1
|
Ibrahim BMM, Darwish AB, Taleb SA, Mourad RM, Yassen NN, Hessin AF, Gad SA, Mohammed MA. Appraisal terpenoids rich Boswellia carterri ethyl acetate extract in binary cyclodextrin oligomer nano complex for improving respiratory distress. Sci Rep 2024; 14:16779. [PMID: 39039094 PMCID: PMC11263383 DOI: 10.1038/s41598-024-66297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/01/2024] [Indexed: 07/24/2024] Open
Abstract
Boswellia carterii (BC) resins plants have a long historical background as a treatment for inflammation, as indicated by information originating from multiple countries. Twenty-seven diterpenoids have been identified in ethyl acetate and total methanol BC, comprising seventeen boscartins of the cembrane-type diterpenoids and ten boscartols of the prenylaromadendrane-type diterpenoids. Moreover, twenty-one known triterpenoids have also been found, encompassing nine tirucallane-type, six ursane-type, four oleanane-type, and two lupane-type. The cembrane-type diterpenoids hold a significant position in pharmaceutical chemistry and related industries due to their captivating biological characteristics and promising pharmacological potentials. Extraction of BC, creation and assessment of nano sponges loaded with either B. carterii plant extract or DEX, are the subjects of our current investigation. With the use of ultrasound-assisted synthesis, nano sponges were produced. The entrapment efficiency (EE%) of medications in nano sponges was examined using spectrophotometry. Nano sponges were characterized using a number of methods. Within nano sponges, the EE% of medicines varied between 98.52 ± 0.07 and 99.64 ± 1.40%. The nano sponges' particle sizes varied from 105.9 ± 15.9 to 166.8 ± 26.3 nm. Drugs released from nano sponges using the Korsmeyer-Peppas concept. In respiratory distressed rats, the effects of BC plant extract, DEX salt and their nano formulations (D1, D5, P1 and P1), were tested. Treatment significantly reduced ICAM-1, LTB4, and ILβ 4 levels and improved histopathologic profiles, when compared to the positive control group. Boswellia extract and its nano sponge formulation P1 showed promising therapeutic effects. The effect of P1 may be due to synergism between both the extract and the formulation. This effect was achieved by blocking both ICAM-1 and LTB4 pathways, therefore counteracting the effects of talc powder.
Collapse
Affiliation(s)
- Bassant M M Ibrahim
- Pharmacology Department, Medical and Clinical Studies Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Asmaa Badawy Darwish
- Pharmaceutical Technology Department, National Research Centre, 33 El-Buhouth Street, Dokki, Giza, 12622, Egypt.
| | - Sally Abou Taleb
- Pharmaceutical Technology Department, National Research Centre, 33 El-Buhouth Street, Dokki, Giza, 12622, Egypt
| | - Reda M Mourad
- Polymers and Pigments Department, Chemical Industries Research Institute, National Research Centre, 33 El-Buhouth Street, Dokki, Giza, 12622, Egypt
| | - Noha Nazeeh Yassen
- Pathology Department, Medical and Clinical Studies Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Alyaa F Hessin
- Pharmacology Department, Medical and Clinical Studies Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Shaimaa A Gad
- Pharmacology Department, Medical and Clinical Studies Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Mona A Mohammed
- Pharmaceutical Technology Department, National Research Centre, 33 El-Buhouth Street, Dokki, Giza, 12622, Egypt.
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt.
| |
Collapse
|
2
|
Shim I, Kim W, Kim H, Lim YM, Shin H, Park KS, Yu SM, Kim YH, Sung HK, Eom IC, Kim P, Yu SD. Comparative Cytotoxicity Study of PM2.5 and TSP Collected from Urban Areas. TOXICS 2021; 9:toxics9070167. [PMID: 34357910 PMCID: PMC8309706 DOI: 10.3390/toxics9070167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 01/21/2023]
Abstract
Ambient particulate matter 2.5 (PM2.5) and total suspended particles (TSPs) are common airborne pollutants that cause respiratory and cardiovascular diseases. We investigated the differences of cytotoxicity and mechanism between PM2.5 and TSP activity in human alveolar epithelial A549 cells. Atmospheric samples from the central district of Seoul were collected and their chemical compositions were analyzed by inductively-coupled plasma mass spectrometry and ion chromatography. PM2.5 and TSP contained high concentrations of heavy metals (Cu, Fe, Zn, and Pb). The most abundant ions in PM2.5 were SO42-, NH4+, and NO3-. A549 cells were exposed to PM2.5 and TSP (25-200 µg/mL) for 24 h. TSP was more cytotoxic than PM2.5 per unit mass. PM2.5 induced oxidative stress, as evidenced by increased levels of a glutamate-cysteine ligase modifier, whereas low-concentration TSP increased hemeoxygenase-1 levels. PM2.5 and TSP did not affect c-Jun N-terminal kinase expression. The levels of nuclear factor erythroid 2-related factor 2 (Nrf2) in PM2.5- and TSP-treated cells decreased significantly in the cytosol and increased in the nucleus. Thus, Nrf2 may be a key transcription factor for detoxifying environmental airborne particles in A549 cells. TSP and PM2.5 could activate the protective Kelch-like ECH-associated protein 1/Nrf2 pathway in A549 cells.
Collapse
Affiliation(s)
- Ilseob Shim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea; (W.K.); (H.K.); (Y.-M.L.); (K.S.P.); (S.M.Y.); (Y.H.K.); (H.K.S.); (I.-C.E.); (P.K.); (S.-D.Y.)
- Correspondence: ; Tel.: +82-032-560-8474
| | - Woong Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea; (W.K.); (H.K.); (Y.-M.L.); (K.S.P.); (S.M.Y.); (Y.H.K.); (H.K.S.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Haewon Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea; (W.K.); (H.K.); (Y.-M.L.); (K.S.P.); (S.M.Y.); (Y.H.K.); (H.K.S.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Yeon-Mi Lim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea; (W.K.); (H.K.); (Y.-M.L.); (K.S.P.); (S.M.Y.); (Y.H.K.); (H.K.S.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Hyejung Shin
- Climate and Air Quality Research Department, National Institute of Environmental Research, Incheon 404-708, Korea;
| | - Kwang Su Park
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea; (W.K.); (H.K.); (Y.-M.L.); (K.S.P.); (S.M.Y.); (Y.H.K.); (H.K.S.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Seok Min Yu
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea; (W.K.); (H.K.); (Y.-M.L.); (K.S.P.); (S.M.Y.); (Y.H.K.); (H.K.S.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Young Hee Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea; (W.K.); (H.K.); (Y.-M.L.); (K.S.P.); (S.M.Y.); (Y.H.K.); (H.K.S.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Hwa Kyung Sung
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea; (W.K.); (H.K.); (Y.-M.L.); (K.S.P.); (S.M.Y.); (Y.H.K.); (H.K.S.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Ig-Chun Eom
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea; (W.K.); (H.K.); (Y.-M.L.); (K.S.P.); (S.M.Y.); (Y.H.K.); (H.K.S.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Pilje Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea; (W.K.); (H.K.); (Y.-M.L.); (K.S.P.); (S.M.Y.); (Y.H.K.); (H.K.S.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Seung-Do Yu
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea; (W.K.); (H.K.); (Y.-M.L.); (K.S.P.); (S.M.Y.); (Y.H.K.); (H.K.S.); (I.-C.E.); (P.K.); (S.-D.Y.)
| |
Collapse
|
3
|
Kim H, Yoo J, Lim YM, Kim EJ, Yoon BI, Kim P, Yu SD, Eom IC, Shim I. Comprehensive pulmonary toxicity assessment of cetylpyridinium chloride using A549 cells and Sprague-Dawley rats. J Appl Toxicol 2020; 41:470-482. [PMID: 33022792 DOI: 10.1002/jat.4058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022]
Abstract
Cetylpyridinium chloride (CPC), a quaternary ammonium compound and cationic surfactant, is used in personal hygiene products such as toothpaste, mouthwash, and nasal spray. Although public exposure to CPC is frequent, its pulmonary toxicity has yet to be fully characterized. Due to high risks of CPC inhalation, we aimed to comprehensively elucidate the in vitro and in vivo toxicity of CPC. The results demonstrated that CPC is highly cytotoxic against the A549 cells with a half-maximal inhibitory concentration (IC50 ) of 5.79 μg/ml. Following CPC exposure, via intratracheal instillation (ITI), leakage of lactate dehydrogenase, a biomarker of cell injury, was significantly increased in all exposure groups. Further, repeated exposure of rats to CPC for 28 days caused a decrease in body weight of the high-exposure group and the relative weights of the lungs and kidneys of the high recovery group, but no changes were evident in the histological and serum chemical analyses. The bronchoalveolar lavage fluid (BALF) analysis showed a significant increase in proinflammatory cytokines interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α levels. ITI of CPC induced focal inflammation of the pulmonary parenchyma in rats' lungs. Our study demonstrated that TNF-α was the most commonly secreted proinflammatory cytokine during CPC exposure in both in vitro and in vivo models. Polymorphonuclear leukocytes in the BALF, which are indicators of pulmonary inflammation, significantly increased in a concentration-dependent manner in all in vivo studies including the ITI, acute, and subacute inhalation assays, demonstrating that PMNs are the most sensitive parameters of pulmonary toxicity.
Collapse
Affiliation(s)
- Haewon Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Jean Yoo
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Yeon-Mi Lim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Eun-Ji Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Byung-Il Yoon
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, South Korea
| | - Pilje Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Seung Do Yu
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Ig-Chun Eom
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Ilseob Shim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| |
Collapse
|
4
|
Lim YM, Kim H, Lim SK, Yoo J, Lee JY, Eom IC, Yoon BI, Kim P, Yu SD, Shim I. In Vitro and In Vivo Evaluation of the Toxic Effects of Dodecylguanidine Hydrochloride. TOXICS 2020; 8:E76. [PMID: 32971939 PMCID: PMC7560342 DOI: 10.3390/toxics8030076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 11/21/2022]
Abstract
The toxicity profiles of the widely used guanidine-based chemicals have not been fully elucidated. Herein, we evaluated the in vitro and in vivo toxicity of eight guanidine-based chemicals, focusing on inhalation toxicity. Among the eight chemicals, dodecylguanidine hydrochloride (DGH) was found to be the most cytotoxic (IC50: 0.39 μg/mL), as determined by the water soluble tetrazolium salts (WST) assay. An acute inhalation study for DGH was conducted using Sprague-Dawley rats at 8.6 ± 0.41, 21.3 ± 0.83, 68.0 ± 3.46 mg/m3 for low, middle, and high exposure groups, respectively. The levels of lactate dehydrogenase, polymorphonuclear leukocytes, and cytokines (MIP-2, TGF-β1, IL-1β, TNF-α, and IL-6) in the bronchoalveolar lavage fluid increased in a concentration-dependent manner. Histopathological examination revealed acute inflammation with necrosis in the nasal cavity and inflammation around terminal bronchioles and alveolar ducts in the lungs after DGH inhalation. The LC50 of DGH in rats after exposure for 4 h was estimated to be >68 mg/m3. Results from the inhalation studies showed that DGH was more toxic in male rats than in female rats. Overall, DGH was found to be the most cytotoxic chemical among guanidine-based chemicals. Exposure to aerosols of DGH could induce harmful pulmonary effects on human health.
Collapse
Affiliation(s)
- Yeon-Mi Lim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea; (Y.-M.L.); (H.K.); (S.K.L.); (J.Y.); (J.-Y.L.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Haewon Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea; (Y.-M.L.); (H.K.); (S.K.L.); (J.Y.); (J.-Y.L.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Seong Kwang Lim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea; (Y.-M.L.); (H.K.); (S.K.L.); (J.Y.); (J.-Y.L.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Jean Yoo
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea; (Y.-M.L.); (H.K.); (S.K.L.); (J.Y.); (J.-Y.L.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Ji-Young Lee
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea; (Y.-M.L.); (H.K.); (S.K.L.); (J.Y.); (J.-Y.L.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Ig-Chun Eom
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea; (Y.-M.L.); (H.K.); (S.K.L.); (J.Y.); (J.-Y.L.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Byung-Il Yoon
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea;
| | - Pilje Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea; (Y.-M.L.); (H.K.); (S.K.L.); (J.Y.); (J.-Y.L.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Seung-Do Yu
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea; (Y.-M.L.); (H.K.); (S.K.L.); (J.Y.); (J.-Y.L.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Ilseob Shim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea; (Y.-M.L.); (H.K.); (S.K.L.); (J.Y.); (J.-Y.L.); (I.-C.E.); (P.K.); (S.-D.Y.)
| |
Collapse
|
5
|
Lim SK, Yoo J, Kim H, Kim W, Shim I, Yoon BI, Kim P, DO Yu S, Eom IC. Acute and 28-Day Repeated Inhalation Toxicity Study of Glycolic Acid in Male Sprague-Dawley Rats. In Vivo 2020; 33:1507-1519. [PMID: 31471399 DOI: 10.21873/invivo.11631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The use of glycolic acid is present in a variety of consumer products, including medicines, cleaners, cosmetics, and paint strippers. It has recently led to concerns about toxicity from inhalation exposure. Herein, the pulmonary toxicity of glycolic acid was investigated in rats. MATERIALS AND METHODS We conducted acute (~458 mg/m3) and sub-acute (~49.5 mg/m3) inhalation tests to identify the potential toxicities of glycolic acid. RESULTS Inhalation exposure to glycolic acid in the acute and subacute inhalation tests did not cause any specific changes in clinical examinations, including body weight, organ weight, hematology, serum biochemistry, and histopathology. The polymorphonuclear neutrophils (PMNs) and inflammatory cytokines in Bronchoalveolar lavage fluid (BALF) increased in rats exposed to single and repeated inhalations. In the sub-acute test, the changes induced by glycolic acid were minor or returned to normal during the recovery period. CONCLUSION The No Observed Adverse Effect Concentration (NOAEC) for the nasal and pulmonary toxicity of glycolic acid was determined to be over 50 mg/m3 at the end of a 28-day inhalation test in male rats.
Collapse
Affiliation(s)
- Seong Kwang Lim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Jean Yoo
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Haewon Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Woong Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Ilseob Shim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Byung-Il Yoon
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Pilje Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Seung DO Yu
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Ig-Chun Eom
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| |
Collapse
|
6
|
Du L, Munteanu C, King JB, Frantz DE, Cichewicz RH. An Electrophilic Natural Product Provides a Safe and Robust Odor Neutralization Approach To Counteract Malodorous Organosulfur Metabolites Encountered in Skunk Spray. JOURNAL OF NATURAL PRODUCTS 2019; 82:1989-1999. [PMID: 31273979 DOI: 10.1021/acs.jnatprod.9b00415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The anal secretions of skunks comprise several types of malodorous organosulfur compounds. The pungent metabolites are used defensively by skunks to repel threats posed by predators, and in many parts of the world, those perceived threats include humans and their pets. The extremely low thresholds for detection of the organosulfur metabolites make efforts to "de-skunk" people, animals, and clothing a process fraught with many challenges. The fungal-derived metabolite pericosine A (4) is a promiscuous yet stabile electrophilic compound that we propose is used by some fungi as a novel form of chemical defense. Our investigations have indicated that pericosine A readily reacts with skunk-spray secretions to transform them into odorless products. Mechanistic and computational studies suggested that pericosine A and its synthetic analogues react via SN2'-type mechanisms with thiols and thioacetates under aqueous conditions to generate stable thioethers. Testing revealed that pericosine A did not cause skin or eye irritation and was highly effective at deodorizing skunk anal gland secretions when formulated to include adjunctive cosmetic ingredients.
Collapse
Affiliation(s)
- Lin Du
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Science Research Center , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Charissa Munteanu
- Department of Chemistry , The University of Texas at San Antonio , San Antonio , Texas 78249 , United States
| | - Jarrod B King
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Science Research Center , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Doug E Frantz
- Department of Chemistry , The University of Texas at San Antonio , San Antonio , Texas 78249 , United States
| | - Robert H Cichewicz
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Science Research Center , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| |
Collapse
|
7
|
Yoo J, Lim YM, Kim H, Kim EJ, Lee DH, Lee B, Kim P, Yu SD, Kim HM, Yoon BI, Shim I. Potentiation of Sodium Metabisulfite Toxicity by Propylene Glycol in Both in Vitro and in Vivo Systems. Front Pharmacol 2018. [PMID: 29541028 PMCID: PMC5835519 DOI: 10.3389/fphar.2018.00161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Many consumer products used in our daily lives result in inhalation exposure to a variety of chemicals, although the toxicities of the active ingredients are not well known; furthermore, simultaneous exposure to chemical mixtures occurs. Sodium metabisulfite (SM) and propylene glycol (PG) are used in a variety of products. Both the cytotoxicity and the sub-acute inhalation toxicity of each chemical and their mixtures were evaluated. Assays for cell viability, membrane damage, and lysosome damage demonstrated that SM over 100 μg/ml induced significant cytotoxicity; moreover, when PG, which was not cytotoxic, was mixed with SM, the cytotoxicity of the mixture was enhanced. Solutions of 1, 5, and 20% SM, each with 1% PG solution, were prepared, and the whole body of rats was exposed to aerosols of the mixture for 6 h/day, 5 days/week for 2 weeks. The rats were sacrificed 1 (exposure group) or 7 days (recovery group) after termination of the exposure. The actual concentration of SM in the low-, medium-, and high-exposure groups was 3.91 ± 1.26, 35.73 ± 6.01, and 80.98 ± 5.47 mg/m3, respectively, and the actual concentration of PG in each group was 6.47 ± 1.25, 8.68 ± 0.6, and 8.84 ± 1.77 mg/m3. The repeated exposure to SM and PG caused specific clinical signs including nasal sound, sneeze, and eye irritation which were not found in SM single exposure. In addition, the body weight of treatment group rats decreased compared to that of the control group rats in a time-dependent manner. The total protein concentration and lactate dehydrogenase activity in the bronchoalveolar lavage fluid (BALF) increased. Histopathological analysis of the lungs, liver, and nasal cavity was performed. Adverse effects were observed in the nasal cavity, with squamous cell metaplasia identified in the front of the nasal cavity in all high-exposure groups, which completely recovered 7 days after exposure was terminated. Whereas inhalation of SM for 2 weeks only reduced body weight in the high-dose group, inhalation of SM and PG mixtures for 2 weeks significantly decreased body weight and induced metaplasia of the respiratory epithelium into squamous cells in the medium- and high-dose groups. In conclusion, PG potentiated the toxicity of SM in human lung epithelial cells and the inhalation toxicity in rats.
Collapse
Affiliation(s)
- Jean Yoo
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Yeon-Mi Lim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Haewon Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Eun-Ji Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Doo-Hee Lee
- Environmental Measurement and Analysis Center, National Institute of Environmental Research, Incheon, South Korea
| | - Byeongwoo Lee
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Pilje Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Seung Do Yu
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Hyun-Mi Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Byung-Il Yoon
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, South Korea
| | - Ilseob Shim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| |
Collapse
|
8
|
Shim I, Kim HM, Yang S, Choi M, Seo GB, Lee BW, Yoon BI, Kim P, Choi K. Inhalation of Talc Induces Infiltration of Macrophages and Upregulation of Manganese Superoxide Dismutase in Rats. Int J Toxicol 2015; 34:491-9. [PMID: 26482432 DOI: 10.1177/1091581815607068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Talc is a mineral that is widely used in cosmetic products, antiseptics, paints, and rubber manufacturing. Although the toxicological effects of talc have been studied extensively, until now no detailed inhalation study of talc focusing on oxidative stress has been done. This repeated 4 weeks whole-body inhalation toxicity study of talc involved Sprague-Dawley rats. Male and female groups of rats were exposed to inhaled talc at 0, 5, 50, and 100 mg/m(3) for 6 hours daily, 5 days/week for 4 weeks. The objective was to identify the 4-week inhalation toxicity of talc and investigate antioxidant activity after exposure to talc. There were no treatment-related symptoms or mortality in rats treated with talc. Glucose (GLU) was decreased significantly in male rats exposed to 50 and 100 mg/m(3) of talc. Histopathological examination revealed infiltration of macrophages on the alveolar walls and spaces near the terminal and respiratory bronchioles. In male and female rats exposed to 100 mg/m(3) talc, expression of superoxide dismutase 2, a typical biological indicator of oxidative damage, was significantly increased. Thus, inhalation of talc induces macrophage aggregations and oxidative damage in the lung.
Collapse
Affiliation(s)
- Ilseob Shim
- Department of Environmental Health Research, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Hyun-Mi Kim
- Department of Environmental Health Research, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Sangyoung Yang
- Department of Environmental Health Research, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Min Choi
- Department of Environmental Health Research, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Gyun-Baek Seo
- Department of Environmental Health Research, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Byung-Woo Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Byung-Il Yoon
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Pilje Kim
- Department of Environmental Health Research, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Kyunghee Choi
- Department of Environmental Health Research, National Institute of Environmental Research, Incheon, Republic of Korea
| |
Collapse
|