulated by LSC and LSD and they are mainly involved in amino acid metabolism, glycerophospholipid metabolism, and sphingolipid metabolism. Finally, phenylethanols and flavonoids may be major bio-constituents of LSC and LSD against MI. CONCLUSIONS This work, for the first time, demonstrated that L. supina had a significant therapeutic effect on MI in rats. Additionally, LSC and LSD, two bio-fractions from L. supina, exerted their potential to ameliorate MI injury by promoting angiogenesis, inhibiting thrombosis, blocking inflammation, and facilitating energy metabolism through promotion of VEGF pathway, as well as suppression of ROS and HMGB1 pathways in rats. These findings suggest that LSC and LSD hold promise as potential therapeutic agents for MI injury in clinical application.
Collapse
Affiliation(s)
- Junwei He
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qingcui Zhang
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoyi Xia
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Li Yang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
6
|
Nossol C, Landgraf P, Barta-Böszörmenyi A, Kahlert S, Kluess J, Isermann B, Stork O, Dieterich DC, Dänicke S, Rothkötter HJ. Deoxynivalenol affects cell metabolism in vivo and inhibits protein synthesis in IPEC-1 cells. Mycotoxin Res 2023:10.1007/s12550-023-00489-z. [PMID: 37256505 PMCID: PMC10393834 DOI: 10.1007/s12550-023-00489-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
Deoxynivalenol is present in forage crops in concentrations that endanger animal welfare but is also found in cereal-based food. The amphipathic nature of mycotoxins allows them to cross the cell membrane and interacts with different cell organelles such as mitochondria and ribosomes. In our study, we investigated the gene expression of several genes in vivo and in vitro that are related to the metabolism. We observed a significantly higher COX5B and MHCII expression in enterocytes of DON-fed pigs compared to CON-fed pigs and a marked increase in GAPDH and SLC7A11 in DON-fed pigs, but we could not confirm this in vitro in IPEC-1. In vitro, functional metabolic analyses were performed with a seahorse analyzer. A significant increase of non-mitochondrial respiration was observed in all DON-treatment groups (50-2000 ng/mL). The oxygen consumption of cells, which were cultured on membranes, was examined with a fiber-glass electrode. Here, we found significantly lower values for DON 200- and DON 2000-treatment group. The effect on ribosomes was investigated using biorthogonal non-canonical amino acid tagging (BONCAT) to tag newly synthesized proteins. A significantly reduced amount was found in almost all DON-treatment groups. Our findings clearly show that apical and basolateral DON-treatment of epithelial cell layer results in decreasing amounts of newly synthesized proteins. Furthermore, our study shows that DON affects enterocyte metabolism in vivo and in vitro.
Collapse
Affiliation(s)
- Constanze Nossol
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, Magdeburg, 39120, Germany.
| | - Peter Landgraf
- Institute of Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, Magdeburg, 39120, Germany
| | - Anikó Barta-Böszörmenyi
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, Magdeburg, 39120, Germany
| | - Stefan Kahlert
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, Magdeburg, 39120, Germany
| | | | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, 04103, Germany
| | - Oliver Stork
- Deparment of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, Magdeburg, 39120, Germany
| | - Daniela C Dieterich
- Institute of Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, Magdeburg, 39120, Germany
| | - Sven Dänicke
- Friedrich-Loeffler Institute, Braunschweig, 38116, Germany
| | - H-J Rothkötter
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, Magdeburg, 39120, Germany
| |
Collapse
|
7
|
Mitochondrial Damage Induced by T-2 Mycotoxin on Human Skin-Fibroblast Hs68 Cell Line. Molecules 2023; 28:molecules28052408. [PMID: 36903658 PMCID: PMC10005480 DOI: 10.3390/molecules28052408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
T-2 toxin is produced by different Fusarium species and belongs to the group of type A trichothecene mycotoxins. T-2 toxin contaminates various grains, such as wheat, barley, maize, or rice, thus posing a risk to human and animal health. The toxin has toxicological effects on human and animal digestive, immune, nervous and reproductive systems. In addition, the most significant toxic effect can be observed on the skin. This in vitro study focused on T-2 toxicity on human skin fibroblast Hs68 cell line mitochondria. In the first step of this study, T-2 toxin's effect on the cell mitochondrial membrane potential (MMP) was determined. The cells were exposed to T-2 toxin, which resulted in dose- and time-dependent changes and a decrease in MMP. The obtained results revealed that the changes of intracellular reactive oxygen species (ROS) in the Hs68 cells were not affected by T-2 toxin. A further mitochondrial genome analysis showed that T-2 toxin in a dose- and time-dependent manner decreased the number of mitochondrial DNA (mtDNA) copies in cells. In addition, T-2 toxin genotoxicity causing mtDNA damage was evaluated. It was found that incubation of Hs68 cells in the presence of T-2 toxin, in a dose- and time-dependent manner, increased the level of mtDNA damage in both tested mtDNA regions: NADH dehydrogenase subunit 1 (ND1) and NADH dehydrogenase subunit 5 (ND5). In conclusion, the results of the in vitro study revealed that T-2 toxin shows adverse effects on Hs68 cell mitochondria. T-2 toxin induces mitochondrial dysfunction and mtDNA damage, which may cause the disruption of adenosine triphosphate (ATP) synthesis and, in consequence, cell death.
Collapse
|
8
|
Fang M, Hu W, Liu B. Protective and detoxifying effects conferred by selenium against mycotoxins and livestock viruses: A review. Front Vet Sci 2022; 9:956814. [PMID: 35982930 PMCID: PMC9378959 DOI: 10.3389/fvets.2022.956814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Animal feed can easily be infected with molds during production and storage processes, and this can lead to the production of secondary metabolites, such as mycotoxins, which eventually threaten human and animal health. Furthermore, livestock production is also not free from viral infections. Under these conditions, the essential trace element, selenium (Se), can confer various biological benefits to humans and animals, especially due to its anticancer, antiviral, and antioxidant properties, as well as its ability to regulate immune responses. This article reviews the latest literature on the antagonistic effects of Se on mycotoxin toxicity and viral infections in animals. We outlined the systemic toxicity of mycotoxins and the primary mechanisms of mycotoxin-induced toxicity in this analysis. In addition, we pay close attention to how mycotoxins and viral infections in livestock interact. The use of Se supplementation against mycotoxin-induced toxicity and cattle viral infection was the topic of our final discussion. The coronavirus disease 2019 (COVID-19) pandemic, which is currently causing a health catastrophe, has altered our perspective on health concerns to one that is more holistic and increasingly embraces the One Health Concept, which acknowledges the interdependence of humans, animals, and the environment. In light of this, we have made an effort to present a thorough and wide-ranging background on the protective functions of selenium in successfully reducing mycotoxin toxicity and livestock viral infection. It concluded that mycotoxins could be systemically harmful and pose a severe risk to human and animal health. On the contrary, animal mycotoxins and viral illnesses have a close connection. Last but not least, these findings show that the interaction between Se status and host response to mycotoxins and cattle virus infection is crucial.
Collapse
Affiliation(s)
- Manxin Fang
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
- *Correspondence: Manxin Fang
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| |
Collapse
|
9
|
Dai C, Das Gupta S, Wang Z, Jiang H, Velkov T, Shen J. T-2 toxin and its cardiotoxicity: New insights on the molecular mechanisms and therapeutic implications. Food Chem Toxicol 2022; 167:113262. [PMID: 35792220 DOI: 10.1016/j.fct.2022.113262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
T-2 toxin is one of the most toxic and common trichothecene mycotoxins, and can cause various cardiovascular diseases. In this review, we summarized the current knowledge-base and challenges as it relates to T-2 toxin related cardiotoxicity. The molecular mechanisms and potential treatment approaches were also discussed. Pathologically, T-2 toxin-induced cardiac toxicity is characterized by cell injury and death in cardiomyocyte, increased capillary permeability, necrosis of cardiomyocyte, hemorrhage, and the infiltration of inflammatory cells in the heart. T-2 toxin exposure can cause cardiac fibrosis and finally lead to cardiac dysfunction. Mechanistically, T-2 toxin exposure-induced cardiac damage involves the production of ROS, mitochondrial dysfunction, peroxisome proliferator-activated receptor-gamma (PPAR-γ) signaling pathway, endoplasmic reticulum (ER stress), transforming growth factor beta 1 (TGF-β1)/smad family member 2/3 (Smad2/3) signaling pathway, and autophagy and inflammatory responses. Antioxidant supplementation (e.g., catalase, vitamin C, and selenium), induction of autophagy (e.g., rapamycin), blockade of inflammatory signaling (e.g., methylprednisolone) or treatment with PPAR-γ agonists (e.g., pioglitazone) may provide protective effects against these detrimental cardiac effects caused by T-2 toxin. We believe that our review provides new insights in understanding T-2 toxin exposure-induced cardiotoxicity and fuels effective prevention and treatment strategies against this important food-borne toxin-induced health problems.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing, 100193, PR China.
| | - Subhajit Das Gupta
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75230, USA
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing, 100193, PR China
| | - Haiyang Jiang
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing, 100193, PR China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing, 100193, PR China
| |
Collapse
|
10
|
Malvandi AM, Shahba S, Mehrzad J, Lombardi G. Metabolic Disruption by Naturally Occurring Mycotoxins in Circulation: A Focus on Vascular and Bone Homeostasis Dysfunction. Front Nutr 2022; 9:915681. [PMID: 35811967 PMCID: PMC9263741 DOI: 10.3389/fnut.2022.915681] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 12/22/2022] Open
Abstract
Naturally occurring food/feed contaminants have become a significant global issue due to animal and human health implications. Despite risk assessments and legislation setpoints on the mycotoxins' levels, exposure to lower amounts occurs, and it might affect cell homeostasis. However, the inflammatory consequences of this possible everyday exposure to toxins on the vascular microenvironment and arterial dysfunction are unexplored in detail. Circulation is the most accessible path for food-borne toxins, and the consequent metabolic and immune shifts affect systemic health, both on vascular apparatus and bone homeostasis. Their oxidative nature makes mycotoxins a plausible underlying source of low-level toxicity in the bone marrow microenvironment and arterial dysfunction. Mycotoxins could also influence the function of cardiomyocytes with possible injury to the heart. Co-occurrence of mycotoxins can modulate the metabolic pathways favoring osteoblast dysfunction and bone health losses. This review provides a novel insight into understanding the complex events of coexposure to mixed (low levels) mycotoxicosis and subsequent metabolic/immune disruptions contributing to chronic alterations in circulation.
Collapse
Affiliation(s)
- Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- *Correspondence: Amir Mohammad Malvandi ; orcid.org/0000-0003-1243-2372
| | - Sara Shahba
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
11
|
Hou S, Ma J, Cheng Y, Wang H, Sun J, Yan Y. The toxicity mechanisms of DON to humans and animals and potential biological treatment strategies. Crit Rev Food Sci Nutr 2021; 63:790-812. [PMID: 34520302 DOI: 10.1080/10408398.2021.1954598] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Deoxynivalenol, also known as vomitotoxin, is produced by Fusarium, belonging to the group B of the trichothecene family. DON is widely polluted, mainly polluting cereal crops such as wheat, barley, oats, corn and related cereal products, which are closely related to lives of people and animals. At present, there have been articles summarizing DON induced toxicity, biological detoxification and the protective effect of natural products, but there is no systematic summary of this information. In addition to ribosome and endoplasmic reticulum, recent investigations support that mitochondrion is also organelles that DON can damage. DON can't directly act on mitochondria, but can indirectly cause mitochondrial damage and changes through other means. DON can indirectly inhibit mitochondrial biogenesis and mitochondrial electron transport chain activity, ATP production, and mitochondrial transcription and translation. This review will provide the latest progress on mitochondria as the research object, and systematically summarizes all the toxic mechanisms of DON. Here, we discuss DON induced mitochondrial-mediated apoptosis and various mitochondrial toxicity. For the toxicity of DON, many methods have been derived to prevent or reduce the toxicity. Biological detoxification and the antioxidant effect of natural products are potentially effective treatments for DON toxicity.
Collapse
Affiliation(s)
- Silu Hou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hengan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Lu Q, Hu S, Guo P, Zhu X, Ren Z, Wu Q, Wang X. PPAR-γ with its anti-fibrotic action could serve as an effective therapeutic target in T-2 toxin-induced cardiac fibrosis of rats. Food Chem Toxicol 2021; 152:112183. [PMID: 33836209 DOI: 10.1016/j.fct.2021.112183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/13/2021] [Accepted: 04/02/2021] [Indexed: 01/14/2023]
Abstract
T-2 toxin, the most virulent toxin produced by the Fusarium genus, is thought to be the main cause of fatal cardiomyopathy known as Keshan disease. However, the mechanisms of T-2 toxin-induced cardiac toxicity and possible targets for its treatment remain unclear. In the present study, male Wistar rats were administered with 2 mg/kg b. w. T-2 toxin (i.g.) and sacrificed on day 7 after exposure. The hematological indices (CK, LDH) and electrocardiogram were significantly abnormal, the ultrastructure of mitochondria in the heart was changed, and the percentage of collagen area was significantly increased in the T-2 toxin-treated group. Meanwhile, T-2 toxin activated the TGF-β1/Smad2/3 signalling pathway, and also activated PPAR-γ expression in rats and H9C2 cells. Further application of PPAR-γ agonist (pioglitazone) and antagonist (GW9662) in H9C2 cells revealed that the up-regulation of PPAR-γ expression induced by T-2 toxin is a self-preservation phenomenon, and increasing exogenous PPAR-γ can alleviate the increase in TGF-β1 caused by T-2 toxin, thereby playing a role in relieving cardiac fibrosis. These findings for the first time demonstrate that T-2 toxin can regulate the expression of PPAR-γ and that PPAR-γ has the potential to serve as an effective therapeutic target in T-2 toxin-induced cardiac fibrosis of rats.
Collapse
Affiliation(s)
- Qirong Lu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, China; Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Siyi Hu
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Pu Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, China; Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Xiaohui Zhu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, China; Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zhongchang Ren
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, China; Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; Jingchu Food Research and Development Center, Yangtze University, Jingzhou, 434025, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, China; Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
13
|
Wang S, Wu K, Xue D, Zhang C, Rajput SA, Qi D. Mechanism of deoxynivalenol mediated gastrointestinal toxicity: Insights from mitochondrial dysfunction. Food Chem Toxicol 2021; 153:112214. [PMID: 33930483 DOI: 10.1016/j.fct.2021.112214] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/21/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022]
Abstract
Deoxynivalenol (DON) is a mycotoxin predominantly produced by Fusarium genus, and widely contaminates cereals and associated products all over the world. The intestinal toxicity of DON is well established. However, intestinal homeostasis involves mitochondria, which has rarely been considered in the context of DON exposure. We summarize the recent knowledge on mitochondria as a key player in maintaining intestinal homeostasis based on their functions in cellular energy metabolism, redox homeostasis, apoptosis, intestinal immune responses, and orchestrated bidirectional cross-talk with gut microbe. In addition, we discuss the pivotal roles of mitochondrial dysfunction in the intestinal toxicity of DON and highlight promising mitochondrial-targeted therapeutics for DON-induced intestinal injury. Recent studies support that the intestinal toxicity of DON is attributed to mitochondrial dysfunction as a critical factor. Mitochondrial dysfunction characterized by failure in respiratory capacities and ROS overproduction has been demonstrated in intestinal cells exposed to DON. Perturbation of mitochondrial respiration leading to ROS accumulation is implicated in the early initiation of apoptosis. DON-induced intestinal inflammatory response is tightly linked to the mitochondrial ROS, whereas immunosuppression is intimately associated with mitophagy inhibition. DON perturbs the orchestrated bidirectional cross-talk between gut microbe and host mitochondria, which may be involved in DON-induced intestinal toxicity.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Kuntan Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Dongfang Xue
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Cong Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Shahid Ali Rajput
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
14
|
Wojtacha P, Trybowski W, Podlasz P, Żmigrodzka M, Tyburski J, Polak-Śliwińska M, Jakimiuk E, Bakuła T, Baranowski M, Żuk-Gołaszewska K, Zielonka Ł, Obremski K. Effects of a Low Dose of T-2 Toxin on the Percentage of T and B Lymphocytes and Cytokine Secretion in the Porcine Ileal Wall. Toxins (Basel) 2021; 13:toxins13040277. [PMID: 33924586 PMCID: PMC8070124 DOI: 10.3390/toxins13040277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022] Open
Abstract
Plant materials used in the production of pig feed are frequently contaminated with mycotoxins. T-2 toxin is a secondary metabolite of selected Fusarium species, and it can exert a harmful influence on living organisms. Most mycotoxins enter the body via the gastrointestinal tract, and they can modulate the gut-associated lymphoid tissue (GALT) function. However, little is known about the influence of low T-2 toxin doses on GALT. Therefore, the aim of this study was to evaluate the effect of T-2 toxin administered at 50% of the lowest-observed-adverse-effect level (LOAEL) on the percentage of CD2+ T cells, CD4+ T helper cells, CD8+ cytotoxic T cells, CD4+CD8+ double-positive T cells, TCRγδ+ cells, CD5+CD8- B1 cells, and CD21+ B2 cells, and the secretion of proinflammatory (IFN-γ, IL-1β, IL-2, IL-12/23p40, IL-17A), anti-inflammatory, and regulatory (IL-4, IL-10, TGF-β) cytokines in the porcine ileal wall. The results of the study revealed that T-2 toxin disrupts the development of tolerance to food antigens by enhancing the secretion of proinflammatory and regulatory cytokines and decreasing the production of anti-inflammatory TGF-β. T-2 toxin triggered the cellular response, which was manifested by an increase in the percentage of CD8+ T cells and a decrease in the percentage of B2 and Tγδ lymphocytes.
Collapse
Affiliation(s)
- Paweł Wojtacha
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn, Poland;
| | | | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
- Correspondence: (P.P.); (K.O.)
| | - Magdalena Żmigrodzka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-776 Warsaw, Poland;
| | - Józef Tyburski
- Department of Agroecosystems and Horticulture, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Magdalena Polak-Śliwińska
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn, Poland;
| | - Ewa Jakimiuk
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (E.J.); (T.B.); (M.B.); (Ł.Z.)
| | - Tadeusz Bakuła
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (E.J.); (T.B.); (M.B.); (Ł.Z.)
| | - Mirosław Baranowski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (E.J.); (T.B.); (M.B.); (Ł.Z.)
| | - Krystyna Żuk-Gołaszewska
- Department of Agrotechnology and Agribusines, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (E.J.); (T.B.); (M.B.); (Ł.Z.)
| | - Kazimierz Obremski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (E.J.); (T.B.); (M.B.); (Ł.Z.)
- Correspondence: (P.P.); (K.O.)
| |
Collapse
|
15
|
Ndlovu S, Nagiah S, Abdul NS, Ghazi T, Chuturgoon AA. Deoxynivalenol downregulates NRF2-induced cytoprotective response in human hepatocellular carcinoma (HepG2) cells. Toxicon 2021; 193:4-12. [PMID: 33515572 DOI: 10.1016/j.toxicon.2021.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Deoxynivalenol (DON) commonly infects agricultural foods; it exhibits toxicity by inducing oxidative stress and inhibiting protein synthesis. Nuclear factor erythroid 2-related factor 2 (NRF2) regulates the cellular antioxidant response. We investigated the cytotoxicity of DON and its effect on the NRF2 antioxidant response in HepG2 cells. The Methyl Thiazol Tetrazolium (MTT), glutathione (GSH) and ATP assays evaluated toxicity, whilst lipid peroxidation and membrane damage were assessed using the Thiobarbituric acid reactive substance (TBARS) and lactate dehydrogenase (LDH) assays. Protein expression of NRF2, phosphorylated (p-ser40) NRF2, catalase (CAT), superoxide dismutase 2 (SOD2), and Sirtuin 3 (Sirt3) were quantified by Western Blotting. Gene expression of glutathione peroxidase (GPx), CAT and SOD2 was determined using qPCR. DON decreased cell viability, GSH concentrations and ATP levels and increased lipid peroxidation and membrane damage. DON significantly decreased total NRF2 and increased p-NRF2 and downregulated the transcription and translation of NRF2 target antioxidant enzymes. Further, expression of the mitochondrial stress response protein, Sirt3 was significantly decreased. In conclusion, DON induced oxidative stress and downregulated NRF2-induced cytoprotection by suppressing the antioxidant signalling mechanism in HepG2 cells.
Collapse
Affiliation(s)
- Siqiniseko Ndlovu
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Savania Nagiah
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Naeem Sheik Abdul
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
16
|
The role of mitochondria in sterigmatocystin-induced apoptosis on SH-SY5Y cells. Food Chem Toxicol 2020; 142:111493. [PMID: 32553934 DOI: 10.1016/j.fct.2020.111493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria are cellular organelles involved in many crucial functions, such as generation of energy (ATP) and initiation of apoptosis. The aim of the present study was to evaluate the role of mitochondria in the toxicity induced by sterigmatocystin (STE), a mycotoxin produced by fungi of the genus Aspergillus, on SH-SY5Y cells. Our results showed that STE exposure decreased cell viability in a time- and concentration-dependent manner by MTT assay and caused mitochondrial dysfunction, as highlighted by the increase of STE cytotoxicity in cells forced to rely on mitochondrial oxidative phosphorylation. Furthermore, intracellular ATP depletion and increased mitochondrial reactive oxygen species were also observed. Since mitochondria play a pivotal role in apoptosis, the induction of this process in response to STE exposure was decided to study. Our results showed an increase in apoptotic cell population by flow cytometry, further confirmed by the up-regulation of the expression levels of the pro-apoptotic genes Bax and Casp-3 and the down-regulation of the anti-apoptotic gene Bcl-2 by qPCR technique. Taken together, our results provide novel insights in the signalling pathways of the cell death process induced by STE in SH-SY5Y cells, highlighting the key role played by mitochondria in STE toxicity.
Collapse
|
17
|
Cardiomyopathy induced by T-2 toxin in rats. Food Chem Toxicol 2020; 137:111138. [DOI: 10.1016/j.fct.2020.111138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/24/2019] [Accepted: 01/19/2020] [Indexed: 11/22/2022]
|
18
|
T-2 Toxin-Induced Oxidative Stress Leads to Imbalance of Mitochondrial Fission and Fusion to Activate Cellular Apoptosis in the Human Liver 7702 Cell Line. Toxins (Basel) 2020; 12:toxins12010043. [PMID: 31936883 PMCID: PMC7020450 DOI: 10.3390/toxins12010043] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
T-2 toxin, as a highly toxic mycotoxin to humans and animals, induces oxidative stress and apoptosis in various cells and tissues. Apoptosis and mitochondrial fusion/fission are two tightly interconnected processes that are crucial for maintaining physiological homeostasis. However, the role of mitochondrial fusion/fission in apoptosis of T-2 toxin remains unknown. Hence, we aimed to explore the putative role of mitochondrial fusion/fission on T-2 toxin induced apoptosis in normal human liver (HL-7702) cells. T-2 toxin treatment (0, 0.1, 1.0, or 10 μg/L) for 24 h caused decreased cell viability and ATP concentration and increased production of (ROS), as seen by a loss of mitochondrial membrane potential (∆Ψm) and increase in mitochondrial fragmentation. Subsequently, the mitochondrial dynamic imbalance was activated, evidenced by a dose-dependent decrease and increase in the protein expression of mitochondrial fusion (OPA1, Mfn1, and Mfn2) and fission (Drp1 and Fis1), respectively. Furthermore, the T-2 toxin promoted the release of cytochrome c from mitochondria to cytoplasm and induced cell apoptosis triggered by upregulation of Bax and Bax/Bcl-2 ratios, and further activated the caspase pathways. Taken together, these results indicate that altered mitochondrial dynamics induced by oxidative stress with T-2 toxin exposure likely contribute to mitochondrial injury and HL-7702 cell apoptosis.
Collapse
|
19
|
Jaćević V, Wu Q, Nepovimova E, Kuča K. Efficacy of methylprednisolone on T-2 toxin-induced cardiotoxicity in vivo: A pathohistological study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 71:103221. [PMID: 31365892 DOI: 10.1016/j.etap.2019.103221] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Our aim was to compare the protective efficacy of two different formulations of methylprednisolone in T-2 toxin-induced cardiomyopathy. Methylprednisolone (soluble form, Lemod-solu® and/or depot form, Lemod-depo®, a total single dose of 40 mg/kg im) was given immediately after T-2 toxin (1 LD50 0.23 mg/kg sc). The myocardial tissue samples were examinated by using histopathology, semiquantitative and imaging analyses on day 1, 7, 14, 21, 28 and 60 of the study. Therapeutic application of Lemod-solu® significantly decreased the intensity of myocardial degeneration and haemorrhages, distribution of glycogen granules in the endo- and perimysium, a total number of mast cells and the degree of their degranulation was in correlation with the reversible heart structural lesions (p < 0.01 vs. T-2 toxin). These changes were completely abolished by the therapeutic use of Lemod-solu® plus Lemod-depo® (p < 0.001 vs. T-2 toxin). Our results show that a significant cardioprotective efficacy of methylprednisolone is mediated by its anti-inflammatory activity.
Collapse
Affiliation(s)
- Vesna Jaćević
- National Poison Control Centre, Military Medical Academy, 17 Crnotravska St, 11000, Belgrade, Serbia; Medical Faculty of the Military Medical Academy, University of Defence, 1 Pavla Jurišića-Šturma St, 11000, Belgrade, Serbia; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03, Hradec Králové, Czechia
| | - Qinghua Wu
- College of Life Science, Yangtze University, 1 Nanhuan Road, 434023, Jingzhou, Hubei, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03, Hradec Králové, Czechia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03, Hradec Králové, Czechia
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03, Hradec Králové, Czechia; Malaysia-Japan International Institute of Technology (MJIIT), University Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| |
Collapse
|
20
|
Mitochondrion: A new molecular target and potential treatment strategies against trichothecenes. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
The aggravating effect of selenium deficiency on T-2 toxin-induced damage on primary cardiomyocyte results from a reduction of protective autophagy. Chem Biol Interact 2019; 300:27-34. [DOI: 10.1016/j.cbi.2019.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/23/2018] [Accepted: 01/06/2019] [Indexed: 01/10/2023]
|
22
|
Islam MT, Mishra SK, Tripathi S, de Alencar MVOB, e Sousa JMDC, Rolim HML, de Medeiros MDGF, Ferreira PMP, Rouf R, Uddin SJ, Mubarak MS, Melo-Cavalcante AADC. Mycotoxin-assisted mitochondrial dysfunction and cytotoxicity: Unexploited tools against proliferative disorders. IUBMB Life 2018; 70:1084-1092. [DOI: 10.1002/iub.1932] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/30/2018] [Accepted: 07/26/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Muhammad Torequl Islam
- Department for Management of Science and Technology Development; Ton Duc Thang University; Ho Chi Minh City 700000 Vietnam
- Faculty of Pharmacy; Ton Duc Thang University; Ho Chi Minh City 700000 Vietnam
| | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory; School of Biological Sciences (Zoology), Dr. Harisingh Gour Central University; Sagar 470003 Madhya Pradesh India
| | - Swati Tripathi
- Amity Institute of Microbial Technology; Amity University; Noida 201313 Uttar Pradesh India
| | | | - João Marcelo de Castro e Sousa
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piaui; Teresina 64 049-550 Brazil
- Department of Biological Sciences; Federal University of Piauí; Picos Piauí 64 067-670 Brazil
| | - Hercília Maria Lins Rolim
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piaui; Teresina 64 049-550 Brazil
| | - Maria das Graças Freire de Medeiros
- Department for Management of Science and Technology Development; Ton Duc Thang University; Ho Chi Minh City 700000 Vietnam
- Department of Biological Sciences; Federal University of Piauí; Picos Piauí 64 067-670 Brazil
| | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piaui; Teresina 64 049-550 Brazil
- Department of Biophysics and Physiology; Laboratory of Experimental Cancerology, Federal University of Piauí; Teresina Piauí 64 049-550 Brazil
| | - Razina Rouf
- Department of Pharmacy; Bangabandhu Sheikh Mujibur Rahman Science & Technology University; Gopalganj Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline; Life Science School, Khulna University; Khulna Bangladesh
| | | | | |
Collapse
|
23
|
Deyu H, Luqing C, Xianglian L, Pu G, Qirong L, Xu W, Zonghui Y. Protective mechanisms involving enhanced mitochondrial functions and mitophagy against T-2 toxin-induced toxicities in GH3 cells. Toxicol Lett 2018; 295:41-53. [PMID: 29870751 DOI: 10.1016/j.toxlet.2018.05.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022]
Abstract
T-2 toxin is the most toxic member of trichothecene mycotoxin. So far, the mechanism of mitochondrial toxicity and protective mechanism in mammalian cells against T-2 toxin are not fully understood. In this study, we aimed to investigate the cellular and mitochondrial toxicity of T-2 toxin, and the cellular protective mechanisms in rat pituitary GH3 cells. We showed that T-2 toxin significantly increased reactive oxygen species (ROS) and DNA damage and caused apoptosis in GH3 cells. T-2 toxin induced abnormal cell morphology, cytoplasm and nuclear shrinkage, nuclear fragmentation and formation of apoptotic bodies and autophagosomes. The mitochondrial degradative morphologies included local or total cristae collapse and small condensed mitochondria. T-2 toxin decreased the mitochondrial membrane potential. However, T-2 toxin significantly increased the superoxide dismutase (SOD) activity and expression of antioxidant genes glutathione peroxidase 1 (GPx-1), catalase (CAT), mitochondria-specific SOD-2 and mitochondrial uncoupling protein-1, -2 and -3 (UCP-1, 2 and 3). Interestingly, T-2 toxin increased adenosine triphosphate (ATP) levels and mitochondrial complex I activity, and increased the expression of most of mitochondrial electron transport chain subunits tested and critical transcription factors controlling mitochondrial biogenesis and mitochondrial DNA transcription and replication. T-2 toxin increased mitophagic activity by increasing the expression of mitophagy-specific proteins NIP-like protein X (NIX), PTEN-induced putative kinase protein 1 (PINK1) and E3 ubiquitin ligase Parkin. T-2 toxin activated the protective protein kinase A (PKA) signaling pathway, which activated the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/PINK1/Parkin pathway to mediate mitophagy. Taken together, our results suggested that the mammalian cells could increase their resistance against T-2 toxin by increasing the antioxidant activity, mitophagy and mitochondrial function.
Collapse
Affiliation(s)
- Huang Deyu
- Department of Animal Sciences & Technology, Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Cui Luqing
- Department of Animal Sciences & Technology, Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Liu Xianglian
- Department of Animal Sciences & Technology, Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guo Pu
- Department of Animal Sciences & Technology, Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lu Qirong
- Department of Animal Sciences & Technology, Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wang Xu
- Department of Animal Sciences & Technology, Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Department of Animal Sciences & Technology, Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Yuan Zonghui
- Department of Animal Sciences & Technology, Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Department of Animal Sciences & Technology, Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
24
|
Xu J, Pan S, Gan F, Hao S, Liu D, Xu H, Huang K. Selenium deficiency aggravates T-2 toxin-induced injury of primary neonatal rat cardiomyocytes through ER stress. Chem Biol Interact 2018; 285:96-105. [DOI: 10.1016/j.cbi.2018.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/11/2017] [Accepted: 01/24/2018] [Indexed: 02/01/2023]
|
25
|
Wu Q, Wang X, Nepovimova E, Wang Y, Yang H, Li L, Zhang X, Kuca K. Antioxidant agents against trichothecenes: new hints for oxidative stress treatment. Oncotarget 2017; 8:110708-110726. [PMID: 29299181 PMCID: PMC5746416 DOI: 10.18632/oncotarget.22800] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022] Open
Abstract
Trichothecenes are a group of mycotoxins mainly produced by fungi of genus Fusarium. Due to high toxicity and widespread dissemination, T-2 toxin and deoxynivalenol (DON) are considered to be the most important compounds of this class. Trichothecenes generate free radicals, including reactive oxygen species (ROS), which induce lipid peroxidation, decrease levels of antioxidant enzymes, and ultimately lead to apoptosis. Consequently, oxidative stress is an active area of research on the toxic mechanisms of trichothecenes, and identification of antioxidant agents that could be used against trichothecenes is crucial for human health. Numerous natural compounds have been analyzed and have shown to function very effectively as antioxidants against trichothecenes. In this review, we summarize the molecular mechanisms underlying oxidative stress induced by these compounds, and discuss current knowledge regarding such antioxidant agents as vitamins, quercetin, selenium, glucomannan, nucleotides, antimicrobial peptides, bacteria, polyunsaturated fatty acids, oligosaccharides, and plant extracts. These products inhibit trichothecene-induced oxidative stress by (1) inhibiting ROS generation and induced DNA damage and lipid peroxidation; (2) increasing antioxidant enzyme activity; (3) blocking the MAPK and NF-κB signaling pathways; (4) inhibiting caspase activity and apoptosis; (5) protecting mitochondria; and (6) regulating anti-inflammatory actions. Finally, we summarize some decontamination methods, including bacterial and yeast biotransformation and degradation, as well as mycotoxin-binding agents. This review provides a comprehensive overview of antioxidant agents against trichothecenes and casts new light on the attenuation of oxidative stress.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Yun Wang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
| | - Hualin Yang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
| | - Li Li
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
| | - Xiujuan Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| |
Collapse
|
26
|
Wu Q, Wang X, Nepovimova E, Miron A, Liu Q, Wang Y, Su D, Yang H, Li L, Kuca K. Trichothecenes: immunomodulatory effects, mechanisms, and anti-cancer potential. Arch Toxicol 2017; 91:3737-3785. [PMID: 29152681 DOI: 10.1007/s00204-017-2118-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022]
Abstract
Paradoxically, trichothecenes have both immunosuppressive and immunostimulatory effects. The underlying mechanisms have not been fully explored. Early studies show that dose, exposure timing, and the time at which immune function is assessed influence whether trichothecenes act in an immunosuppressive or immunostimulatory fashion. Recent studies suggest that the immunomodulatory function of trichothecenes is also actively shaped by competing cell-survival and death-signaling pathways. Autophagy may also promote trichothecene immunosuppression, although the mechanism may be complicated. Moreover, trichothecenes may generate an "immune evasion" milieu that allows pathogens to escape host and vaccine immune defenses. Some trichothecenes, especially macrocyclic trichothecenes, also potently kill cancer cells. T-2 toxin conjugated with anti-cancer monoclonal antibodies significantly suppresses the growth of thymoma EL-4 cells and colon cancer cells. The type B trichothecene diacetoxyscirpenol specifically inhibits the tumor-promoting factor HIF-1 in cancer cells under hypoxic conditions. Trichothecin markedly inhibits the growth of multiple cancer cells with constitutively activated NF-κB. The type D macrocyclic toxin Verrucarin A is also a promising therapeutic candidate for leukemia, breast cancer, prostate cancer, and pancreatic cancer. The anti-cancer activities of trichothecenes have not been comprehensively summarized. Here, we first summarize the data on the immunomodulatory effects of trichothecenes and discuss recent studies that shed light on the underlying cellular and molecular mechanisms. These mechanisms include autophagy and major signaling pathways and their crosstalk. Second, the anti-cancer potential of trichothecenes and the underlying mechanisms will be discussed. We hope that this review will show how trichothecene bioactivities can be exploited to generate therapies against pathogens and cancer.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China. .,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Anca Miron
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy Grigore T. Popa, Iasi, Romania
| | - Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Wang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Dongxiao Su
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Hualin Yang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Li Li
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
27
|
Szabó A, Szabó-Fodor J, Fébel H, Mézes M, Bajzik G, Kovács M. Oral administration of fumonisin B 1 and T-2 individually and in combination affects hepatic total and mitochondrial membrane lipid profile of rabbits. Physiol Int 2017; 103:321-333. [PMID: 28229635 DOI: 10.1556/2060.103.2016.3.5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Weaned rabbits were fed diets contaminated with 2 mg/kg diet T-2 toxin alone, or 10 mg/kg diet fumonisin B1 (FB1) alone, and both toxins in combination (2 + 10 mg/kg, respectively) compared to a toxin-free control diet. Samplings were performed after 4 weeks (blood and liver). Bodyweight of T-2-fed group was lower after 4 weeks; the liver weight was increased dramatically (threefold of control). Liver total phospholipids (PLs) provided slight alterations in the fatty acid (FA) composition; all three toxin-treated groups showed a decrease in palmitoleic acid (C16:1 n7) proportion. In the liver mitochondrial PL FA composition, margaric acid (C17:0) proportion decreased in the separated toxin treatments compared to the combined setting. Oleic acid (C18:1 n9) proportion was increased and arachidonic acid (C20:4 n6) was decreased in the FB1-treated group, while docosapentaenoic acid (C22:5 n3) was decreased in the separated treatments. The total monounsaturation was significantly higher in the FB1 group's mitochondrial PL FA profile. After 4 weeks, all toxin treatments decreased the blood plasma reduced glutathione and glutathione peroxidase activity, and FB1 increased the plasma sphinganine/sphingosine ratio. Both mycotoxins seem to cross the hepatocellular and the hepatic mitochondrial membrane, without drastic membrane disruption, as assessed from the PL FA composition, but inducing detectable lipid peroxidation.
Collapse
Affiliation(s)
- A Szabó
- 1 Institute of Diagnostic Imaging and Radiation Oncology, Kaposvár University , Kaposvár, Hungary.,2 "MTA-KE Mycotoxins in the Food Chain" Research Group, Hungarian Academy of Sciences, Kaposvár University , Kaposvár, Hungary
| | - J Szabó-Fodor
- 2 "MTA-KE Mycotoxins in the Food Chain" Research Group, Hungarian Academy of Sciences, Kaposvár University , Kaposvár, Hungary
| | - H Fébel
- 3 Research Institute for Animal Breeding, Nutrition and Meat Science, National Agricultural Research Center , Herceghalom, Hungary
| | - M Mézes
- 4 Department of Nutrition, Faculty of Agricultural and Environmental Sciences, Szent István University , Gödöllő, Hungary
| | - G Bajzik
- 1 Institute of Diagnostic Imaging and Radiation Oncology, Kaposvár University , Kaposvár, Hungary
| | - M Kovács
- 2 "MTA-KE Mycotoxins in the Food Chain" Research Group, Hungarian Academy of Sciences, Kaposvár University , Kaposvár, Hungary
| |
Collapse
|
28
|
Renner L, Kahlert S, Tesch T, Bannert E, Frahm J, Barta-Böszörményi A, Kluess J, Kersten S, Schönfeld P, Rothkötter HJ, Dänicke S. Chronic DON exposure and acute LPS challenge: effects on porcine liver morphology and function. Mycotoxin Res 2017; 33:207-218. [PMID: 28474303 PMCID: PMC5511606 DOI: 10.1007/s12550-017-0279-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 04/11/2017] [Accepted: 04/17/2017] [Indexed: 12/21/2022]
Abstract
The aim of the present study was to examine the role of chronic deoxynivalenol (DON) exposition on the liver morphology and function in combination with pre- and post-hepatic lipopolysaccharide (LPS) stress in young pigs fed for 4 weeks with a DON-contaminated diet (4.59 mg/kg feed). At the end of the experiment, LPS (7.5 μg/kg BW) was administered for 1 h pre-hepatically (Vena portae hepatis) or post-hepatically (Vena jugularis). Liver morphology was macroscopically checked and showed haemorrhage in all LPS groups, significantly higher relative liver weights, accompanied by marked oedema in the gallbladder wall. Histological changes were judged by a modified histology activity index (HAI). Liver HAI score was significantly increased in all LPS groups compared to placebo, primarily due to neutrophil infiltration and haemorrhage. DON feed alone was without effect on the liver HAI. Liver function was characterized by (i) hepatic biochemical markers, (ii) mitochondrial respiration and (iii) Ca2+ accumulation capacity of isolated mitochondria. Clinical chemical parameters characterizing liver function were initially (<3 h) slightly influenced by LPS. After 3 h, bilirubin and alkaline phosphatase were increased significantly, in DON-fed, jugular-infused LPS group. Respiration and Ca2+ accumulation capacity of isolated liver mitochondria was not impaired by chronic DON exposure, acute LPS challenge or combined treatments. DON-contaminated feed did not change macroscopy and histology of the liver, but modified the function under LPS stress. The different function was not linked to modifications of liver mitochondria.
Collapse
Affiliation(s)
- Lydia Renner
- Institute of Anatomy, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Stefan Kahlert
- Institute of Anatomy, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Tanja Tesch
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Bundesallee 50, 38116 Braunschweig, Germany
| | - Erik Bannert
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Bundesallee 50, 38116 Braunschweig, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Bundesallee 50, 38116 Braunschweig, Germany
| | - Anikó Barta-Böszörményi
- Institute of Anatomy, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Jeannette Kluess
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Bundesallee 50, 38116 Braunschweig, Germany
| | - Susanne Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Bundesallee 50, 38116 Braunschweig, Germany
| | - Peter Schönfeld
- Institute of Biochemistry and Cell Biology, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Hermann-Josef Rothkötter
- Institute of Anatomy, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Bundesallee 50, 38116 Braunschweig, Germany
| |
Collapse
|
29
|
Tsubone H, Hanafusa M. An overview of toxicity of trichothecene mycotoxins, T-2 toxin and deoxynivalenol: Involvements of their oxidative stress and apoptosis effects. ACTA ACUST UNITED AC 2016. [DOI: 10.2520/myco.66.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hirokazu Tsubone
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Masakazu Hanafusa
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
30
|
Capcarova M, Petruska P, Zbynovska K, Kolesarova A, Sirotkin AV. Changes in antioxidant status of porcine ovarian granulosa cells after quercetin and T-2 toxin treatment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2015; 50:201-206. [PMID: 25602153 DOI: 10.1080/03601234.2015.982425] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of this study was to determine the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), production of reactive oxygen species (ROS), and total antioxidant status (TAS) in porcine ovarian granulosa cells after quercetin and T-2 toxin exposure in vitro. Porcine ovarian granulosa cells were incubated with quercetin and T-2 toxin separately or in mutual combination at the doses of 1 ng/mL, 10 ng/mL, 100 ng/mL, and the control group without any additions for 24 h. In this study T-2 toxin developed stress reaction in porcine ovarian granulosa cells and increased generation of ROS. Quercetin had no effect in elimination of ROS generation induced by T-2 toxin, but was effective in maintaining and increasing of TAS, activities of SOD and GPx in porcine granulosa cells in vitro. These results contribute towards the understanding of cellular stress and its response.
Collapse
Affiliation(s)
- Marcela Capcarova
- a Slovak University of Agriculture in Nitra , Faculty of Biotechnology and Food Sciences, Department of Animal Physiology , Nitra, Slovak Republic
| | | | | | | | | |
Collapse
|
31
|
Chandratre GA, Telang AG, Badgujar PC, Raut SS, Sharma AK. Toxicopathological alterations induced by high dose dietary T-2 mycotoxin and its residue detection in Wistar rats. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 67:124-138. [PMID: 24553812 DOI: 10.1007/s00244-014-0006-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 02/04/2014] [Indexed: 06/03/2023]
Abstract
T-2 toxin is one of the most potent cytotoxic and food-borne mycotoxins. Most experimental studies on the T-2 toxin have been performed at extremely low doses (ppb level). However, several field reports of contaminated feed have shown concentration of T-2 toxin to be as high as ≥20 ppm. Therefore, the impact of high dose T-2 toxin (20 ppm) after subacute exposure was investigated in an experimental setup with respect to growth performance, oxidative stress, and detailed pathomorphology in young male Wistar rats. Furthermore, to see the effect of such a high dose on the accumulation of T-2 toxin, its residues in various organs were quantified by high-performance thin-layer chromatography (HPTLC). Apart from obvious clinical toxicosis, rats in the toxin-fed group showed significant hemato-biochemical alterations and increased levels of biological markers of oxidative stress with concomitant decrease in levels of serum and tissue catalase and superoxide dismutase. These alterations were strongly supported by histopathological changes, such as hyperkeratosis and hyperplasia of the squamous gastric mucosa, oxidative damage to hepatocytes, atrophy of the thymus and spleen, and overall decrease in the spermatogenic activity of testes. An economical, simple, reliable, and quick method for the detection and quantification of T-2 toxin residues by HPTLC is also reported here. No residual T-2 toxin was detected in any of the organs tested, suggesting that T-2 toxin does not accumulate in tissues even at such a high exposure level.
Collapse
Affiliation(s)
- Gauri A Chandratre
- Mycotic and Mycotoxic Diseases Laboratory, Division of Pathology, Indian Veterinary Research Institute, Izatnagar, 243 122, Uttar Pradesh, India,
| | | | | | | | | |
Collapse
|
32
|
Wu M, Xiao H, Ren W, Yin J, Tan B, Liu G, Li L, Nyachoti CM, Xiong X, Wu G. Therapeutic effects of glutamic acid in piglets challenged with deoxynivalenol. PLoS One 2014; 9:e100591. [PMID: 24984001 PMCID: PMC4077692 DOI: 10.1371/journal.pone.0100591] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/26/2014] [Indexed: 12/30/2022] Open
Abstract
The mycotoxin deoxynivalenol (DON), one of the most common food contaminants, primarily targets the gastrointestinal tract to affect animal and human health. This study was conducted to examine the protective function of glutamic acid on intestinal injury and oxidative stress caused by DON in piglets. Twenty-eight piglets were assigned randomly into 4 dietary treatments (7 pigs/treatment): 1) uncontaminated control diet (NC), 2) NC+DON at 4 mg/kg (DON), 3) NC+2% glutamic acid (GLU), and 4) NC+2% glutamic acid + DON at 4 mg/kg (DG). At day 15, 30 and 37, blood samples were collected to determine serum concentrations of CAT (catalase), T-AOC (total antioxidant capacity), H2O2 (hydrogen peroxide), NO (nitric oxide), MDA (maleic dialdehyde), DAO (diamine oxidase) and D-lactate. Intestinal morphology, and the activation of Akt/mTOR/4EBP1 signal pathway, as well as the concentrations of H2O2, MDA, and DAO in kidney, liver and small intestine, were analyzed at day 37. Results showed that DON significantly (P<0.05) induced oxidative stress in piglets, while this stress was remarkably reduced with glutamic acid supplementation according to the change of oxidative parameters in blood and tissues. Meanwhile, DON caused obvious intestinal injury from microscopic observations and permeability indicators, which was alleviated by glutamic acid supplementation. Moreover, the inhibition of DON on Akt/mTOR/4EBP1 signal pathway was reduced by glutamic acid supplementation. Collectively, these data suggest that glutamic acid may be a useful nutritional regulator for DON-induced damage manifested as oxidative stress, intestinal injury and signaling inhibition.
Collapse
Affiliation(s)
- Miaomiao Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Scienses, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Xiao
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Scienses, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenkai Ren
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Scienses, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Scienses, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bie Tan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Scienses, Changsha, Hunan, China
| | - Gang Liu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Scienses, Changsha, Hunan, China
| | - Lili Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Scienses, Changsha, Hunan, China
| | | | - Xia Xiong
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Scienses, Changsha, Hunan, China
- * E-mail:
| | - Guoyao Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Scienses, Changsha, Hunan, China
- Department of Animal Science, Texas A&M University, College Station, Texas, United State of America
| |
Collapse
|
33
|
Wu QH, Wang X, Yang W, Nüssler AK, Xiong LY, Kuča K, Dohnal V, Zhang XJ, Yuan ZH. Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: an update. Arch Toxicol 2014; 88:1309-26. [PMID: 24894432 DOI: 10.1007/s00204-014-1280-0] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 05/20/2014] [Indexed: 01/07/2023]
Abstract
Trichothecenes are a large family of structurally related toxins mainly produced by Fusarium genus. Among the trichothecenes, T-2 toxin and deoxynivalenol (DON) cause the most concern due to their wide distribution and highly toxic nature. Trichothecenes are known for their inhibitory effect on eukaryotic protein synthesis, and oxidative stress is one of their most important underlying toxic mechanisms. They are able to generate free radicals, including reactive oxygen species, which induce lipid peroxidation leading to changes in membrane integrity, cellular redox signaling, and in the antioxidant status of the cells. The mitogen-activated protein kinases signaling pathway is induced by oxidative stress, which also induces caspase-mediated cellular apoptosis pathways. Several new metabolites and novel metabolic pathways of T-2 toxin have been discovered very recently. In human cell lines, HT-2 and neosolaniol (NEO) are the major metabolites of T-2 toxin. Hydroxylation on C-7 and C-9 are two novel metabolic pathways of T-2 toxin in rats. The metabolizing enzymes CYP3A22, CYP3A29, and CYP3A46 in pigs, as well as the enzymes CYP1A5 and CYP3A37 in chickens, are able to catalyze T-2 toxin and HT-2 toxin to form the C-3'-OH metabolites. Similarly to carboxylesterase, CYP3A29 possesses the hydrolytic ability in pigs to convert T-2 toxin to NEO. T-2 toxin is able to down- or upregulate cytochrome P-450 enzymes in different species. The metabolism of DON in humans is region-dependent. Free DON and DON-glucuronide are considered to be the biomarkers for humans. The masked mycotoxin DON-3-β-D-glucoside can be hydrolyzed to free DON in the body. This review will provide useful information on the progress of oxidative stress as well as on the metabolism and the metabolizing enzymes of T-2 toxin and DON. Moreover, the literature will throw light on the blind spots of metabolism and toxicological studies in trichothecenes that have to be explored in the future.
Collapse
Affiliation(s)
- Qing-Hua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, Hubei, People's Republic of China,
| | | | | | | | | | | | | | | | | |
Collapse
|