1
|
Kagi T, Tan M, Suzuki W, Otani K, Suzuki S, Hirata Y, Noguchi T, Matsuzawa A. Benzalkonium chloride initiates proinflammatory responses via NLRP3 inflammasome activation. J Toxicol Sci 2025; 50:11-21. [PMID: 39779228 DOI: 10.2131/jts.50.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
A representative surfactant, benzalkonium chloride (BAC) is used as a disinfectant, but sometimes causes serious side effects, including lung disorders such as interstitial pneumonia. However, its pathogenic mechanisms remain unexplained. In this study, we identified a novel mechanism by which BAC initiates inflammatory responses that may be responsible for its side effects. We firstly investigated whether BAC initiates inflammation, and found that BAC promotes the secretion of the pro-inflammatory cytokine interleukin-1β (IL-1β) but not tumor necrosis factor-α (TNF-α) in macrophages. Interestingly, the IL-1β secretion triggered by the surfactants was completely blocked by the K-ATP channel blocker glibenclamide or the calcium chelating agent 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA)-AM. Moreover, genetic experiments revealed that BAC-dependent IL-1β secretion is mediated by the NLRP3 inflammasome. These results suggest that derangement of ion fluxes associated with the interfacial effects of BAC triggers NLRP3 inflammasome activation and subsequent inflammation. Thus, the NLRP3-dependent mechanisms triggered by BAC may explain the pathogenesis of surfactant-caused adverse effects.
Collapse
Affiliation(s)
- Tomohiro Kagi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Maoko Tan
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Wakana Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Kohei Otani
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Sara Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
2
|
Zuo WF, Pang Q, Zhu X, Yang QQ, Zhao Q, He G, Han B, Huang W. Heat shock proteins as hallmarks of cancer: insights from molecular mechanisms to therapeutic strategies. J Hematol Oncol 2024; 17:81. [PMID: 39232809 PMCID: PMC11375894 DOI: 10.1186/s13045-024-01601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Heat shock proteins are essential molecular chaperones that play crucial roles in stabilizing protein structures, facilitating the repair or degradation of damaged proteins, and maintaining proteostasis and cellular functions. Extensive research has demonstrated that heat shock proteins are highly expressed in cancers and closely associated with tumorigenesis and progression. The "Hallmarks of Cancer" are the core features of cancer biology that collectively define a series of functional characteristics acquired by cells as they transition from a normal state to a state of tumor growth, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, enabled replicative immortality, the induction of angiogenesis, and the activation of invasion and metastasis. The pivotal roles of heat shock proteins in modulating the hallmarks of cancer through the activation or inhibition of various signaling pathways has been well documented. Therefore, this review provides an overview of the roles of heat shock proteins in vital biological processes from the perspective of the hallmarks of cancer and summarizes the small-molecule inhibitors that target heat shock proteins to regulate various cancer hallmarks. Moreover, we further discuss combination therapy strategies involving heat shock proteins and promising dual-target inhibitors to highlight the potential of targeting heat shock proteins for cancer treatment. In summary, this review highlights how targeting heat shock proteins could regulate the hallmarks of cancer, which will provide valuable information to better elucidate and understand the roles of heat shock proteins in oncology and the mechanisms of cancer occurrence and development and aid in the development of more efficacious and less toxic novel anticancer agents.
Collapse
Affiliation(s)
- Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyu Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gu He
- Department of Dermatology and Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
3
|
Hirata Y, Nakata Y, Komatsu H, Kudoh Y, Takahashi M, Taguchi S, Noguchi T, Matsuzawa A. Roquin-2 promotes oxidative stress-induced cell death by ubiquitination-dependent degradation of TAK1. Free Radic Biol Med 2024; 221:31-39. [PMID: 38729452 DOI: 10.1016/j.freeradbiomed.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Reactive oxygen species (ROS) are highly reactive and their accumulation causes oxidative damage to cells. Cells maintain survival upon mild oxidative stress with anti-oxidative systems, such as the kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) system. On the other hand, upon severe oxidative stress, cells undergo regulated cell death, including apoptosis, for eliminating damaged cells. To execute efficient cell death, cells need to turn off the anti-oxidant systems, while triggering cell death. However, it remains unknown how cells orchestrate these two conflicting systems under excessive oxidative stress. Herein, we show that when cells are exposed to excessive oxidative damage, an E3 ubiquitin ligase Roquin-2 (also known as RC3H2) plays a key role in switching cell fate from survival to death by terminating activation of transforming growth factor-β-activated kinase 1 (TAK1), a positive regulator for Nrf2 activation. Roquin-2 interacted with TAK1 via four cysteine residues in TAK1 (C96, C302, C486, and C500) that are susceptible to oxidative stress and participate in oligomer formation via disulfide bonds, promoting K48-linked polyubiquitination and degradation of TAK1. Nrf2 was inactivated upon lethal oxidative stress in wild-type mouse embryonic fibroblast (MEF) cells, whereas it sustained activation and conferred resistance to Roquin-2 deficient cells, which was reversed by pharmacological or genetic inhibition of TAK1. These data demonstrate that in response to excessive ROS exposure, Roquin-2 promotes ubiquitination and degradation of TAK1 to suppress Nrf2 activation, and thereby contributes to an efficient cell death, providing insight into the pathogenesis of oxidative stress-related diseases, including cancer.
Collapse
Affiliation(s)
- Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Yuya Nakata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Hiromu Komatsu
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Yuki Kudoh
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Miki Takahashi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Soma Taguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
4
|
Kagi T, Inoue A, Noguchi T, Suzuki W, Takano S, Otani K, Naganuma R, Sekiguchi Y, Hirata Y, Shindo S, Hwang GW, Matsuzawa A. The NLRP3 Inflammasome Is a Major Cause of Acute Renal Failure Induced by Polypeptide Antibiotics. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1807-1818. [PMID: 38639584 DOI: 10.4049/jimmunol.2300193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/16/2024] [Indexed: 04/20/2024]
Abstract
Drug-induced acute renal failure (ARF) is a public health concern that hinders optimal drug therapy. However, pathological mechanisms of drug-induced ARF remain to be elucidated. Here, we show that a pathological process of drug-induced ARF is mediated by proinflammatory cross-talk between kidney tubular cells and macrophages. Both polymyxin B and colistin, polypeptide antibiotics, frequently cause ARF, stimulated the ERK and NF-κB pathways in kidney tubular cells, and thereby upregulated M-CSF and MCP-1, leading to infiltration of macrophages into the kidneys. Thereafter, the kidney-infiltrated macrophages were exposed to polypeptide antibiotics, which initiated activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. Interestingly, blockade of the NLRP3 activation clearly ameliorated the pathology of ARF induced by polypeptide antibiotics, suggesting that a combination of the distinct cellular responses to polypeptide antibiotics in kidney tubular cells and macrophages plays a key role in the pathogenesis of colistin-induced ARF. Thus, our results provide a concrete example of how drugs initiate ARF, which may give insight into the underlying pathological process of drug-induced ARF.
Collapse
Affiliation(s)
- Tomohiro Kagi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Aya Inoue
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Wakana Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Saya Takano
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kohei Otani
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Rio Naganuma
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yuto Sekiguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Sawako Shindo
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- Department of Environmental Toxicology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Gi-Wook Hwang
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
5
|
Hamano S, Noguchi T, Asai Y, Ito R, Komatsu R, Sato T, Inoue A, Maruyama T, Kudo TA, Hirata Y, Shindo S, Uchida Y, Hwang GW, Matsuzawa A. Aggregability of the SQSTM1/p62-based aggresome-like induced structures determines the sensitivity to parthanatos. Cell Death Discov 2024; 10:74. [PMID: 38346947 PMCID: PMC10861449 DOI: 10.1038/s41420-024-01838-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Overactivation of poly (ADP-ribose) polymerase-1 (PARP-1) triggers a noncanonical form of programmed cell death (PCD) called parthanatos, yet the mechanisms of its induction are not fully understood. We have recently demonstrated that the aggresome-like induced structures (ALIS) composed of the autophagy receptor SQSTM1/p62 and K48-linked polyubiquitinated proteins (p62-based ALIS) mediate parthanatos. In this study, we identified the D1 dopamine receptor agonist YM435 as a unique parthanatos inhibitor that acts as the disaggregating agent for the p62-based ALIS. We found that YM435 structurally reduces aggregability of the ALIS, and then increases its hydrophilicity and liquidity, which prevents parthanatos. Moreover, dopamine and L-DOPA, a dopamine precursor, also prevented parthanatos by reducing the aggregability of the ALIS. Together, these observations suggest that aggregability of the p62-based ALIS determines the sensitivity to parthanatos, and the pharmacological properties of YM435 that reduces the aggregability may be suitable for therapeutic drugs for parthanatos-related diseases such as neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuhei Hamano
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Yukino Asai
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ryo Ito
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ryuto Komatsu
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tetsu Sato
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Aya Inoue
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tomoe Maruyama
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tada-Aki Kudo
- Division of Oral Physiology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Sawako Shindo
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- Department of Environmental Toxicology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yasuo Uchida
- Department of Molecular Systems Pharmaceutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Gi-Wook Hwang
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
6
|
Hirata Y, Kojima R, Ashida R, Nada Y, Kimura S, Sato E, Noguchi T, Matsuzawa A. Industrially produced trans-fatty acids are potent promoters of DNA damage-induced apoptosis. J Toxicol Sci 2024; 49:27-36. [PMID: 38191191 DOI: 10.2131/jts.49.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
trans-Fatty acids (TFAs) are unsaturated fatty acids harboring at least one carbon-carbon double bond in trans configuration, which are categorized into two groups according to their origin: industrial and ruminant TFAs, hereafter called iTFAs and rTFAs, respectively. Numerous epidemiological studies have shown a specific link of iTFAs to various diseases, such as cardiovascular and neurodegenerative diseases. However, there is little evidence for underlying mechanisms that can explain the specific toxicity of iTFAs, and how to mitigate their toxicity. Herein, we show that iTFAs, including elaidic acid (EA) and linoelaidic acid, but not rTFAs, facilitate apoptosis induced by doxorubicin (Dox), triggering DNA double-strand breaks. We previously established that EA promotes Dox-induced apoptosis by accelerating c-Jun N-terminal kinase (JNK) activation through mitochondrial reactive oxygen species (ROS) overproduction. Consistently, iTFAs specifically enhanced Dox-induced JNK activation. Furthermore, Dox-induced pro-apoptotic signaling by iTFAs was blocked in the presence of oleic acid (OA), the geometrical cis isomer of EA. These results demonstrate that iTFAs specifically exert their toxicity during DNA damage-induced apoptosis, which could be effectively suppressed by OA. Our study provides evidence for understanding the difference in toxic actions between TFA species, and for new strategies to prevent and combat TFA-related diseases.
Collapse
Affiliation(s)
- Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Ryota Kojima
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Ryo Ashida
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yuki Nada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Shinnosuke Kimura
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Emiko Sato
- Division of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
7
|
Gurjar VK, Jain S, Vaidya A, Bansal K. Reinstating the expression and activation of caspase-8 and caspase-10 in cancer therapy. CASPASES AS MOLECULAR TARGETS FOR CANCER THERAPY 2024:131-182. [DOI: 10.1016/b978-0-443-15644-1.00007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Noguchi T, Sekiguchi Y, Shimada T, Suzuki W, Yokosawa T, Itoh T, Yamada M, Suzuki M, Kurokawa R, Hirata Y, Matsuzawa A. LLPS of SQSTM1/p62 and NBR1 as outcomes of lysosomal stress response limits cancer cell metastasis. Proc Natl Acad Sci U S A 2023; 120:e2311282120. [PMID: 37847732 PMCID: PMC10614216 DOI: 10.1073/pnas.2311282120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/07/2023] [Indexed: 10/19/2023] Open
Abstract
Liquid droplet has emerged as a flexible intracellular compartment that modulates various cellular processes. Here, we uncover an antimetastatic mechanism governed by the liquid droplets formed through liquid-liquid phase separation (LLPS) of SQSTM1/p62 and neighbor of BRCA1 gene 1 (NBR1). Some of the tyrosine kinase inhibitors (TKIs) initiated lysosomal stress response that promotes the LLPS of p62 and NBR1, resulting in the spreading of p62/NBR1 liquid droplets. Interestingly, in the p62/NBR1 liquid droplet, degradation of RAS-related C3 botulinum toxin substrate 1 was accelerated by cellular inhibitor of apoptosis protein 1, which limits cancer cell motility. Moreover, the antimetastatic activity of the TKIs was completely overridden in p62/NBR1 double knockout cells both in vitro and in vivo. Thus, our results demonstrate a function of the p62/NBR1 liquid droplet as a critical determinant of cancer cell behavior, which may provide insight into both the clinical and biological significance of LLPS.
Collapse
Affiliation(s)
- Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Yuto Sekiguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Tatsuya Shimada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Wakana Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Takumi Yokosawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Tamaki Itoh
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Mayuka Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Midori Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Reon Kurokawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| |
Collapse
|
9
|
Yamada Y, Noguchi T, Suzuki M, Yamada M, Hirata Y, Matsuzawa A. Reactive sulfur species disaggregate the SQSTM1/p62-based aggresome-like induced structures via the HSP70 induction and prevent parthanatos. J Biol Chem 2023; 299:104710. [PMID: 37060999 DOI: 10.1016/j.jbc.2023.104710] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/17/2023] Open
Abstract
Reactive sulfur species (RSS) have emerged as key regulators of protein quality control. However, the mechanisms by which RSS contribute to cellular processes are not fully understood. In this study, we identified a novel function of RSS in preventing parthanatos, a non-apoptotic form of cell death that is induced by poly (ADP-ribose) polymerase-1 (PARP-1) and mediated by the aggresome-like induced structures (ALIS) composed of SQSTM1/p62. We found that sodium tetrasulfide (Na2S4), a donor of RSS, strongly suppressed oxidative stress-dependent ALIS formation and subsequent parthanatos. On the other hand, the inhibitors of the RSS-producing enzymes, such as 3-mercaptopyruvate sulfurtransferase (3-MST) and cystathionine γ-lyase (CSE), clearly enhanced ALIS formation and parthanatos. Interestingly, we found that Na2S4 activated heat shock factor 1 (HSF1) by promoting its dissociation from heat shock protein 90 (HSP90), leading to accelerated transcription of HSP70. Considering that the genetic deletion of HSP70 allowed the enhanced ALIS formation, these findings suggest that RSS prevent parthanatos by specifically suppressing ALIS formation through induction of HSP70. Taken together, our results demonstrate a novel mechanism by which RSS prevent cell death, as well as a novel physiological role of RSS in contributing to protein quality control through HSP70 induction, which may lead to better understanding of the bioactivity of RSS.
Collapse
Affiliation(s)
- Yutaro Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Sendai, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Sendai, Japan
| | - Midori Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Sendai, Japan
| | - Mayuka Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Sendai, Japan
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Sendai, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Sendai, Japan.
| |
Collapse
|
10
|
The Distinct Roles of LKB1 and AMPK in p53-Dependent Apoptosis Induced by Cisplatin. Int J Mol Sci 2022; 23:ijms231710064. [PMID: 36077459 PMCID: PMC9456506 DOI: 10.3390/ijms231710064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/27/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Liver kinase B1 (LKB1) is a serine/threonine protein kinase that acts as a key tumor suppressor protein by activating its downstream kinases, such as AMP-activated protein kinase (AMPK). However, the regulatory actions of LKB1 and AMPK on DNA damage response (DDR) remain to be explored. In this study, we investigated the function of LKB1 in DDR induced by cisplatin, a representative DNA-damaging agent, and found that LKB1 stabilizes and activates p53 through the c-Jun N-terminal kinase (JNK) pathway, which promotes cisplatin-induced apoptosis in human fibrosarcoma cell line HT1080. On the other hand, we found that AMPKα1 and α2 double knockout (DKO) cells showed enhanced stabilization of p53 and increased susceptibility to apoptosis induced by cisplatin, suggesting that AMPK negatively regulates cisplatin-induced apoptosis. Moreover, the additional stabilization of p53 and subsequent apoptosis in AMPK DKO cells were clearly canceled by the treatment with the antioxidants, raising the possibility that AMPK suppresses the p53 activation mediated by oxidative stress. Thus, our findings unexpectedly demonstrate the reciprocal regulation of p53 by LKB1 and AMPK in DDR, which provides insights into the molecular mechanisms of DDR.
Collapse
|
11
|
The polypeptide antibiotic polymyxin B acts as a pro-inflammatory irritant by preferentially targeting macrophages. J Antibiot (Tokyo) 2022; 75:29-39. [PMID: 34824374 DOI: 10.1038/s41429-021-00490-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 11/09/2022]
Abstract
Polymyxin B (PMB) is an essential antibiotic active against multidrug-resistant bacteria, such as multidrug-resistant Pseudomonas aeruginosa (MDRP). However, the clinical use of PMB is limited, because PMB causes serious side effects, such as nephrotoxicity and neurotoxicity, probably due to its cytotoxic activity. However, cytotoxic mechanisms of PMB are poorly understood. In this study, we found that macrophages are particularly sensitive to PMB, when compared with other types of cells, including fibroblasts and proximal tubule (PT) cells. Of note, PMB-induced necrosis of macrophages allowed passive release of high mobility group box 1 (HMGB1). Moreover, upon exposure of PMB to macrophages, the innate immune system mediated by the NLR family pyrin domain containing 3 (NLRP3) inflammasome that promotes the release of pro-inflammatory cytokines such as interleukin-1β (IL-1β) was stimulated. Interestingly, PMB-induced IL-1β release occurred in the absence of the pore-forming protein gasdermin D (GSDMD), which supports the idea that PMB causes plasma membrane rupture accompanying necrosis. Emerging evidence has suggested that both HMGB1 and IL-1β released from macrophages contribute to excessive inflammation that promote pathogenesis of various diseases, including nephrotoxicity and neurotoxicity. Therefore, these biochemical properties of PMB in macrophages may be associated with the induction of the adverse organ toxicity, which provides novel insights into the mechanisms of PMB-related side effects.
Collapse
|
12
|
Kagi T, Noguchi T, Matsuzawa A. Mechanisms of gefitinib-induced interstitial pneumonitis: why and how the TKI perturbs innate immune systems? Oncotarget 2021; 12:1321-1322. [PMID: 34194630 PMCID: PMC8238239 DOI: 10.18632/oncotarget.27958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 12/16/2022] Open
|
13
|
Jozkowiak M, Dyszkiewicz-Konwinska M, Ramlau P, Kranc W, Spaczynska J, Wierzchowski M, Kaczmarek M, Jodynis-Liebert J, Piotrowska-Kempisty H. Individual and Combined Treatments with Methylated Resveratrol Analogue DMU-214 and Gefitinib Inhibit Tongue Cancer Cells Growth via Apoptosis Induction and EGFR Inhibition. Int J Mol Sci 2021; 22:ijms22126180. [PMID: 34201116 PMCID: PMC8226931 DOI: 10.3390/ijms22126180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
The methylated resveratrol analogue 3′-hydroxy-3,4,5,4′-tetramethoxystilbene (DMU-214) has been revealed to exert the anti-cancer activity by a block of the cell cycle at the G2/M phase, apoptosis induction, and metastasis inhibition. These biological events may be involved in crosstalk with the epidermal growth factor receptor (EGFR), which belongs to the ErbB family of receptor tyrosine kinases. Several cancer therapeutic approaches employ small molecules capable of inhibiting tyrosine kinases (e.g., gefitinib). According to more recent reports, combining gefitinib with chemotherapeutics, such as cisplatin, seems to be more effective than monotherapy. The present study aimed to assess the molecular mechanism of the potential anti-proliferative activity of individual and combined treatments with DMU-214 and gefitinib in SCC-25 and CAL-27 human tongue cancer cell lines. We showed for the first time the anti-cancer effects of DMU-214, gefitinib, and their combination in tongue cancer cells triggered via cell cycle arrest, apoptosis induction, and inhibition of the EGFR signaling pathway. The anti-proliferative effects of DMU-214 and gefitinib are also suggested to be related to the EGFR and EGFRP (phosphorylated epidermal growth factor receptor) expression status since we found significantly weaker cytotoxic activity of the compounds tested in SCC-25 cells, which overexpressed EGFR and EGFRP proteins.
Collapse
Affiliation(s)
- Malgorzata Jozkowiak
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 St., PL-60-631 Poznan, Poland; (M.J.); (P.R.); (J.S.); (J.J.-L.)
| | - Marta Dyszkiewicz-Konwinska
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, Bukowska 70 St., PL-60-812 Poznan, Poland;
- Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland;
| | - Piotr Ramlau
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 St., PL-60-631 Poznan, Poland; (M.J.); (P.R.); (J.S.); (J.J.-L.)
| | - Wieslawa Kranc
- Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland;
| | - Julia Spaczynska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 St., PL-60-631 Poznan, Poland; (M.J.); (P.R.); (J.S.); (J.J.-L.)
| | - Marcin Wierzchowski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6 St., PL-60-780 Poznan, Poland;
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Garbary 15 St., PL-61-866 Poznan, Poland;
- Gene Therapy Unit, Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Garbary 15 St., PL-61-866 Poznan, Poland
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 St., PL-60-631 Poznan, Poland; (M.J.); (P.R.); (J.S.); (J.J.-L.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 St., PL-60-631 Poznan, Poland; (M.J.); (P.R.); (J.S.); (J.J.-L.)
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 7 Gagarina St., 87-100 Torun, Poland
- Correspondence: ; Tel.: +48-61847-07-21
| |
Collapse
|
14
|
Shimada T, Kudoh Y, Noguchi T, Kagi T, Suzuki M, Tsuchida M, Komatsu H, Takahashi M, Hirata Y, Matsuzawa A. The E3 Ubiquitin-Protein Ligase RNF4 Promotes TNF-α-Induced Cell Death Triggered by RIPK1. Int J Mol Sci 2021; 22:5796. [PMID: 34071450 PMCID: PMC8199362 DOI: 10.3390/ijms22115796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Receptor-interacting protein kinase 1 (RIPK1) is a key component of the tumor necrosis factor (TNF) receptor signaling complex that regulates both pro- and anti-apoptotic signaling. The reciprocal functions of RIPK1 in TNF signaling are determined by the state of the posttranslational modifications (PTMs) of RIPK1. However, the underlying mechanisms associated with the PTMs of RIPK1 are unclear. In this study, we found that RING finger protein 4 (RNF4), a RING finger E3 ubiquitin ligase, is required for the RIPK1 autophosphorylation and subsequent cell death. It has been reported that RNF4 negatively regulates TNF-α-induced activation of the nuclear factor-κB (NF-κB) through downregulation of transforming growth factor β-activated kinase 1 (TAK1) activity, indicating the possibility that RNF4-mediated TAK1 suppression results in enhanced sensitivity to cell death. However, interestingly, RNF4 was needed to induce RIPK1-mediated cell death even in the absence of TAK1, suggesting that RNF4 can promote RIPK1-mediated cell death without suppressing the TAK1 activity. Thus, these observations reveal the existence of a novel mechanism whereby RNF4 promotes the autophosphorylation of RIPK1, which provides a novel insight into the molecular basis for the PTMs of RIPK1.
Collapse
Affiliation(s)
| | | | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; (T.S.); (Y.K.); (T.K.); (M.S.); (M.T.); (H.K.); (M.T.); (Y.H.)
| | | | | | | | | | | | | | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; (T.S.); (Y.K.); (T.K.); (M.S.); (M.T.); (H.K.); (M.T.); (Y.H.)
| |
Collapse
|
15
|
Gefitinib initiates sterile inflammation by promoting IL-1β and HMGB1 release via two distinct mechanisms. Cell Death Dis 2021; 12:49. [PMID: 33414419 PMCID: PMC7791030 DOI: 10.1038/s41419-020-03335-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022]
Abstract
Anticancer drug gefitinib causes inflammation-based side effects, such as interstitial pneumonitis. However, its mechanisms remain unknown. Here, we provide evidence that gefitinib elicits pro-inflammatory responses by promoting mature-interleukin-1β (IL-1β) and high-mobility group box 1 (HMGB1) release. Mitochondrial reactive oxygen species (mtROS) driven by gefitinib stimulated the formation of the NLRP3 (NACHT, LRR and PYD-containing protein 3) inflammasome, leading to mature-IL-1β release. Notably, gefitinib also stimulated HMGB1 release, which is, however, not mediated by the NLRP3 inflammasome. On the other hand, gefitinib-driven mtROS promoted the accumulation of γH2AX, a hallmark of DNA damage, leading to the activation of poly (ADP-ribose) polymerase-1 (PARP-1) and subsequent active release of HMGB1. Together our results reveal the potential ability of gefitinib to initiate sterile inflammation via two distinct mechanisms, and identified IL-1β and HMGB1 as key determinants of gefitinib-induced inflammation that may provide insights into gefitinib-induced interstitial pneumonitis.
Collapse
|
16
|
Suzuki M, Asai Y, Kagi T, Noguchi T, Yamada M, Hirata Y, Matsuzawa A. TAK1 Mediates ROS Generation Triggered by the Specific Cephalosporins through Noncanonical Mechanisms. Int J Mol Sci 2020; 21:ijms21249497. [PMID: 33327477 PMCID: PMC7764951 DOI: 10.3390/ijms21249497] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022] Open
Abstract
It is known that a wide variety of antibacterial agents stimulate generation of reactive oxygen species (ROS) in mammalian cells. However, its mechanisms are largely unknown. In this study, we unexpectedly found that transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is involved in the generation of mitochondrial ROS (mtROS) initiated by cefotaxime (CTX), one of specific antibacterial cephalosporins that can trigger oxidative stress-induced cell death. TAK1-deficient macrophages were found to be sensitive to oxidative stress-induced cell death stimulated by H2O2. Curiously, however, TAK1-deficient macrophages exhibited strong resistance to oxidative stress-induced cell death stimulated by CTX. Microscopic analysis revealed that CTX-induced ROS generation was overridden by knockout or inhibition of TAK1, suggesting that the kinase activity of TAK1 is required for CTX-induced ROS generation. Interestingly, pharmacological blockade of the TAK1 downstream pathways, such as nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, did not affect the CTX-induced ROS generation. In addition, we observed that CTX promotes translocation of TAK1 to mitochondria. Together, these observations suggest that mitochondrial TAK1 mediates the CTX-induced mtROS generation through noncanonical mechanisms. Thus, our data demonstrate a novel and atypical function of TAK1 that mediates mtROS generation triggered by the specific cephalosporins.
Collapse
Affiliation(s)
| | | | | | - Takuya Noguchi
- Correspondence: (T.N.); (A.M.); Tel.: +81-22-795-6828 (T.N.); +81-22-795-6827 (A.M.); Fax: +81-22-795-6826 (T.N. & A.M.)
| | | | | | - Atsushi Matsuzawa
- Correspondence: (T.N.); (A.M.); Tel.: +81-22-795-6828 (T.N.); +81-22-795-6827 (A.M.); Fax: +81-22-795-6826 (T.N. & A.M.)
| |
Collapse
|
17
|
Tsuchida M, Yokosawa T, Noguchi T, Shimada T, Yamada M, Sekiguchi Y, Hirata Y, Matsuzawa A. Pro-apoptotic functions of TRAF2 in p53-mediated apoptosis induced by cisplatin. J Toxicol Sci 2020; 45:219-226. [PMID: 32238696 DOI: 10.2131/jts.45.219] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tumor necrosis factor receptor-associated factor 2 (TRAF2) is an essential component of tumor necrosis factor-α (TNF-α) signaling that regulates nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) pathways, and compelling evidence has demonstrated that TRAF2 suppresses TNF-α-induced cytotoxicity. On the other hand, it has been reported that oxidative stress-induced cytotoxicity is potentiated by TRAF2, indicating that TRAF2 both positively and negatively regulates stress-induced cytotoxicity in a context-specific manner. However, the causal role of TRAF2 in DNA damage response (DDR) remains to be explored. In this study, we assessed the function of TRAF2 in DDR induced by cisplatin, a representative DNA-damaging agent, and found that TRAF2 exerts pro-apoptotic activity through p53-dependent mechanisms at least in human fibrosarcoma cell line HT1080. TRAF2 deficient cells exhibit significant resistance to cell death induced by cisplatin, accompanied by the reduction of both p53 protein level and caspase-3 activation. Moreover, cisplatin-induced JNK activation was attenuated in TRAF2-deficient cells, and pharmacological inhibition of JNK signaling suppressed p53 stabilization. These results suggest that TRAF2 promotes p53-dependent apoptosis by activating the JNK signaling cascade in HT1080 cells. Thus, our data demonstrate a novel function of TRAF2 in cisplatin-induced DDR as a pro-apoptotic protein.
Collapse
Affiliation(s)
- Mei Tsuchida
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Takumi Yokosawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Tatsuya Shimada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Mayuka Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yuto Sekiguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
18
|
Yokosawa T, Yamada M, Noguchi T, Suzuki S, Hirata Y, Matsuzawa A. Pro-caspase-3 protects cells from polymyxin B-induced cytotoxicity by preventing ROS accumulation. J Antibiot (Tokyo) 2019; 72:848-852. [PMID: 31371783 DOI: 10.1038/s41429-019-0216-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 12/21/2022]
Abstract
Polymyxin B (PMB), a last-line antibiotic used against antibiotic-resistant superbugs, causes undesirable cytotoxic side effects. However, its mechanisms remain unknown. In this study, we unexpectedly found that caspase-3, a main executor of apoptosis, plays a protective role in PMB-induced cytotoxicity. Caspase-3 knockout (KO) cells exhibited higher susceptibility to PMB-induced cytotoxicity compared with wild-type (WT) cells, accompanied by increased levels of reactive oxygen species (ROS). Interestingly, co-treatment with the antioxidant N-acetylcysteine (NAC) rescued cell viability to a similar extent as WT cells. Furthermore, PMB failed to facilitate the processing of inactive caspase-3 (pro-caspase-3) into active forms, suggesting that pro-caspase-3 nonenzymatically suppresses PMB-driven ROS accumulation and its cytotoxicity. Thus, our findings that demonstrate the potential ability of PMB to stimulate ROS generation, but which is normally masked by pro-caspase-3-dependent mechanisms, may provide novel insights into the mechanisms of PMB-induced side effects.
Collapse
Affiliation(s)
- Takumi Yokosawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Mayuka Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Saki Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|