1
|
Helal AM, Yossef MM, Seif IK, Abd El-Salam M, El Demellawy MA, Abdulmalek SA, Ghareeb AZ, Holail J, Mohsen Al-Mahallawi A, El-Zahaby SA, Ghareeb DA. Nanostructured biloalbuminosomes loaded with berberine and berberrubine for Alleviating heavy Metal-Induced male infertility in rats. Int J Pharm 2024; 667:124892. [PMID: 39481813 DOI: 10.1016/j.ijpharm.2024.124892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Despite the remarkable biological effects of berberine (BBR), particularly on fertility, its bioavailability is low. This study aims to test the effectiveness of novel nanostructured biloalbuminosomes (BILS) of BBR and its metabolite berberrubine (M1) in treatment of testicular and prostatic lesions. M1 was semi-synthesized from BBR using microwave-assisted reaction. The solvent evaporation method was used to prepare BBR-BILS and M1-BILS by three different concentrations of sodium cholate (SC) or glycocholate (SG), along with the incorporation of bovine serum albumin (BSA). The prepared BILS were fully characterized. Male infertility was induced by cadmium (Cd) at 5 mg/kg and lead (Pb) at 20 mg/kg contaminated water for 90 days, followed by treatment with BBR, M1, and their BILS (BBR-BILS and M1-BILS) for 45 days. Blood male infertility markers, testicular and prostatic oxidative stress status, autophagy, inflammation, along with testicular and prostatic concentrations of Cd and Pb, and histopathology of both tested tissues were determined using standardized protocols. The optimal BBR-BILS and M1-BILS nano-preparations, containing 30 mg SC, were chosen based on the best characterization properties of the preparations. Both nano-preparations improved heavy metals-induced testicular and prostatic deformities, as they reduced Bax and elevated Bcl-2 expressions in both tissues. Moreover, they activated the mTOR/PI3K pathway with a marked reduction in AMPK and activated LC-3II protein levels. Consequently, testicular and prostatic architecture and functions were improved. This study is the first to report the preparation of BBR and M1 BILS nano-preparations and proved their superior efficacy compared to free drugs against testicular and prostatic deformities by attenuating oxidative stress-induced excessive autophagy, offering a new hope to manage male infertility.
Collapse
Affiliation(s)
- Aya M Helal
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Mona M Yossef
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Inas K Seif
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city), New Borg El Arab, Alexandria, Egypt
| | - Mohamed Abd El-Salam
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 VN5, Ireland; Department of Pharmacognosy, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt
| | - Maha A El Demellawy
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), The City of Scientific Research and Technological Applications (SRTA-City), Borg Al-Arab, Alexandria, Egypt
| | - Shaymaa A Abdulmalek
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed Z Ghareeb
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city), New Borg El Arab, Alexandria, Egypt
| | - Jasmine Holail
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Sally A El-Zahaby
- Department of Pharmaceutics and Industrial Pharmacy, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt.
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city), New Borg El Arab, Alexandria, Egypt; Research Projects Unit, Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex 21648, Alexandria, Egypt
| |
Collapse
|
2
|
Kim JE, Lee DS, Kim TH, Park H, Kang TC. Distinct Roles of CK2- and AKT-Mediated NF-κB Phosphorylations in Clasmatodendrosis (Autophagic Astroglial Death) within the Hippocampus of Chronic Epilepsy Rats. Antioxidants (Basel) 2023; 12:antiox12051020. [PMID: 37237886 DOI: 10.3390/antiox12051020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The downregulation of glutathione peroxidase-1 (GPx1) plays a role in clasmatodendrosis (an autophagic astroglial death) in the hippocampus of chronic epilepsy rats. Furthermore, N-acetylcysteine (NAC, a GSH precursor) restores GPx1 expression in clasmatodendritic astrocytes and alleviates this autophagic astroglial death, independent of nuclear factor erythroid-2-related factor 2 (Nrf2) activity. However, the regulatory signal pathways of these phenomena have not been fully explored. In the present study, NAC attenuated clasmatodendrosis by alleviating GPx1 downregulation, casein kinase 2 (CK2)-mediated nuclear factor-κB (NF-κB) serine (S) 529 and AKT-mediated NF-κB S536 phosphorylations. 2-[4,5,6,7-Tetrabromo-2-(dimethylamino)-1H-benzo[d]imidazole-1-yl]acetic acid (TMCB; a selective CK2 inhibitor) relieved clasmatodendritic degeneration and GPx1 downregulation concomitant with the decreased NF-κB S529 and AKT S473 phosphorylations. In contrast, AKT inhibition by 3-chloroacetyl-indole (3CAI) ameliorated clasmatodendrosis and NF-κB S536 phosphorylation, while it did not affect GPx1 downregulation and CK2 tyrosine (Y) 255 and NF-κB S529 phosphorylations. Therefore, these findings suggest that seizure-induced oxidative stress may diminish GPx1 expression by increasing CK2-mediated NF-κB S529 phosphorylation, which would subsequently enhance AKT-mediated NF-κB S536 phosphorylation leading to autophagic astroglial degeneration.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology and Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology and Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology and Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hana Park
- Department of Anatomy and Neurobiology and Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology and Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
3
|
Elhemiely AA, Yahia R, Gad AM. Naringenin alleviate reproductive toxicity evoked by lead acetate via attenuation of sperm profile and biochemical alterations in male Wistar rat: Involvement of TGFβ/AKT/mTOR pathway. J Biochem Mol Toxicol 2023:e23335. [PMID: 36807407 DOI: 10.1002/jbt.23335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/06/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Exposure to Lead -causes testicular dysfunction through oxidative stress, inflammation, and apoptosis; however, naringenin (NGN) therapeutic impact against lead-evoked testicular dysfunction remains elusive. Herein, the point of the study was to examine the defensive impact of NGN on testicular dysfunction initiated by lead. Seventy-Two male Wistar rats were allotted into nine groups; control group, drug control groups, lead acetate group, as well as NGN treated groups (10, 25, and 50 mg/kg) respectively, given 5 days before lead acetate treatment. The result showed clearly the impact of lead on reduced sperm count, sperm motility as well as serum testosterone and LH levels. Additionally, it caused a significant rise in testicular inflammatory markers TNF-α, IL-1β, and TGFβ, effects that were accompanied by a reduction of AKT and mTOR levels. Lead acetate also caused degenerative changes in the testis, atrophy, and loss of spermatogenic series. Our findings revealed that NGN in a dose-dependent manner improved spermiotoxicity induced by lead acetate via restoration of the testicular function, preservation of spermatogenesis, halting inflammatory cytokines along with the enhancement of germ cell survival using upregulation of AKT/mTOR expressions. The present study discloses that NGN suppresses lead acetate toxicity that is involved in the antioxidant effect in a dose-dependent manner, besides its anti-inflammatory property.
Collapse
Affiliation(s)
- Alzahraa A Elhemiely
- The Department of Pharmacology, Egyptian Drug Authority, EDA, Formerly NODCAR, Giza, Egypt
| | - Rania Yahia
- The Department of Pharmacology, Egyptian Drug Authority, EDA, Formerly NODCAR, Giza, Egypt
| | - Amany M Gad
- The Department of Pharmacology, Egyptian Drug Authority, EDA, Formerly NODCAR, Giza, Egypt.,The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, Egypt
| |
Collapse
|
4
|
Wang LL, Zhu XJ, Fang YY, Li Y, Zhao YS, Gan CL, Luo JJ, Ou SY, Aschner M, Jiang YM. Sodium Para-Aminosalicylic Acid Modulates Autophagy to Lessen Lead-Induced Neurodegeneration in Rat Cortex. Neurotox Res 2023; 41:1-15. [PMID: 36598679 DOI: 10.1007/s12640-022-00615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 01/05/2023]
Abstract
Lead (Pb) is a common heavy metal contaminant in the environment, and it may perturb autophagy and cause neurodegeneration. Although sodium para-aminosalicylic (PAS-Na) has been shown to protect the brain from lead-induced toxicity, the mechanisms associated with its efficacy have yet to be fully understood. In this study, we evaluated the efficacy of PAS-Na in attenuating the neurotoxic effects of lead, as well as the specific mechanisms that mediate such protection. Lead exposure resulted in weight loss and injury to the liver and kidney, and PAS-Na had a protective effect against this damage. Both short-term and subchronic lead exposure impaired learning ability, and this effect was reversed by PAS-Na intervention. Lead exposure also perturbed autophagic processes through the modulation of autophagy-related factors. Short-term lead exposure downregulated LC3 and beclin1 and upregulated the expression of p62; subchronic lead exposure upregulated the expression of LC3, beclin1, and P62. It follows that PAS-Na had an antagonistic effect on the activation of the above autophagy-related factors. Overall, our novel findings suggest that PAS-Na can protect the rat cortex from lead-induced toxicity by regulating autophagic processes. (1) Short-term lead exposure inhibits autophagy, whereas subchronic lead exposure promotes autophagy. (2) PAS-NA ameliorated the abnormal process of lead-induced autophagy, which had a protective effect on the cerebral cortex.
Collapse
Affiliation(s)
- Lei-Lei Wang
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Xiao-Juan Zhu
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.,The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuan-Yuan Fang
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yan Li
- Guangxi Zhuang Autonomous Region Institute for the Prevention and Treatment of Occupational Disease, Nanning, 530021, China
| | - Yue-Song Zhao
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Cui-Liu Gan
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Jing-Jing Luo
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Shi-Yan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China. .,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| | - Michael Aschner
- Guangxi Zhuang Autonomous Region Institute for the Prevention and Treatment of Occupational Disease, Nanning, 530021, China.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China. .,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| |
Collapse
|
5
|
Su PW, Zhai Z, Wang T, Zhang YN, Wang Y, Ma K, Han BB, Wu ZC, Yu HY, Zhao HJ, Wang SJ. Research progress on astrocyte autophagy in ischemic stroke. Front Neurol 2022; 13:951536. [PMID: 36110390 PMCID: PMC9468275 DOI: 10.3389/fneur.2022.951536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic stroke is a highly disabling and potentially fatal disease. After ischemic stroke, autophagy plays a key regulatory role as an intracellular catabolic pathway for misfolded proteins and damaged organelles. Mounting evidence indicates that astrocytes are strongly linked to the occurrence and development of cerebral ischemia. In recent years, great progress has been made in the investigation of astrocyte autophagy during ischemic stroke. This article summarizes the roles and potential mechanisms of astrocyte autophagy in ischemic stroke, briefly expounds on the crosstalk of astrocyte autophagy with pathological mechanisms and its potential protective effect on neurons, and reviews astrocytic autophagy-targeted therapeutic methods for cerebral ischemia. The broader aim of the report is to provide new perspectives and strategies for the treatment of cerebral ischemia and a reference for future research on cerebral ischemia.
Collapse
Affiliation(s)
- Pei-Wei Su
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhe Zhai
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya-Nan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ke Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing-Bing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhi-Chun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hua-Yun Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hai-Jun Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Hai-Jun Zhao
| | - Shi-Jun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shi-Jun Wang
| |
Collapse
|
6
|
Tsamou M, Roggen EL. Building a Network of Adverse Outcome Pathways (AOPs) Incorporating the Tau-Driven AOP Toward Memory Loss (AOP429). J Alzheimers Dis Rep 2022; 6:271-296. [PMID: 35891639 PMCID: PMC9277675 DOI: 10.3233/adr-220015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/15/2022] [Indexed: 11/15/2022] Open
Abstract
The adverse outcome pathway (AOP) concept was first proposed as a tool for chemical hazard assessment facilitating the regulatory decision-making in toxicology and was more recently recommended during the BioMed21 workshops as a tool for the characterization of crucial endpoints in the human disease development. This AOP framework represents mechanistically based approaches using existing data, more realistic and relevant to human biological systems. In principle, AOPs are described by molecular initiating events (MIEs) which induce key events (KEs) leading to adverse outcomes (AOs). In addition to the individual AOPs, the network of AOPs has been also suggested to beneficially support the understanding and prediction of adverse effects in risk assessment. The AOP-based networks can capture the complexity of biological systems described by different AOPs, in which multiple AOs diverge from a single MIE or multiple MIEs trigger a cascade of KEs that converge to a single AO. Here, an AOP network incorporating a recently proposed tau-driven AOP toward memory loss (AOP429) related to sporadic (late-onset) Alzheimer’s disease is constructed. This proposed AOP network is an attempt to extract useful information for better comprehending the interactions among existing mechanistic data linked to memory loss as an early phase of sporadic Alzheimer’s disease pathology.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), Maastricht, The Netherlands
| | | |
Collapse
|
7
|
Xu Y, Wei L, Tang S, Shi Q, Wu B, Yang X, Zou Y, Wang X, Ao Q, Meng L, Wei X, Zhang N, Li Y, Lan C, Chen M, Li X, Lu C. Regulation PP2Ac methylation ameliorating autophagy dysfunction caused by Mn is associated with mTORC1/ULK1 pathway. Food Chem Toxicol 2021; 156:112441. [PMID: 34363881 DOI: 10.1016/j.fct.2021.112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 01/18/2023]
Abstract
Manganese (Mn) exposure leads to autophagy dysfunction and causes neurodegenerative diseases such as Parkinson's syndrome and Alzheimer's disease. However, the mechanism of neurotoxicity of Mn has been less clear. The methylation of the protein phosphatase 2A catalytic subunit determines the dephosphorylation activity of protein phosphatase and plays an important role in autophagy regulation. In this investigation, we established a model of Mn (0-2000 μmol/L) exposure to N2a cells for 12 h, used the PPME-1 inhibitor ABL-127, and constructed an LCMT1-overexpressing N2a cell line. We also regulated the PP2Ac methylation level and explored the effect of PP2Ac methylation on Mn-induced (0-1000 μmol/L) N2a cellular autophagy. Our results showed that Mn > 500 μmol/L induced N2a cell damage and increased oxidative stress. Moreover, Mn modulated autophagy in N2a cells by downregulating PP2Ac methylation, which regulated mTORC1 signaling pathway activation. Both ABL-127 and LCMT1 overexpression can upregulate PP2Ac methylation in parallel with ameliorating N2a cell abnormal autophagy induced by Mn, Briefly, the upregulation of PP2Ac methylation can ameliorate the autophagy disorder of N2a by Mn and effectively alleviate Mn-induced cytotoxicity and oxidative stress, indicating that regulation of autophagy is a protective strategy against Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Yilu Xu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Lancheng Wei
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Shen Tang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Nanning, 530021, China
| | - Qianqian Shi
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Bin Wu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiaobo Yang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yunfeng Zou
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xinhang Wang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Nanning, 530021, China
| | - Qingqing Ao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Ling Meng
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Xuejing Wei
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Ning Zhang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yunqing Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Chunhua Lan
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Muting Chen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiyi Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
| | - Cailing Lu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
8
|
Gadde R, Betharia S. N,N'bis-(2-mercaptoethyl) isophthalamide (NBMI) exerts neuroprotection against lead-induced toxicity in U-87 MG cells. Arch Toxicol 2021; 95:2643-2657. [PMID: 34165617 DOI: 10.1007/s00204-021-03103-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022]
Abstract
N,N'-bis(2-mercaptoethyl)isophthalamide (NBMI) is a novel lipophilic heavy metal chelator and thiol redox antioxidant. This study was designed to investigate the neuroprotective activity of NBMI in U-87 MG cells exposed to lead acetate (PbAc). Cells were pretreated with NBMI for 24 h prior to a 48 h exposure to PbAc. Cell death (55%, p < 0.0001) and reduction of intracellular GSH levels (0.70-fold, p < 0.005) induced by 250 µM Pb were successfully attenuated by NBMI pretreatment at concentrations as low as 10 µM. A similar pretreatment with the FDA-approved Pb chelator dimercaptosuccinic acid (DMSA) proved ineffective, indicating a superior PKPD profile for NBMI. Pretreatment with NBMI successfully counteracted Pb-induced neuroinflammation by reducing IL-1β (0.59-fold, p < 0.05) and GFAP expression levels. NBMI alone was also found to significantly increase ferroportin expression (1.97-fold, p < 0.05) thereby enhancing cellular ability to efflux heavy metals. While no response was observed on the apoptotic pathway, this study demonstrated for the first time that necrotic cell death induced by Pb in U-87 MG cells is successfully attenuated by NBMI. Collectively these data demonstrate NBMI to be a promising neuroprotective compound in the realm of Pb poisoning.
Collapse
Affiliation(s)
- Rajitha Gadde
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 179 Longwood Avenue, Boston, MA, 02115, USA.
| | - Swati Betharia
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 179 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
9
|
Xu L, Zhang H, Wang Y, Guo W, Gu L, Yang A, Ma S, Yang Y, Wu K, Jiang Y. H3K14 hyperacetylation‑mediated c‑Myc binding to the miR‑30a‑5p gene promoter under hypoxia postconditioning protects senescent cardiomyocytes from hypoxia/reoxygenation injury. Mol Med Rep 2021; 23:468. [PMID: 33880587 PMCID: PMC8097758 DOI: 10.3892/mmr.2021.12107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 02/22/2021] [Indexed: 11/25/2022] Open
Abstract
Our previous study reported that microRNA (miR)‑30a‑5p upregulation under hypoxia postconditioning (HPostC) exert a protective effect on aged H9C2 cells against hypoxia/reoxygenation injury via DNA methyltransferase 3B‑induced DNA hypomethylation at the miR‑30a‑5p gene promoter. This suggests that miR‑30a‑5p may be a potential preventative and therapeutic target for ischemic heart disease in aged myocardium. The present study aimed to investigate the underlying mechanisms of miR‑30a‑5p transcription in aged myocardium in ischemic heart disease. Cardiomyocytes were treated with 8 mg/ml D‑galactose for 9 days, and then exposed to hypoxic conditions. Cell viability was determined using a cell viability assay. Expression levels of histone deacetylase 2 (HDAC2), LC3B‑II/I, beclin‑1 and p62 were detected via reverse transcription‑quantitative PCR and western blotting. Chromatin immunoprecipitation‑PCR and luciferase reporter assays were performed to evaluate the effect of c‑Myc binding and activity on the miR‑30a‑5p promoter in senescent cardiomyocytes following HPostC. It was found that HPostC enhanced the acetylation levels of H3K14 at the miR‑30a‑5p gene promoter in senescent cardiomyocytes, which attributed to the decreased expression of HDAC2. In addition, c‑Myc could positively regulate miR‑30a‑5p transcription to inhibit senescent cardiomyocyte autophagy. Mechanically, it was observed that increased H3K14 acetylation level exposed to romidepsin facilitated c‑Myc binding to the miR‑30a‑5p gene promoter region, which led to the increased transcription of miR‑30a‑5p. Taken together, these results demonstrated that HDAC2‑mediated H3K14 hyperacetylation promoted c‑Myc binding to the miR‑30a‑5p gene promoter, which contributed to HPostC senescent cardioprotection.
Collapse
Affiliation(s)
- Lingbo Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Huiping Zhang
- Department of Prenatal Diagnosis Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yanhua Wang
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Wei Guo
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Lingyu Gu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Anning Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Shengchao Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yong Yang
- Department of Nuclear Medicine, The People's Hospital in Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Kai Wu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yideng Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|