1
|
Perry CS, Blanchette AD, Vivanco SN, Verwiel AH, Proctor DM. Use of physiologically based pharmacokinetic modeling to support development of an acute (24-hour) health-based inhalation guideline for manganese. Regul Toxicol Pharmacol 2023; 145:105518. [PMID: 37863417 DOI: 10.1016/j.yrtph.2023.105518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023]
Abstract
The toxicokinetics of manganese (Mn) are controlled through homeostasis because Mn is an essential element. However, at elevated doses, Mn is also neurotoxic and has been associated with respiratory, reproductive, and developmental effects. While health-based criteria have been developed for chronic inhalation exposure to ambient Mn, guidelines for short-term (24-h) environmental exposure are also needed. We reviewed US state, federal, and international health-based inhalation toxicity criteria, and conducted a literature search of recent publications. The studies deemed most appropriate to derive a 24-h guideline have a LOAEL of 1500 μg/m3 for inflammatory airway changes and biochemical measures of oxidative stress in the brain following 90 total hours of exposure in monkeys. We applied a cumulative uncertainty factor of 300 to this point of departure, resulting in a 24-h guideline of 5 μg/m3. To address uncertainty regarding potential neurotoxicity, we used a previously published physiologically based pharmacokinetic model for Mn to predict levels of Mn in the brain target tissue (i.e., globus pallidus) for exposure at 5 μg/m3 for two short-term human exposure scenarios. The PBPK model predictions support a short-term guideline of 5 μg/m3 as protective of both respiratory effects and neurotoxicity, including exposures of infants and children.
Collapse
Affiliation(s)
- Camarie S Perry
- ToxStrategies, 9390 Research Blvd, Bldg. II, Suite 100, Austin, TX, 78759, USA.
| | | | | | - Ann H Verwiel
- ToxStrategies, 1010 B Street, Suite 208, San Rafael, CA, 94901, USA.
| | - Deborah M Proctor
- ToxStrategies, 27001 La Paz Road, Suite 260, Mission Viejo, CA, 92691, USA.
| |
Collapse
|
2
|
Lane JM, Curtin P, Chelonis JJ, Pantic I, Martinez-Medina S, Téllez-Rojo MM, Wright RO. Prenatal manganese biomarkers and operant test battery performance in Mexican children: Effect modification by child sex. ENVIRONMENTAL RESEARCH 2023; 236:116880. [PMID: 37574101 PMCID: PMC10919280 DOI: 10.1016/j.envres.2023.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Manganese (Mn) is essential to healthy neurodevelopment, but both Mn deficiency and over-exposure have been linked to prefrontal cortex (PFC) impairments, the brain region that regulates cognitive and neurobehavioral processes responsible for spatial memory, learning, motivation, and time perception. These processes facilitated by attention, inhibitory control, working memory, and cognitive flexibility are often sexually dimorphic and complex, driven by multiple interconnected neurologic and cognitive domains. OBJECTIVE We investigated the role of child sex as an effect modifier of the association between prenatal Mn exposure and performance in an operant testing battery (OTB) that assessed multiple cognitive and behavioral functional domains. METHODS Children (N = 575) aged 6-8 years completed five OTB tasks. Blood and urinary Mn measurements were collected from mothers in the 2nd and 3rd trimesters. Multiple regression models estimated the association between Mn biomarkers at each trimester with OTB performance while adjusting for socio-demographic covariates. Covariate-adjusted weighted quantile sum (WQS) regression models were used to estimate the association of a Mn multi-media biomarker (MMB) mixture with OTB performance. Interaction terms were used to estimate modification effect by child sex. RESULTS Higher blood Mn exposure was associated with better response rates (more motivation) on the progressive ratio task and higher overall accuracy on the delayed matching-to-sample task. In the WQS models, the MMB mixture was associated with better response rates (more motivation) on the progressive ratio task. Additionally, for the linear and WQS models, we observed a modification effect by child sex in the progressive ratio and delayed matching-to-sample tasks. Higher prenatal Mn biomarker levels were associated with improved task performance for girls and reduced performance in boys. CONCLUSION Higher prenatal blood Mn concentrations and the MMB mixture predicted improved performance on two of five operant tasks. Higher prenatal Mn concentrations regulated executive functions in children in a sexually dimorphic manner. Higher prenatal Mn exposure is associated with improved performance on spatial memory and motivation tasks in girls, suggesting that Mn's nutritional role is sexually dimorphic, and should be considered when making dietary and/or environmental intervention recommendations.
Collapse
Affiliation(s)
- Jamil M Lane
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John J Chelonis
- Division of Neurotoxicology, National Center for Toxicological Research, FDA, Jefferson, AR, USA
| | - Ivan Pantic
- Division of Community Interventions Research, National Institute of Perinatology, Mexico City, Mexico
| | - Sandra Martinez-Medina
- Division of Community Interventions Research, National Institute of Perinatology, Mexico City, Mexico
| | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, USA
| |
Collapse
|
3
|
Yeo HS, Lim JY, Ahn NY. Effects of Aging on Angiogenic and Muscle Growth-Related Factors in Naturally Aged Rat Skeletal Muscles. Ann Geriatr Med Res 2020; 24:305-312. [PMID: 33389976 PMCID: PMC7781957 DOI: 10.4235/agmr.20.0077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023] Open
Abstract
Background This study explored the effects of aging on the expression of angiogenic and muscle protein synthesis factors, as well as the number of satellite cells affecting sarcopenia in naturally aged rat skeletal muscles. Methods We divided 16 Sprague-Dawley rats into young (12 weeks old, n=8) and old (24 months old, n=8) groups and compared muscle and body weight (BW) between them. We also analyzed the expression levels of angiogenic and muscle growth proteins in soleus (slow-twitch) and extensor digitorum longus (EDL; fast-twitch) muscles by western blotting and assessed the number of skeletal muscle satellite cells and myonuclei and mean fiber cross-sectional area (CSA) using by immunofluorescence staining. Results EDL/BW was significantly lower in old rats than in young rats (p=0.002). The vascular endothelial growth factor level in soleus muscles was significantly lower in old rats than in young rats (p=0.001). Hypoxia-inducible factor 1-alpha and fetal liver kinase 1 levels in EDL muscles were lower in old rats than in young rats (p=0.001). The mammalian target of rapamycin (mTOR), p70S6K, and 4E-BP1 levels were significantly lower in the soleus muscles of old rats than in those of young rats (p<0.01). Similarly, insulin growth factor-1, Akt, mTOR, and p70S6K levels were significantly lower in EDL muscles of old rats than in those of young rats (p<0.01). Additionally, myonuclei/fiber, Pax7/fiber, and mean fiber CSAs in both muscle types were significantly lower in old rats than in young rats (p<0.01). Conclusion These data suggest different regulation of indices of angiogenic and muscle growth with aging in different muscle types.
Collapse
Affiliation(s)
- Hyo-Seong Yeo
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jae-Young Lim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Na-Young Ahn
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu, Korea
| |
Collapse
|
4
|
Air Pollution-Related Brain Metal Dyshomeostasis as a Potential Risk Factor for Neurodevelopmental Disorders and Neurodegenerative Diseases. ATMOSPHERE 2020. [DOI: 10.3390/atmos11101098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence links air pollution (AP) exposure to effects on the central nervous system structure and function. Particulate matter AP, especially the ultrafine (nanoparticle) components, can carry numerous metal and trace element contaminants that can reach the brain in utero and after birth. Excess brain exposure to either essential or non-essential elements can result in brain dyshomeostasis, which has been implicated in both neurodevelopmental disorders (NDDs; autism spectrum disorder, schizophrenia, and attention deficit hyperactivity disorder) and neurodegenerative diseases (NDGDs; Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis). This review summarizes the current understanding of the extent to which the inhalational or intranasal instillation of metals reproduces in vivo the shared features of NDDs and NDGDs, including enlarged lateral ventricles, alterations in myelination, glutamatergic dysfunction, neuronal cell death, inflammation, microglial activation, oxidative stress, mitochondrial dysfunction, altered social behaviors, cognitive dysfunction, and impulsivity. Although evidence is limited to date, neuronal cell death, oxidative stress, and mitochondrial dysfunction are reproduced by numerous metals. Understanding the specific contribution of metals/trace elements to this neurotoxicity can guide the development of more realistic animal exposure models of human AP exposure and consequently lead to a more meaningful approach to mechanistic studies, potential intervention strategies, and regulatory requirements.
Collapse
|
5
|
Mahmood HM, Aldhalaan HM, Alshammari TK, Alqasem MA, Alshammari MA, Albekairi NA, AlSharari SD. The Role of Nicotinic Receptors in the Attenuation of Autism-Related Behaviors in a Murine BTBR T + tf/J Autistic Model. Autism Res 2020; 13:1311-1334. [PMID: 32691528 DOI: 10.1002/aur.2342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/28/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022]
Abstract
Nicotinic receptors are distributed throughout the central and peripheral nervous system. Postmortem studies have reported that some nicotinic receptor subtypes are altered in the brains of autistic people. Recent studies have demonstrated the importance of nicotinic acetylcholine receptors (nAChRs) in the autistic behavior of BTBR T + tf/J mouse model of autism. This study was undertaken to examine the behavioral effects of targeted nAChRs using pharmacological ligands, including nicotine and mecamylamine in BTBR T + tf/J and C57BL/6J mice in a panel of behavioral tests relating to autism. These behavioral tests included the three-chamber social interaction, self-grooming, marble burying, locomotor activity, and rotarod test. We examined the effect of various oral doses of nicotine (50, 100, and 400 mcg/mL; po) over a period of 2 weeks in BTBR T + tf/J mouse model. The results indicated that the chronic administration of nicotine modulated sociability and repetitive behavior in BTBR T + tf/J mice while no effects observed in C57BL/6J mice. Furthermore, the nonselective nAChR antagonist, mecamylamine, reversed nicotine effects on sociability and increased repetitive behaviors in BTBR T + tf/J mice. Overall, the findings indicate that the pharmacological modulation of nicotinic receptors is involved in modulating core behavioral phenotypes in the BTBR T + tf/J mouse model. LAY SUMMARY: The involvement of brain nicotinic neurotransmission system plays a crucial role in regulating autism-related behavioral features. In addition, the brain of the autistic-like mouse model has a low acetylcholine level. Here, we report that nicotine, at certain doses, improved sociability and reduced repetitive behaviors in a mouse model of autism, implicating the potential therapeutic values of a pharmacological intervention targeting nicotinic receptors for autism therapy. Autism Res 2020, 13: 1311-1334. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hafiz M Mahmood
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hesham M Aldhalaan
- Department of Neuroscience, Center for Autism Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tahani K Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mashael A Alqasem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shakir D AlSharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
6
|
Environmental enrichment restores the reduced expression of cerebellar synaptophysin and the motor coordination impairment in rats prenatally treated with betamethasone. Physiol Behav 2019; 209:112590. [PMID: 31252027 DOI: 10.1016/j.physbeh.2019.112590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 06/08/2019] [Accepted: 06/24/2019] [Indexed: 11/23/2022]
Abstract
Preterm babies treated with synthetic glucocorticoids in utero exhibit behavioural alterations and disturbances in brain maturation during postnatal life. Accordingly, it has been shown in preclinical studies that SGC exposure at a clinical dose alters the presynaptic and postsynaptic structures and results in synaptic impairments. However, the precise mechanism by which SGC exposure impairs synaptic protein expression and its implications are not fully elucidated. Therefore, the purpose of this study was to investigate the effect of prenatal exposure to a clinical dose of betamethasone on the pre- and postsynaptic proteins expression in the developing rat cerebellum and prefrontal cortex, whose synchronized synaptic activity is crucial for motor control and learning. Consequently, the first objective of the present study was to determine whether prenatal betamethasone -equivalent to the clinically used dose- alters cerebellar vermal and cortical expression of synaptophysin, synaptotagmin I, post-synaptic density protein 95 and gephyrin - four important pre- and post-synaptic proteins, respectively- at a relevant adolescent stage. In addition, our second objective was to assess whether prenatal betamethasone administration induced coordination impairment using a rotarod test. On the other hand, it has been shown that the environmental enrichment is capable of improving synaptic transmission and recovering various behavioural impairments. Nevertheless, there is not enough information about the effect of this non-pharmacological preclinical approach on the regulation of this cerebellar and cortical synaptic proteins. Therefore, the third objective of this study was to examine whether environmental enrichment exposure could recover the possible molecular and behavioural impairments in the offspring at the same developmental stage. The principal data showed that adolescent rats prenatally treated with betamethasone exhibited underexpression of synaptophysin in the vermal cerebellum, but not change in levels of synaptotagmin I, post-synaptic density protein 95 and gephyrin. Analysis of the same pre- and post-synaptic proteins no showed differences in the frontal cortex of the same rats. These results were accompanied by an increase in the number of falls in the rotarod test, when the speed of rotation was fixed and when it was in acceleration, which means motor coordination impairments. Importantly, we found that environmental enrichment restores the betamethasone-induced reduction in the cerebellar synaptophysin together with a recover in the motor coordination impairments in prenatally betamethasone-exposed adolescent rats.
Collapse
|
7
|
Verbal Memory and Learning in Schoolchildren Exposed to Manganese in Mexico. Neurotox Res 2019; 36:827-835. [PMID: 31148117 DOI: 10.1007/s12640-019-00037-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022]
Abstract
Manganese (Mn) is an essential nutrient for cellular function, but in high concentrations, it is neurotoxic. Environmental exposure to Mn has been associated with cognitive effects in children. This study aimed to assess the effect of environmental exposure to Mn on verbal memory and learning in schoolchildren residents from two municipalities in the state of Hidalgo, Mexico. Cross-sectional studies were conducted in 2006 and 2013 with a total of 265 schoolchildren of 7 to 11 years old. Children's Auditory Verbal Learning Test-2 (CAVLT-2) was used to assess verbal memory and learning. Mn exposure tertiles were defined according to hair manganese (MnH) levels determined by atomic absorption spectrophotometry. Linear regression models were used to estimate the association between MnH levels and CAVLT-2 scores. The models were adjusted by potential confounders. The lowest and highest exposure tertiles were defined below and above MnH levels of ≤ 0.72 and ≥ 3.96 μg/g, respectively. Mn exposure was significantly associated with an average of 5- to 9-point decrease in learning curves and summary CAVLT-2 scores in the highest tertile. This study adds to the evidence of decreased verbal memory and learning in schoolchildren environmentally exposed to manganese.
Collapse
|
8
|
Amir Abdul Nasir AF, Cameron SF, von Hippel FA, Postlethwait J, Niehaus AC, Blomberg S, Wilson RS. Manganese accumulates in the brain of northern quolls (Dasyurus hallucatus) living near an active mine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:377-386. [PMID: 29096311 DOI: 10.1016/j.envpol.2017.10.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
Mining is fundamental to the Australian economy, yet little is known about how potential contaminants bioaccumulate and affect wildlife living near active mining sites. Here, we show using air sampling that fine manganese dust within the respirable size range is found at levels exceeding international recommendations even 20 km from manganese extraction, processing, and storage facilities on Groote Eylandt, Northern Territory. Endangered northern quolls (Dasyurus hallucatus) living near mining sites were found to have elevated manganese concentrations within their hair, testes, and in two brain regions-the neocortex and cerebellum, which are responsible for sensory perception and motor function, respectively. Accumulation in these organs has been associated with adverse reproductive and neurological effects in other species and could affect the long-term population viability of northern quolls.
Collapse
Affiliation(s)
| | - Skye F Cameron
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Frank A von Hippel
- Department of Biological Sciences and Centre for Bioengineering Innovation, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Amanda C Niehaus
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Simon Blomberg
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Robbie S Wilson
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|