1
|
Michelangeli F, Mohammed NA, Jones B, Tairu M, Al‐Mousa F. Cytotoxicity by endocrine disruptors through effects on ER Ca 2+ transporters, aberrations in Ca 2+ signalling pathways and ER stress. FEBS Open Bio 2024; 14:1384-1396. [PMID: 39138623 PMCID: PMC11492318 DOI: 10.1002/2211-5463.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/24/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Concerns regarding man-made organic chemicals pervading our ecosystem and having adverse and detrimental effects upon organisms, including man, have now been studied for several decades. Since the 1970s, some environmental pollutants were identified as having endocrine disrupting affects. These endocrine disrupting chemicals (EDC) were initially shown to have estrogenic or anti-estrogenic properties and some were also shown to bind to a variety of hormone receptors. However, since the 1990s it has also been identified that many of these EDC additionally, have the ability of causing abnormal alterations in Ca2+ signalling pathways (also commonly involved in hormone signalling), leading to exaggerated elevations in cytosolic [Ca2+] levels, that is known to cause activation of a number of cell death pathways. The major emphasis of this review is to present a personal perspective of the evidence for some types of EDC, specifically alkylphenols and brominated flame retardants (BFRs), causing direct effects on Ca2+ transporters (mainly the SERCA Ca2+ ATPases), culminating in acute cytotoxicity and cell death. Evidence is also presented to indicate that this Ca2+ATPase inhibition, which leads to abnormally elevated cytosolic [Ca2+], as well as a decreased luminal ER [Ca2+], which triggers the ER stress response, are both involved in acute cytotoxicity.
Collapse
Affiliation(s)
- Francesco Michelangeli
- Chester Medical SchoolUniversity of ChesterUK
- School of BiosciencesUniversity of BirminghamUK
| | - Noor A. Mohammed
- School of BiosciencesUniversity of BirminghamUK
- Department of BiologyUniversity of DuhokIraq
| | | | | | - Fawaz Al‐Mousa
- General Directorate of Poison Control CentreMinistry of HealthRiyadhSaudi Arabia
| |
Collapse
|
2
|
Khani L, Martin L, Pułaski Ł. Cellular and physiological mechanisms of halogenated and organophosphorus flame retardant toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165272. [PMID: 37406685 DOI: 10.1016/j.scitotenv.2023.165272] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Flame retardants (FRs) are chemical substances used to inhibit the spread of fire in numerous industrial applications, and their abundance in modern manufactured products in the indoor and outdoor environment leads to extensive direct and food chain exposure of humans. Although once considered relatively non-toxic, FRs are demonstrated by recent literature to have disruptive effects on many biological processes, including signaling pathways, genome stability, reproduction, and immune system function. This review provides a summary of research investigating the impact of major groups of FRs, including halogenated and organophosphorus FRs, on animals and humans in vitro and/or in vivo. We put in focus those studies that explained or referenced the modes of FR action at the level of cells, tissues and organs. Since FRs are highly hydrophobic chemicals, their biophysical and biochemical modes of action usually involve lipophilic interactions, e.g. with biological membranes or elements of signaling pathways. We present selected toxicological information about these molecular actions to show how they can lead to damaging membrane integrity, damaging DNA and compromising its repair, changing gene expression, and cell cycle as well as accelerating cell death. Moreover, we indicate how this translates to deleterious bioactivity of FRs at the physiological level, with disruption of hormonal action, dysregulation of metabolism, adverse effects on male and female reproduction as well as alteration of normal pattern of immunity. Concentrating on these subjects, we make clear both the advances in knowledge in recent years and the remaining gaps in our understanding, especially at the mechanistic level.
Collapse
Affiliation(s)
- Leila Khani
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Leonardo Martin
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Department of Biochemistry and Molecular Biology, Federal University of São Paulo, São Paulo, Brazil
| | - Łukasz Pułaski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland.
| |
Collapse
|
3
|
Cazzaro S, Woo JAA, Wang X, Liu T, Rego S, Kee TR, Koh Y, Vázquez-Rosa E, Pieper AA, Kang DE. Slingshot homolog-1-mediated Nrf2 sequestration tips the balance from neuroprotection to neurodegeneration in Alzheimer's disease. Proc Natl Acad Sci U S A 2023; 120:e2217128120. [PMID: 37463212 PMCID: PMC10374160 DOI: 10.1073/pnas.2217128120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Oxidative damage in the brain is one of the earliest drivers of pathology in Alzheimer's disease (AD) and related dementias, both preceding and exacerbating clinical symptoms. In response to oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) is normally activated to protect the brain from oxidative damage. However, Nrf2-mediated defense against oxidative stress declines in AD, rendering the brain increasingly vulnerable to oxidative damage. Although this phenomenon has long been recognized, its mechanistic basis has been a mystery. Here, we demonstrate through in vitro and in vivo models, as well as human AD brain tissue, that Slingshot homolog-1 (SSH1) drives this effect by acting as a counterweight to neuroprotective Nrf2 in response to oxidative stress and disease. Specifically, oxidative stress-activated SSH1 suppresses nuclear Nrf2 signaling by sequestering Nrf2 complexes on actin filaments and augmenting Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 interaction, independently of SSH1 phosphatase activity. We also show that Ssh1 elimination in AD models increases Nrf2 activation, which mitigates tau and amyloid-β accumulation and protects against oxidative injury, neuroinflammation, and neurodegeneration. Furthermore, loss of Ssh1 preserves normal synaptic function and transcriptomic patterns in tauP301S mice. Importantly, we also show that human AD brains exhibit highly elevated interactions of Nrf2 with both SSH1 and Keap1. Thus, we demonstrate here a unique mode of Nrf2 blockade that occurs through SSH1, which drives oxidative damage and ensuing pathogenesis in AD. Strategies to inhibit SSH1-mediated Nrf2 suppression while preserving normal SSH1 catalytic function may provide new neuroprotective therapies for AD and related dementias.
Collapse
Affiliation(s)
- Sara Cazzaro
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Department of Molecular Medicine, University of South Florida Health College of Medicine, Tampa, FL33620
| | - Jung-A A. Woo
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Xinming Wang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Tian Liu
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Shanon Rego
- Department of Molecular Medicine, University of South Florida Health College of Medicine, Tampa, FL33620
| | - Teresa R. Kee
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Department of Molecular Medicine, University of South Florida Health College of Medicine, Tampa, FL33620
| | - Yeojung Koh
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Edwin Vázquez-Rosa
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Andrew A. Pieper
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Geriatric Psychiatry, Geriatric Research Education and Clinical Center, Louis Stokes Cleveland Veteran Affairs Medical Center, Cleveland, OH44106
- Brain Health Medicines, Center Harrington Discovery Institute, Cleveland, OH44106
| | - David E. Kang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Louis Stokes Cleveland Veteran Affairs Medical Center, Cleveland, OH44106
| |
Collapse
|
4
|
Rybczyńska-Tkaczyk K, Skóra B, Szychowski KA. Toxicity of bisphenol A (BPA) and its derivatives in divers biological models with the assessment of molecular mechanisms of toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27747-y. [PMID: 37213006 DOI: 10.1007/s11356-023-27747-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
The aim of the study was to determine totoxicity of bisphenol A (BPA) and its derivatives (bisphenol S (BPS), bisphenol F (BPF), and tetrabromobisphenol A (TBBPA)) due to its high accumulation in environment. The performed analysis revealed the toxicity of the BPA, BPF, and BPS against Kurthia gibsoni, Microbacterium sp., and Brevundimonas diminuta as the most sensitive, reaching microbial toxic concentrations in the range of 0.018-0.031 mg ∙ L-1. Moreover, the genotoxicity assay shows the ability of all tested compounds to increase in the β-galactosidase level at the concentration range 7.81-500 µM (in Escherichia coli, PQ37). In turn, the matbolic activation of tested bishpenols has caused the enhacement of the genotoxicity and cytotoxicity effect. Interestingely, the highest phytotoxicity effect was pointed for BPA and TBBPA at the concentrations of 10 mg ∙ L-1 and 50 mg ∙ L-1, which cause the inhibition of root growth by 58% and 45%, respectively (especially for S. alba and S. saccharatum). Furthermore, the cytotoxicity analyses show the ability of BPA, BPS, and TBBPA to significantly decrease the metabolic activity of human keratynoctes in vitro after 24 h of treatment at the micromolar concentrations. Simialry, the impact of the certain bisphenols on proliferation-, apoptosis-, and inflammation-related mRNA expression was shown in tested cell line. Summarizing, the presented results have proved that BPA and its derrivatives are able to show high negative effect on certain living orgnisms such as bacteria, plants, and human cells, which is strict related to pro-apoptotic and genotoxic mechanism of action.
Collapse
Affiliation(s)
- Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, The University of Life Sciences, Leszczyńskiego Street 7, 20-069, Lublin, Poland
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland.
| |
Collapse
|
5
|
Wang Q, Peng X, Chen Y, Tang X, Qin Y, He M, Chen W, Chen H. Piezo1 alleviates acetaminophen-induced acute liver injury by activating Nrf2 and reducing mitochondrial reactive oxygen species. Biochem Biophys Res Commun 2023; 652:88-94. [PMID: 36841099 DOI: 10.1016/j.bbrc.2023.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/20/2023]
Abstract
Acetaminophen (APAP) overdose is the most common cause for acute liver failure (ALF) in the developed countries, with limited treatment options. Piezo1 is a mechanosensitive cation channel. We found that APAP caused upregulation of Piezo1 in both an APAP-induced acute liver injury (ALI) animal model and a mouse hepatocyte cell line AML12. Activation of Piezo1 by its activator Yoda1 reduced APAP-induced hepatotoxicity and ROS level. Mechanistically, activation of Piezo1 led to accumulation of the antioxidant regulator Nrf2 and upregulation of its target genes Nqo1 and Gsta1, while knockdown of Piezo1 downregulated this pathway. Finally, injection of Yoda1 decreased serum AST and ALT levels, reduced cell death and rescued liver injury in the APAP-induced ALI mouse model. Our findings suggested a previously undiscovered protective role of Piezo1 in APAP-induced ALI, which might shed light on a new therapeutic target for this disease.
Collapse
Affiliation(s)
- Qimeng Wang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xuyun Peng
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yifan Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yunfei Qin
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Mian He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Wenjie Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Hui Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
6
|
Salehabadi A, Farkhondeh T, Harifi-Mood MS, Aschner M, Samarghandian S. Role of Nrf2 in bisphenol effects: a review study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55457-55472. [PMID: 35680748 DOI: 10.1007/s11356-022-20996-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Bisphenols (BPs), the main endocrine-disrupting chemicals used in polycarbonate plastics, epoxy-phenol resins, and some other manufacturers, have been interestingly focused to find their toxic effects in recent years. Due to the strong relation between bisphenols and some crucial receptors such as ERs, AR, glucocorticoid receptor, THRs, ERRs, hPXR, AhR, and etcetera, the disrupting and oncogenic role of these chemicals on reproductive, respiratory, and circulatory systems and a broad group of body tissues have been investigated. BPs induce oxidant enzymes, exert antioxidant enzymes from body cells, and result in the expression of proinflammatory genes, leading to cell apoptosis and inflammation. To maintain the homeostasis of human body cells, Nrf2, the key regulator of oxidative stress (Ashrafizadeh et al., 2020a; Ashrafizadeh et al., 2020c; Boroumand et al., 2018), confronts BP-induced ROS and RNS through the activation of antioxidant enzymes such as SOD1/2, CAT, GSH, GPX, HO-1, and etcetera. Chemicals and drugs such as LUT, NAC, GEN, L-NMMA, Ph2Se2, and GE can regulate the interactions between BPs and Nrf2. Despite the vital role of controlled levels of Nrf2 as an anti-inflammatory and antiapoptotic element, the uncontrolled activity of this transcription factor could lead to cell proliferation and tumorigenesis through NQO1, SLC7a11, Gclm, HMOX1, NQO1 gene activation, and some other genes. To avoid the excessive activity of Nrf2, some protein complexes like CUL3-RBX1-Keap1 (as the primary regulator), β-TrCP, and WDR23 regulate Nrf2's function. It is necessary to note that BPA, as the most famous member, is further reviewed due to its resemblance to the bisphenol family to each other.
Collapse
Affiliation(s)
- Amin Salehabadi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209 1300 Morris Park Avenue, Bronx, NY, USA
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
7
|
Sakuma R, Kobayashi M, Kobashi R, Onishi M, Maeda M, Kataoka Y, Imaoka S. Brain Pericytes Acquire Stemness via the Nrf2-Dependent Antioxidant System. Stem Cells 2022; 40:641-654. [PMID: 35353891 DOI: 10.1093/stmcls/sxac024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
Abstract
Pericytes (PCs) are a mural support cell population elongated at intervals along the walls of capillaries. Recent studies reported that PCs are multipotent cells that are activated in response to tissue injury and contribute to the regenerative process. Using a C.B-17 mouse model of ischemic stroke, it has been proposed that normal brain pericytes (nPCs) are converted to ischemic pericytes (iPCs), some of which function as multipotent stem cells. Furthermore, oxygen-glucose deprivation (OGD) promoted mesenchymal-epithelial transition in nPCs; however, nestin was not induced under OGD conditions. Therefore, further studies are needed to elucidate the PC reprogramming phenomenon. We herein isolated nPCs from the cortex of C.B-17 mice, and compared the traits of iPCs and nPCs. The results obtained showed that nPCs and iPCs shared common pericytic markers. Furthermore, intercellular levels of reactive oxygen species and the nuclear accumulation of nuclear factor erythroid-2-related factor 2 (Nrf2), a key player in antioxidant defenses, were higher in iPCs than in nPCs. OGD/reoxygenation and a treatment with tBHQ, an Nrf2 inducer, increased nestin levels in nPCs. Moreover, epithelial marker levels, including nestin, Sox2, and CDH1 (E-cadherin) mRNAs, were elevated in Nrf2-overexpressing PCs, which formed neurosphere-like cell clusters that differentiated into Tuj1-positive neurons. The present results demonstrate that oxidative stress and Nrf2 are required for the generation of stem cells after stroke and will contribute to the development of novel therapeutic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Rika Sakuma
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Miku Kobayashi
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Rui Kobashi
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Mako Onishi
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Mitsuyo Maeda
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, RIKEN, Kobe, Hyogo, Japan.,Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Yosky Kataoka
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, RIKEN, Kobe, Hyogo, Japan.,Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Susumu Imaoka
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| |
Collapse
|
8
|
Combarnous Y, Nguyen TMD. Membrane Hormone Receptors and Their Signaling Pathways as Targets for Endocrine Disruptors. J Xenobiot 2022; 12:64-73. [PMID: 35466213 PMCID: PMC9036253 DOI: 10.3390/jox12020007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
The endocrine disruptors are mostly small organic molecules developed for numerous and very diverse industrial applications. They essentially act through nuclear receptors with small and hydrophobic endogenous ligands. Nevertheless, potential adverse effects through membrane hormone receptors cannot be ruled out, and have indeed been observed. The present paper reviews how orthosteric and allosteric binding sites of the different families of membrane receptors can be targets for man-made hydrophobic molecules (components of plastics, paints, flame retardants, herbicides, pesticides, etc.). We also review potential target proteins for such small hydrophobic molecules downstream of membrane receptors at the level of their intracellular signaling pathways. From the currently available information, although endocrine disruptors primarily affect nuclear receptors’ signaling, membrane receptors for hormones, cytokines, neuro-mediators, and growth factors can be affected as well and deserve attention.
Collapse
Affiliation(s)
- Yves Combarnous
- INRAe, CNRS, Tours University Joint Unit, Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France;
- Correspondence: ; Tel.: +33-(0)24-7427-650
| | - Thi Mong Diep Nguyen
- INRAe, CNRS, Tours University Joint Unit, Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France;
- Faculty of Natural Sciences, Quy Nhon University, Quy Nhon 820000, Vietnam
| |
Collapse
|