1
|
Kabekkodu SP, Gladwell LR, Choudhury M. The mitochondrial link: Phthalate exposure and cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119708. [PMID: 38508420 DOI: 10.1016/j.bbamcr.2024.119708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/17/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Phthalates' pervasive presence in everyday life poses concern as they have been revealed to induce perturbing health defects. Utilized as a plasticizer, phthalates are riddled throughout many common consumer products including personal care products, food packaging, home furnishings, and medical supplies. Phthalates permeate into the environment by leaching out of these products which can subsequently be taken up by the human body. It is previously established that a connection exists between phthalate exposure and cardiovascular disease (CVD) development; however, the specific mitochondrial link in this scenario has not yet been described. Prior studies have indicated that one possible mechanism for how phthalates exert their effects is through mitochondrial dysfunction. By disturbing mitochondrial structure, function, and signaling, phthalates can contribute to the development of the foremost cause of death worldwide, CVD. This review will examine the potential link among phthalates and their effects on the mitochondria, permissive of CVD development.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lauren Rae Gladwell
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
2
|
Wójtowicz AK, Sitarz-Głownia AM, Wnuk A, Kajta M, Szychowski KA. Involvement of the peroxisome proliferator-activated receptor gamma (Pparγ) and matrix metalloproteinases-2 and -9 (Mmp-2 and -9) in the mechanism of action of di(2-ethylhexyl)phthalate (DEHP) in cultured mouse brain astrocytes and neurons. Toxicol In Vitro 2023; 92:105639. [PMID: 37406783 DOI: 10.1016/j.tiv.2023.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Di(2-ethylhexyl)phthalate (DEHP) is one of the most widely used phthalates in industry. It has been shown that, after entering the body, DEHP has the ability to cross the blood-placenta and blood-brain barriers. One of the proposed mechanisms of action of DEHP is the activation of peroxisome proliferator-activated receptors (PPARs). Many different functions of PPARγ in cells have been demonstrated, one of which is the modulation of the activation of matrix metalloproteinases (MMPs). The aim of this study was to investigate the role of Pparγ, Mmp-2, and Mmp-9 in the mechanism of action of DEHP. The experiments were performed on in vitro primary murine neurons and astrocytes. The results showed that DEHP has a pro-apototic effect on neurons, causing an increase in caspase-3 activity and in the number of apoptotic bodies. However, in astrocytes, the increase in caspase-3 activity was not related to the apoptosis process, as no increase in the formation of apoptotic bodies was observed. Moreover, DEHP increased the proliferation of astrocytes, which was confirmed by the increase in the amount and expression of the Ki-67 protein. In astrocytes, DEHP decreased the expression of the Pparγ and Mmp-9 proteins but increased the expression of the Mmp-2 protein. In DEHP neurons, it increased the expression of the Pparγ protein but decreased the expression of the Mmp-2 and Mmp-9 proteins.
Collapse
Affiliation(s)
- Anna K Wójtowicz
- Department of Nutrition, Animal Biotechnology and Fisheries, Faculty of Animal Sciences, University of Agriculture, Adama Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Agnieszka M Sitarz-Głownia
- Department of Nutrition, Animal Biotechnology and Fisheries, Faculty of Animal Sciences, University of Agriculture, Adama Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Agnieszka Wnuk
- Laboratory of Neuropharmacology and Epigenetics, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343 Krakow, Poland
| | - Małgorzata Kajta
- Laboratory of Neuropharmacology and Epigenetics, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343 Krakow, Poland
| | - Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| |
Collapse
|
3
|
Abdelrahman SA, Khattab MA, Youssef MS, Mahmoud AA. Granulocyte-colony stimulating factor ameliorates di-ethylhexyl phthalate-induced cardiac muscle injury via stem cells recruitment, Desmin protein regulation, antifibrotic and antiapoptotic mechanisms. J Mol Histol 2023; 54:349-363. [PMID: 37428366 PMCID: PMC10412672 DOI: 10.1007/s10735-023-10137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
Phthalates are common plasticizers present in medical-grade plastics and other everyday products. Di-ethylhexyl phthalate (DEHP) has been noted as a causative risk factor for the initiation and augmentation of cardiovascular functional disorders. G-CSF is a glycoprotein found in numerous tissues throughout the body and is currently applied in clinical practice and has been tested in congestive heart failure. We aimed to examine in depth the effect of DEHP on the histological and biochemical structure of the cardiac muscle in adult male albino rats and the mechanisms underlying the possible ameliorative effect of G-CSF. Forty-eight adult male albino rats were divided into control group, DEHP group, DEHP+ G-CSF group and DEHP-recovery group. We measured serum levels of aspartate aminotransferase (AST), creatine kinase MB isoenzyme (CK-MB) and lactate dehydrogenase (LDH). Left ventricular sections were processed for light and electron microscope examination, and immunohistochemical staining of Desmin, activated Caspase-3 and CD34. DEHP significantly increased enzyme levels, markedly distorted the normal architecture of cardiac muscle fibers, downregulated Desmin protein levels and enhanced fibrosis, and apoptosis. G-CSF treatment significantly decreased the enzyme levels compared to DEHP group. It enhanced CD34 positive stem cells recruitment to injured cardiac muscle, therefore improved the ultrastructural features of most cardiac muscle fibers via anti-fibrotic and anti-apoptotic effects in addition to increased Desmin protein expression levels. The recovery group showed partial improvement due to persistent DEHP effect. In conclusion, administration of G-CSF effectively corrected the histopathological, immunohistochemical and biochemical alterations in the cardiac muscle after DEHP administration by stem cells recruitment, Desmin protein regulation, antifibrotic and antiapoptotic mechanisms.
Collapse
Affiliation(s)
- Shaimaa A Abdelrahman
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Maha A Khattab
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marian S Youssef
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abeer A Mahmoud
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Liu Y, Guo Z, Zhu R, Gou D, Jia PP, Pei DS. An insight into sex-specific neurotoxicity and molecular mechanisms of DEHP: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120673. [PMID: 36400143 DOI: 10.1016/j.envpol.2022.120673] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Di-2-Ethylhexyl Phthalate (DEHP) is often used as an additive in polyvinyl chloride (PVC) to give plastics flexibility, which makes DEHP widely used in food packaging, daily necessities, medical equipment, and other products. However, due to the unstable combination of DEHP and polymer, it will migrate to the environment in the materials and eventually contact the human body. It has been recorded that low-dose DEHP will increase neurotoxicity in the nervous system, and the human health effects of DEHP have been paid attention to because of the extensive exposure to DEHP and its high absorption during brain development. In this study, we review the evidence that DEHP exposure is associated with neurodevelopmental abnormalities and neurological diseases based on human epidemiological and animal behavioral studies. Besides, we also summarized the oxidative damage, apoptosis, and signal transduction disorder related to neurobehavioral abnormalities and nerve injury, and described the potential mechanisms of neurotoxicity caused by DEHP. Overall, we found exposure to DEHP during the critical developmental period will increase the risk of neurobehavioral abnormalities, depression, and autism spectrum disorders. This effect is sex-specific and will continue to adulthood and even have an intergenerational effect. However, the research results on the sex-dependence of DEHP neurotoxicity are inconsistent, and there is a lack of systematic mechanisms research as theoretical support. Future investigations need to be carried out in a large-scale population and model organisms to produce more consistent and convincing results. And we emphasize the importance of mechanism research, which can enhance the understanding of the environmental and human health risks of DEHP exposure.
Collapse
Affiliation(s)
- Yiyun Liu
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ruihong Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dongzhi Gou
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Integrated Genomic and Bioinformatics Approaches to Identify Molecular Links between Endocrine Disruptors and Adverse Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19010574. [PMID: 35010832 PMCID: PMC8744944 DOI: 10.3390/ijerph19010574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 12/04/2022]
Abstract
Exposure to Endocrine Disrupting Chemicals (EDC) has been linked with several adverse outcomes. In this review, we examine EDCs that are pervasive in the environment and are of concern in the context of human, animal, and environmental health. We explore the consequences of EDC exposure on aquatic life, terrestrial animals, and humans. We focus on the exploitation of genomics technologies and in particular whole transcriptome sequencing. Genome-wide analyses using RNAseq provides snap shots of cellular, tissue and whole organism transcriptomes under normal physiological and EDC perturbed conditions. A global view of gene expression provides highly valuable information as it uncovers gene families or more specifically, pathways that are affected by EDC exposures, but also reveals those that are unaffected. Hypotheses about genes with unknown functions can also be formed by comparison of their expression levels with genes of known function. Risk assessment strategies leveraging genomic technologies and the development of toxicology databases are explored. Finally, we review how the Adverse Outcome Pathway (AOP) has exploited this high throughput data to provide a framework for toxicology studies.
Collapse
|
6
|
Liu X, Yang J, Gan Z, Wang H, Hu Z, Liu J, Ran D. Effects of Mono-2-ethylhexyl Phthalate on the Neural Transmission of PNs in Drosophila Antennal Lobe. Neurotox Res 2021; 39:1430-1439. [PMID: 34191265 DOI: 10.1007/s12640-021-00386-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/14/2021] [Accepted: 06/11/2021] [Indexed: 11/26/2022]
Abstract
Long-term exposure to different types of chemicals is hazardous to human health. Di(2-ethylhexyl) phthalate (DEHP) could exert pleiotropic deleterious effects on nervous systems. Mono(2-ethylhexyl) phthalate (MEHP), as one of the most toxic metabolites of DEHP, may have similar effects on nervous systems. However, no effects of MEHP on neural circuits have been reported. To uncover the regulation of MEHP on neural transmission, the functional changes of neural excitability and synaptic plasticity of projection neurons (PNs) have been assessed. In the current study, we recorded the action potentials (APs), stimulate action potentials (sti-APs), mini excitement postsynaptic current (mEPSC), calcium currents, and sodium currents from PNs of isolated whole brain of Drosophila model utilizing patch clamp recordings. We found that MEHP-300 (at the concentration of 300 μM), but not MHEP-100 (at the concentration of 100 μM), significantly decreased the frequency and amplitude of APs. Besides, the amplitude and anti-amplitude of sti-APs were reduced with the application of MEHP-300. Meanwhile, MEHP-300 reduced the frequency of mEPSC, but not the amplitude. Furthermore, MEHP-300 reduced the peak current densities of sodium and calcium channels. Therefore, our results indicated that MEHP could alter the neural excitability and synaptic plasticity of PNs by inhibiting the ion channels activities, revealing the potential modulation of MEHP on neural transmission of PNs.
Collapse
Affiliation(s)
- Xia Liu
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400030, People's Republic of China
| | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400030, People's Republic of China
| | - Zongjie Gan
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hong Wang
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400030, People's Republic of China
| | - Zhuqin Hu
- Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, 400030, People's Republic of China
| | - Jia Liu
- The Third Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Dongzhi Ran
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400030, People's Republic of China.
| |
Collapse
|
7
|
Amara I, Ontario ML, Scuto M, Lo Dico GM, Sciuto S, Greco V, Abid-Essefi S, Signorile A, Salinaro AT, Calabrese V. Moringa oleifera Protects SH-SY5YCells from DEHP-Induced Endoplasmic Reticulum Stress and Apoptosis. Antioxidants (Basel) 2021; 10:532. [PMID: 33805396 PMCID: PMC8065568 DOI: 10.3390/antiox10040532] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/23/2021] [Accepted: 03/19/2021] [Indexed: 12/29/2022] Open
Abstract
Moringa oleifera (MO) is a medicinal plant that has been shown to possess antioxidant, anticarcinogenic and antibiotic activities. In a rat model, MO extract (MOe) has been shown to have a protective effect against brain damage and memory decline. As an extending study, here, we have examined the protective effect of MOe against oxidative stress and apoptosis caused in human neuroblastome (SH-SY5Y) cells by di-(2-ethylhexyl) phthalate (DEHP), a plasticizer known to induce neurotoxicity. Our data show that MOe prevents oxidative damage by lowering reactive oxygen species (ROS) formation, restoring mitochondrial respiratory chain complex activities, and, in addition, by modulating the expression of vitagenes, i.e., antioxidant proteins Nrf2 and HO-1. Moreover, MOe prevented neuronal damage by partly inhibiting endoplasmic reticulum (ER) stress response, as indicated by decreased expression of CCAAT-enhancer-binding protein homologous protein (CHOP) and Glucose-regulated protein 78 (GRP78) proteins. MOe also protected SH-SY5Y cells from DEHP-induced apoptosis, preserving mitochondrial membrane permeability and caspase-3 activation. Our findings provide insight into understanding of molecular mechanisms involved in neuroprotective effects by MOe against DEHP damage.
Collapse
Affiliation(s)
- Ines Amara
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (I.A.); (M.L.O.); (M.S.); (G.M.L.D.); (S.S.); (V.G.); (V.C.)
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Rue Avicenne, Monastir 5019, Tunisia;
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (I.A.); (M.L.O.); (M.S.); (G.M.L.D.); (S.S.); (V.G.); (V.C.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (I.A.); (M.L.O.); (M.S.); (G.M.L.D.); (S.S.); (V.G.); (V.C.)
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Gianluigi Maria Lo Dico
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (I.A.); (M.L.O.); (M.S.); (G.M.L.D.); (S.S.); (V.G.); (V.C.)
| | - Sebastiano Sciuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (I.A.); (M.L.O.); (M.S.); (G.M.L.D.); (S.S.); (V.G.); (V.C.)
| | - Valentina Greco
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (I.A.); (M.L.O.); (M.S.); (G.M.L.D.); (S.S.); (V.G.); (V.C.)
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Rue Avicenne, Monastir 5019, Tunisia;
| | - Anna Signorile
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (I.A.); (M.L.O.); (M.S.); (G.M.L.D.); (S.S.); (V.G.); (V.C.)
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (I.A.); (M.L.O.); (M.S.); (G.M.L.D.); (S.S.); (V.G.); (V.C.)
| |
Collapse
|
8
|
Behairy A, Abd El-Rahman GI, Aly SSH, Fahmy EM, Abd-Elhakim YM. Di(2-ethylhexyl) adipate plasticizer triggers hepatic, brain, and cardiac injury in rats: Mitigating effect of Peganum harmala oil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111620. [PMID: 33396140 DOI: 10.1016/j.ecoenv.2020.111620] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Di(2-ethylhexyl) adipate (DEHA) is a widely used plasticizer and prevalent environmental contaminant. In this study, DEHA concentrations in the milk, cheese, and butter samples wrapped with food-grade commercial polyethylene films and stored at 4 °C for 30 days were detected using gas chromatographic analysis. Also, the effects of exposure to a high dose of DEHA for a long duration on the liver, brain, and heart of Wistar rats were assessed. Besides, the possible beneficial effect of Peganum harmala oil (PGO), in relieving DEHA induced adverse effects was explored. For this purpose, four groups (8 rats/group) were orally given physiological saline, PGO (320 mg/kg bwt), DEHA (2000 mg/kg bwt), or PGO + DEHA for 60 days. The results revealed that the DEHA concentrations in the tested dairy products were ordered as follows: (butter > cheese > milk). Notably, the detected levels in butter were higher than the specific migration limit in foods. DEHA induced a significant increase in the serum levels of glucose, alanine transaminase, aspartate transaminase, acetylcholine esterase, creatine kinase-myocardium bound, malondialdehyde, tumor necrosis factor-α, and interleukin-1β. But, significant hypoproteinemia, hypoalbuminemia, hypoglobulinemia, and hypocholesterolemia were evident following DEHA exposure. A significant reduction in the serum level of superoxide dismutase, reduced glutathione, and brain-derived neurotrophic factor was recorded. Besides, a significant downregulation in hepatic CYP2E1, brain glial fibrillary acidic protein, and cardiac troponin I gene expression was noticed. Moreover, DEHA exposure induced a significant decrease in Bcl-2 immunolabeling, but Caspase-3 immunoexpression was increased. On the contrary, PGO significantly recused DEHA injurious impacts. Therefore, PGO could represent a promising agent for preventing DEHA-induced hepatotoxicity, neurotoxicity, and cardiotoxicity.
Collapse
Affiliation(s)
- Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ghada I Abd El-Rahman
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sanaa S H Aly
- Department of Food Engineering and Packaging Research, Food Technology Research Institute, Agriculture Research Center, Giza, Egypt
| | - Esraa M Fahmy
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
9
|
Amara I, Scuto M, Zappalà A, Ontario ML, Petralia A, Abid-Essefi S, Maiolino L, Signorile A, Trovato Salinaro A, Calabrese V. Hericium Erinaceus Prevents DEHP-Induced Mitochondrial Dysfunction and Apoptosis in PC12 Cells. Int J Mol Sci 2020; 21:ijms21062138. [PMID: 32244920 PMCID: PMC7139838 DOI: 10.3390/ijms21062138] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/26/2022] Open
Abstract
Hericium Erinaceus (HE) is a medicinal plant known to possess anticarcinogenic, antibiotic, and antioxidant activities. It has been shown to have a protective effect against ischemia-injury-induced neuronal cell death in rats. As an extending study, here we examined in pheochromocytoma 12 (PC12) cells, whether HE could exert a protective effect against oxidative stress and apoptosis induced by di(2-ethylhexyl)phthalate (DEHP), a plasticizer known to cause neurotoxicity. We demonstrated that pretreatment with HE significantly attenuated DEHP induced cell death. This protective effect may be attributed to its ability to reduce intracellular reactive oxygen species levels, preserving the activity of respiratory complexes and stabilizing the mitochondrial membrane potential. Additionally, HE pretreatment significantly modulated Nrf2 and Nrf2-dependent vitagenes expression, preventing the increase of pro-apoptotic and the decrease of anti-apoptotic markers. Collectively, our data provide evidence of new preventive nutritional strategy using HE against DEHP-induced apoptosis in PC12 cells.
Collapse
Affiliation(s)
- Ines Amara
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Rue Avicenne, Monastir 5019, Tunisia; (I.A.); (S.A.-E.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia n. 97, 95125 Catania, Italy; (M.S.); (A.Z.); (M.L.O.); (V.C.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia n. 97, 95125 Catania, Italy; (M.S.); (A.Z.); (M.L.O.); (V.C.)
| | - Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia n. 97, 95125 Catania, Italy; (M.S.); (A.Z.); (M.L.O.); (V.C.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia n. 97, 95125 Catania, Italy; (M.S.); (A.Z.); (M.L.O.); (V.C.)
| | - Antonio Petralia
- Department of Medical and Surgery Sciences, University of Catania, 95125, Via Santa Sofia, 78, 95123 Catania, Italy; (A.P.); (L.M.)
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Rue Avicenne, Monastir 5019, Tunisia; (I.A.); (S.A.-E.)
| | - Luigi Maiolino
- Department of Medical and Surgery Sciences, University of Catania, 95125, Via Santa Sofia, 78, 95123 Catania, Italy; (A.P.); (L.M.)
| | - Anna Signorile
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Piazza G. Cesare, 11, 70124 Bari, Italy
- Correspondence: (A.S.); (A.T.S.)
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia n. 97, 95125 Catania, Italy; (M.S.); (A.Z.); (M.L.O.); (V.C.)
- Correspondence: (A.S.); (A.T.S.)
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia n. 97, 95125 Catania, Italy; (M.S.); (A.Z.); (M.L.O.); (V.C.)
| |
Collapse
|
10
|
Qiu F, Zhou Y, Deng Y, Yi J, Gong M, Liu N, Wei C, Xiang S. Knockdown of TNFAIP1 prevents di-(2-ethylhexyl) phthalate-induced neurotoxicity by activating CREB pathway. CHEMOSPHERE 2020; 241:125114. [PMID: 31683445 DOI: 10.1016/j.chemosphere.2019.125114] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer. It has neurotoxicity and exposure to it causes impairment of neurodevelopment, behavior and cognition. However, the molecular mechanisms responsible for the DEHP-induced neurotoxicity are not yet clearly defined. Tumor necrosis factor-induced protein 1 (TNFAIP1) was first discovered in umbilical vein endothelial cells and was further found to be important in the progress of Alzheimer's disease. Herein we explore the mechanism of TNFAIP1 in DEHP-induced neurotoxicity with the involvement of cyclic AMP response elements binding protein (CREB) signaling pathway in a mouse neuroblastoma cell line (N2a cells). We found that exposure to DEHP induced apoptosis and downregulated the expression of brain-derived neurotrophic factor (BDNF), synaptic proteins PSD 95 and synapsin-1 while upregulated the expression of TNFAIP1 and decreased the levels of phosphorylated Akt, CaMK Ⅳ, catalytic subunits of PKA and CREB in CREB signaling pathway. Knockdown of TNFAIP1 using TNFAIP1 small interfering RNA (siRNA) expression vector prevented DEHP from inhibiting CREB pathway, thus reduced apoptosis and restored expression of BDNF, PSD 95 and synapsin-1. Our data indicate that downregulation of TNFAIP1 prevents DEHP-induced neurotoxicity via activating CREB pathway. Therefore, TNFAIP1 is a potential target for relieving the DEHP-induced neurotoxicity and related neurological disorders.
Collapse
Affiliation(s)
- Feng Qiu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yubo Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yeke Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Junzhi Yi
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Mengting Gong
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ning Liu
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Chenxi Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
11
|
Kabakçı R, Varışlı Ö, Kaya A, Baştan İ, Şimşek S. Effect of diethylhexyl phthalate on sperm motility parameters in bull. MEHMET AKIF ERSOY ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2019. [DOI: 10.24880/maeuvfd.637406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
12
|
Sun Y, Shen J, Zeng L, Yang D, Shao S, Wang J, Wei J, Xiong J, Chen J. Role of autophagy in di-2-ethylhexyl phthalate (DEHP)-induced apoptosis in mouse Leydig cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:563-572. [PMID: 30216888 DOI: 10.1016/j.envpol.2018.08.089] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/03/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Di-2-ethylhexyl phthalate (DEHP) has been widely used as a plasticizer in industry. DEHP can cause testicular atrophy, yet the exact mechanism remains unclear. In this study, male mice were intragastrically (i.g.) administered with 0, 100, 200 or 400 mg DEHP/kg/day for 21 days. We found that DEHP caused disintegration of the germinal epithelium and decreased sperm density in the epididymis. Furthermore, there was a significant increase in the levels of cleaved Caspase-8, cleaved Caspase-3 and Bax proteins and a decrease in Bcl2 protein. The results indicated that DEHP could induce apoptosis of the testis tissue. Meanwhile, DEHP significantly induced autophagy in the testis tissues with increases in LC3-II, Atg5 and Beclin-1 proteins. The serum testosterone concentration decreased in the DEHP-treated group, implying that DEHP might lead to Leydig cell damage. Furthermore, oxidative stress was induced by DEHP in the testis. To further investigate the potential mechanism, mouse TM3 Leydig cells were treated with 0-80 μM DEHP for 48 h. DEHP significantly inhibited cell viability and induced cell apoptosis. Oxidative stress was involved in DEHP-induced apoptosis as N-Acetyl-L-cysteine (NAC), an inhibitor of oxidative stress, could rescue the inhibition of cell viability and induction of apoptosis by DEHP. Similar to the in vivo findings, DEHP could also induce cell autophagy. However, inhibition of autophagy by 3-Methyladenine (3-MA) significantly increased cell viability and inhibited apoptosis. Taken together, oxidative stress was involved in DEHP-induced apoptosis and autophagy of mouse TM3 Leydig cells, and autophagy might play a cytotoxic role in DEHP-induced cell apoptosis.
Collapse
Affiliation(s)
- Yingyin Sun
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Jingcao Shen
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Lin Zeng
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Dan Yang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Shuxin Shao
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Jinglei Wang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Jie Wei
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Junping Xiong
- Department of Anatomy, Medical College of Nanchang University, Nanchang, 330006, China
| | - Jiaxiang Chen
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang, 330006, China.
| |
Collapse
|
13
|
Fu Y, Dong J, Wang J, You M, Wei L, Fu H, Wang Y, Chen J. Developmental Exposure to Di-(2-ethylhexyl) Phthalate Induces Cerebellar Granule Cell Apoptosis via the PI3K/AKT Signaling Pathway. Exp Neurobiol 2018; 27:472-488. [PMID: 30636900 PMCID: PMC6318557 DOI: 10.5607/en.2018.27.6.472] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/26/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is an ubiquitous environmental contaminant because of its extensive use in plastics and its persistence. As an environmental endocrine disruptor, it is suspected to interfere with neurodevelopment in people. However, evidence of the effects of maternal DEHP exposure on cerebellar development in offspring is scarce. The objective of this study was to investigate maternal exposure to DEHP and its effect on apoptosis of cerebellar granule cells (CGCs) and related mechanisms. Pregnant Wistar rats were administrated DEHP (0, 30, 300 and 750 mg/kg/d) by gavage from gestational day (GD) 0 to postnatal day (PN) 21. Primary CGCs were also exposed to mono-(2-ethylhexyl) phthalate (MEHP), the main metabolite of DEHP, for 24 h with concentrations of 0, 25, 100 and 250 µM. The CGCs of male offspring from 300 and 750 mg/kg/d DEHP exposure groups showed significantly increased apoptosis. In addition, the PI3K/AKT signaling pathway was inhibited in the male offspring of the 300 and 750 mg/kg/d DEHP exposure groups. However, effects on female pups were not obvious. Apoptosis was also elevated and the PI3K/AKT signaling pathway was inhibited after primary CGCs were exposed to MEHP. Furthermore, apoptosis was reduced after treatment with the PI3K/AKT signaling pathway activator, insulin-like growth factor (IGF) 1, and increased after treatment with LY294002, an inhibitor of the PI3K/AKT signaling pathway. These results suggested that maternal DEHP exposure induced apoptosis in the CGCs of male pups via the PI3K/AKT signaling pathway, and the apoptosis could be rescued by IGF1 and aggravated by LY294002.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jianan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Lingling Wei
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Hui Fu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| |
Collapse
|
14
|
Yang H, Chen B, Zhao Z, Zhang L, Zhang Y, Chen J, Zhang X, Zhang X, Zhao L. Heme oxygenase-1 exerts pro-apoptotic effects on hepatic stellate cells in vitro through regulation of nuclear factor-κB. Exp Ther Med 2018; 16:291-299. [PMID: 29896252 PMCID: PMC5995052 DOI: 10.3892/etm.2018.6185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/01/2018] [Indexed: 01/04/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an antioxidant and cytoprotective protein, which has been proven to alleviate the proliferation of hepatic stellate cells (HSCs) and the development of liver fibrosis. However, the role of HO-1 in HSC apoptosis remains unclear. The aim of the present study was to investigate the effect of HO-1 on HSC apoptosis and its possible underlying mechanisms. HSCs-T6 were incubated with different concentrations of hemin (HO-1 chemical inducer) and Znpp-IX (HO-1 chemical inhibitor) for 12, 24 and 48 h. Cell viability was determined using an MTT assay. HSCs were classified into 4 groups as follows: Control, hemin, Znpp-IX and hemin+Znpp-IX co-treatment groups. Apoptosis was quantitatively measured by Annexin V/propidium iodide double staining and a terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. The mRNA and protein expression of HO-1, α-smooth muscle actin, B-cell lymphoma (Bcl)-2, caspase-3 and nuclear factor (NF)-κB p65 were measured using quantitative polymerase chain reaction and western blotting. The levels of tumor growth factor (TGF)-β and interleukin (IL)-6 in HSC supernatants were examined by ELISA. The results demonstrated that HO-1 exerted antiproliferative effects on HSCs in a time- and concentration-dependent manner. Increasing HO-1 expression induced HSC apoptosis in vitro as demonstrated by a significant decrease in Bcl-2 and an increase in caspase-3 expression. Additionally, the expression of NF-κB p65 and its downstream inflammatory factors TGF-β and IL-6 in the HO-1 overexpression group was significantly decreased compared with the control group. Therefore, the present study provided evidence that HO-1 serves an anti-fibrosis role in the liver by enhancing HSC apoptosis, which was partially associated with the regulation of NF-κB and its downstream effectors.
Collapse
Affiliation(s)
- Hui Yang
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Bangtao Chen
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Zhongfu Zhao
- Institute of Hepatopathy, Changzhi Medical College, Changzhi, Shanxi 046011, P.R. China
| | - Li Zhang
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yun Zhang
- Institute of Hepatopathy, Changzhi Medical College, Changzhi, Shanxi 046011, P.R. China
| | - Jie Chen
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaoqian Zhang
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaohua Zhang
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Longfeng Zhao
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
15
|
Gao HT, Xu R, Cao WX, Qian LL, Wang M, Lu L, Xu Q, Yu SQ. Effects of six priority controlled phthalate esters with long-term low-dose integrated exposure on male reproductive toxicity in rats. Food Chem Toxicol 2017; 101:94-104. [PMID: 28089693 DOI: 10.1016/j.fct.2017.01.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 01/16/2023]
Abstract
Human beings are inevitably exposed to ubiquitous phthalate esters (PEs) surroundings. The purposes of this study were to investigate the effects of long-term low-dose exposure to the mixture of six priority controlled phthalate esters (MIXPs): dimethyl phthalate (DMP), diethyl phthalate (DEP), di(n-butyl) phthalate (DBP), butyl benzyl phthalate (BBP), di(2-ethyhexyl) phthalate (DEHP) and di-n-octyl phthalate (DNOP), on male rat reproductive system and further to explore the underlying mechanisms of the reproductive toxicity. The male rats were orally exposed to either sodium carboxymethyl cellulose as controls or MIXPs at three different low-doses by gavage for 15 weeks. Testosterone and luteinizing hormone (LH) in serum were analyzed, and pathological examinations were performed for toxicity evaluation. Steroidogenic proteins (StAR, P450scc, CYP17A1 and 17β-HSD), cell cycle and apoptosis-related proteins (p53, Chk1, Cdc2, CDK6, Bcl-2 and Bax) were measured for mechanisms exploration. MIXPs with long-term low-dose exposure could cause male reproductive toxicity to the rats, including the decrease of both serum and testicular testosterone, and the constructional damage of testis. These effects were related to down-regulated steroidogenic proteins, arresting cell cycle progression and promoting apoptosis in rat testicular cells. The results indicate that MIXPs with long-term low-dose exposure may pose male reproductive toxicity in human.
Collapse
Affiliation(s)
- Hai-Tao Gao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Run Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wei-Xin Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Liang-Liang Qian
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Min Wang
- Zibo Municipal Center for Disease Control and Prevention, Zibo 255026, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, School of Medicine, Yale University, New Haven, CT 06520-8034, USA
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; Department of Chronic Disease Epidemiology, Yale School of Public Health, School of Medicine, Yale University, New Haven, CT 06520-8034, USA.
| | - Shu-Qin Yu
- Jiangsu Key Laboratory for Supramolecular Medicinal Material and Applications, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; Jiangsu Province Key Laboratory for Molecular and Medicinal Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
16
|
Kalo D, Roth Z. Effects of mono(2-ethylhexyl)phthalate on cytoplasmic maturation of oocytes--The bovine model. Reprod Toxicol 2015; 53:141-51. [PMID: 25900598 DOI: 10.1016/j.reprotox.2015.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/09/2015] [Accepted: 04/03/2015] [Indexed: 02/08/2023]
Abstract
Phthalates are known reproductive toxicants, but their intracellular disruptive effects on oocyte maturation competence are less known. We studied the potential risk associated with acute exposure of oocytes to mono(2-ethylhexyl)phthalate (MEHP). First, bovine oocytes were matured in vitro with or without 50 μM MEHP and examined for mitochondrial features associated with DNA fragmentation. MEHP increased reactive oxygen species levels and reduced the proportion of highly polarized mitochondria along with alterations in genes associated with mitochondrial oxidative phosphorylation (CYC1, MT-CO1 and ATP5B). In a second set of experiments, we associated the effects of MEHP on meiotic progression with those on cytoplasmic maturation. MEHP impaired reorganization of cytoplasmic organelles in matured oocytes reflected by reductions in category I mitochondria, type III cortical granules and class I endoplasmic reticulum. These alterations are associated with the previously reported reduced developmental competence of MEHP-treated bovine oocytes, and reveal the risk associated with acute exposure.
Collapse
Affiliation(s)
- D Kalo
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, and Center of Excellence in Agriculture and Environmental Health, the Hebrew University, Rehovot 76100, Israel
| | - Z Roth
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, and Center of Excellence in Agriculture and Environmental Health, the Hebrew University, Rehovot 76100, Israel.
| |
Collapse
|
17
|
Histone deacetylase 4 promotes ubiquitin-dependent proteasomal degradation of Sp3 in SH-SY5Y cells treated with di(2-ethylhexyl)phthalate (DEHP), determining neuronal death. Toxicol Appl Pharmacol 2014; 280:190-8. [DOI: 10.1016/j.taap.2014.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/02/2014] [Accepted: 07/16/2014] [Indexed: 11/24/2022]
|