1
|
Wheeler AM, Orsburn BC, Bumpus NN. Biotransformation of Efavirenz and Proteomic Analysis of Cytochrome P450s and UDP-Glucuronosyltransferases in Mouse, Macaque, and Human Brain-Derived In Vitro Systems. Drug Metab Dispos 2023; 51:521-531. [PMID: 36623884 PMCID: PMC10043944 DOI: 10.1124/dmd.122.001195] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Antiretroviral drugs such as efavirenz (EFV) are essential to combat human immunodeficiency virus (HIV) infection in the brain, but little is known about how these drugs are metabolized locally. In this study, the cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT)-dependent metabolism of EFV was probed in brain microsomes from mice, cynomolgus macaques, and humans as well as primary neural cells from C57BL/6N mice. Utilizing ultra high performance liquid chromatography high-resolution mass spectrometry (uHPLC-HRMS), the formation of 8-hydroxyefavirenz (8-OHEFV) from EFV and the glucuronidation of P450-dependent metabolites 8-OHEFV and 8,14-dihydroxyefavirenz (8,14-diOHEFV) were observed in brain microsomes from all three species. The direct glucuronidation of EFV, however, was only detected in cynomolgus macaque brain microsomes. In primary neural cells treated with EFV, microglia were the only cell type to exhibit metabolism, forming 8-OHEFV only. In cells treated with the P450-dependent metabolites of EFV, glucuronidation was detected only in cortical neurons and astrocytes, revealing that certain aspects of EFV metabolism are cell type specific. Untargeted and targeted proteomics experiments were used to identify the P450s and UGTs present in brain microsomes. Eleven P450s and 11 UGTs were detected in human brain microsomes, whereas seven P450s and 14 UGTs were identified in mouse brain microsomes and 15 P450s and four UGTs, respectively, were observed in macaque brain microsomes. This was the first time many of these enzymes have been noted in brain microsomes at the protein level. This study indicates the potential for brain metabolism to contribute to pharmacological and toxicological outcomes of EFV in the brain. SIGNIFICANCE STATEMENT: Metabolism in the brain is understudied, and the persistence of human immunodeficiency virus (HIV) infection in the brain warrants the evaluation of how antiretroviral drugs such as efavirenz are metabolized in the brain. Using brain microsomes, the metabolism of efavirenz by both cytochrome P450s (P450s) and UDP-glucuronosyltransferases (UGTs) is established. Additionally, proteomics of brain microsomes characterizes P450s and UGTs in the brain, many of which have not yet been noted in the literature at the protein level.
Collapse
Affiliation(s)
- Abigail M Wheeler
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Namandjé N Bumpus
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Paraiso IL, Mattio LM, Alcázar Magaña A, Choi J, Plagmann LS, Redick MA, Miranda CL, Maier CS, Dallavalle S, Kioussi C, Blakemore PR, Stevens JF. Xanthohumol Pyrazole Derivative Improves Diet-Induced Obesity and Induces Energy Expenditure in High-Fat Diet-Fed Mice. ACS Pharmacol Transl Sci 2021; 4:1782-1793. [PMID: 34927010 DOI: 10.1021/acsptsci.1c00161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 11/28/2022]
Abstract
The energy intake exceeding energy expenditure (EE) results in a positive energy balance, leading to storage of excess energy and weight gain. Here, we investigate the potential of a newly synthesized compound as an inducer of EE for the management of diet-induced obesity and insulin resistance. Xanthohumol (XN), a prenylated flavonoid from hops, was used as a precursor for the synthesis of a pyrazole derivative tested for its properties on high-fat diet (HFD)-induced metabolic impairments. In a comparative study with XN, we report that 4-(5-(4-hydroxyphenyl)-1-methyl-1H-pyrazol-3-yl)-5-methoxy-2-(3-methylbut-2-en-1-yl)benzene-1,3-diol (XP) uncouples oxidative phosphorylation in C2C12 cells. In HFD-fed mice, XP improved glucose tolerance and decreased weight gain by increasing EE and locomotor activity. Using an untargeted metabolomics approach, we assessed the effects of treatment on metabolites and their corresponding biochemical pathways. We found that XP and XN reduced purine metabolites and other energy metabolites in the plasma of HFD-fed mice. The induction of locomotor activity was associated with an increase in inosine monophosphate in the cortex of XP-treated mice. Together, these results suggest that XP, better than XN, affects mitochondrial respiration and cellular energy metabolism to prevent obesity in HFD-fed mice.
Collapse
Affiliation(s)
- Ines L Paraiso
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Luce M Mattio
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, Milan 20133, Italy
| | - Armando Alcázar Magaña
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States
| | - Layhna S Plagmann
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Margaret A Redick
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Cristobal L Miranda
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, Milan 20133, Italy
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Paul R Blakemore
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
3
|
Carmean CM, Yokoi N, Takahashi H, Oduori OS, Kang C, Kanagawa A, Kirkley AG, Han G, Landeche M, Hidaka S, Katoh M, Sargis RM, Seino S. Arsenic modifies serotonin metabolism through glucuronidation in pancreatic β-cells. Am J Physiol Endocrinol Metab 2019; 316:E464-E474. [PMID: 30562058 PMCID: PMC6459295 DOI: 10.1152/ajpendo.00302.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In arsenic-endemic regions of the world, arsenic exposure correlates with diabetes mellitus. Multiple animal models of inorganic arsenic (iAs, as As3+) exposure have revealed that iAs-induced glucose intolerance manifests as a result of pancreatic β-cell dysfunction. To define the mechanisms responsible for this β-cell defect, the MIN6-K8 mouse β-cell line was exposed to environmentally relevant doses of iAs. Exposure to 0.1-1 µM iAs for 3 days significantly decreased glucose-induced insulin secretion (GIIS). Serotonin and its precursor, 5-hydroxytryptophan (5-HTP), were both decreased. Supplementation with 5-HTP, which loads the system with bioavailable 5-HTP and serotonin, rescued GIIS, suggesting that recovery of this pathway was sufficient to restore function. Exposure to iAs was accompanied by an increase in mRNA expression of UDP-glucuronosyltransferase 1 family, polypeptide a6a (Ugt1a6a), a phase-II detoxification enzyme that facilitates the disposal of cyclic amines, including serotonin, via glucuronidation. Elevated Ugt1a6a and UGT1A6 expression levels were observed in mouse and human islets, respectively, following 3 days of iAs exposure. Consistent with this finding, the enzymatic rate of serotonin glucuronidation was increased in iAs-exposed cells. Knockdown by siRNA of Ugt1a6a during iAs exposure restored GIIS in MIN6-K8 cells. This effect was prevented by blockade of serotonin biosynthesis, suggesting that the observed iAs-induced increase in Ugt1a6a affects GIIS by targeting serotonin or serotonin-related metabolites. Although it is not yet clear exactly which element(s) of the serotonin pathway is/are most responsible for iAs-induced GIIS dysfunction, this study provides evidence that UGT1A6A, acting on the serotonin pathway, regulates GIIS under both normal and pathological conditions.
Collapse
Affiliation(s)
- Christopher M Carmean
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine , Kobe , Japan
| | - Norihide Yokoi
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine , Kobe , Japan
- Kansai Electric Power Medical Research Institute , Kobe , Japan
| | - Harumi Takahashi
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine , Kobe , Japan
- Kansai Electric Power Medical Research Institute , Kobe , Japan
| | - Okechi S Oduori
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine , Kobe , Japan
| | - Christie Kang
- Department of Pathology, College of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Akiko Kanagawa
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine , Kobe , Japan
| | - Andrew G Kirkley
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago , Chicago, Illinois
| | - Guirong Han
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine , Kobe , Japan
- Kansai Electric Power Medical Research Institute , Kobe , Japan
- Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Sciences , Kobe , Japan
| | - Michael Landeche
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Shihomi Hidaka
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine , Kobe , Japan
| | - Miki Katoh
- Department of Pharmaceutics, Faculty of Pharmacy, Meijo University , Nagoya , Japan
| | - Robert M Sargis
- Department of Pathology, College of Medicine, University of Illinois at Chicago , Chicago, Illinois
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine , Kobe , Japan
- Kansai Electric Power Medical Research Institute , Kobe , Japan
| |
Collapse
|
4
|
Kurita A, Miyauchi Y, Ikushiro S, Mackenzie PI, Yamada H, Ishii Y. Comprehensive Characterization of Mouse UDP-Glucuronosyltransferase (Ugt) Belonging to the Ugt2b Subfamily: Identification of Ugt2b36 as the Predominant Isoform Involved in Morphine Glucuronidation. J Pharmacol Exp Ther 2017; 361:199-208. [PMID: 28228532 DOI: 10.1124/jpet.117.240382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/14/2017] [Indexed: 12/18/2022] Open
Abstract
UDP-Glucuronosyltransferases (UGTs) are classified into three subfamilies in mice: Ugt1a, 2b, and 2a. In the Ugt1a subfamily, Ugt1a1 and 1a6 appear to correspond to human UGT1A1 and 1A6 The mouse is an important animal for its use in investigations, but the substrate specificities of Ugt isoforms belonging to the 2b subfamily in mice remain largely unknown. To address this issue, we characterized the substrate specificity of all isoforms of the Ugt2b subfamily expressed in the mouse liver. The cDNAs of Ugt1a1, Ugt2a3, and all the Ugt2b isoforms expressed in the liver were reverse-transcribed from the total RNA of male FVB-mouse livers and then amplified. A baculovirus-Sf9 cell system for expressing each Ugt was established. Of all the Ugts examined, Ugt2b34, 2b36, and 2b37 exhibited the ability to glucuronidate morphine with Ugt2b36, the most active in this regard. Ugt1a1, but also Ugt2b34, 2b36, and 2b37 to a lesser extent, preferentially catalyzed the glucuronidation of 17β-estradiol on the 3-hydroxyl group (E3G). With these isoforms, E3G formation by Ugt1a1 was efficient; however, Ugt2b5 exhibited a preference for the 17β-hydroxyl group (E17G). Ugt2b1 and Ugt2a3 formed comparable levels of E3G and E17G. Ugt2b1 and 2b5 were the only isoforms involved in chloramphenicol glucuronidation. As Ugt2b36 is highly expressed in the liver, it is most likely that Ugt2b36 is a major morphine Ugt in mouse liver. Regarding E3G formation, Ugt1a1, like the human homolog, seems to play an important role in the liver.
Collapse
Affiliation(s)
- Ayumi Kurita
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (A.K., Y.M., H.Y., Y.I.), Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan (S.I.), and Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, SA, Australia (P.I.M.)
| | - Yuu Miyauchi
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (A.K., Y.M., H.Y., Y.I.), Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan (S.I.), and Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, SA, Australia (P.I.M.)
| | - Shin'ichi Ikushiro
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (A.K., Y.M., H.Y., Y.I.), Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan (S.I.), and Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, SA, Australia (P.I.M.)
| | - Peter I Mackenzie
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (A.K., Y.M., H.Y., Y.I.), Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan (S.I.), and Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, SA, Australia (P.I.M.)
| | - Hideyuki Yamada
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (A.K., Y.M., H.Y., Y.I.), Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan (S.I.), and Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, SA, Australia (P.I.M.)
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (A.K., Y.M., H.Y., Y.I.), Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan (S.I.), and Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, SA, Australia (P.I.M.)
| |
Collapse
|
5
|
Sakakibara Y, Katoh M, Imai K, Kondo Y, Asai Y, Ikushiro SI, Nadai M. Expression of UGT1A subfamily in rat brain. Biopharm Drug Dispos 2017; 37:314-9. [PMID: 27061716 DOI: 10.1002/bdd.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/25/2016] [Accepted: 03/30/2016] [Indexed: 12/25/2022]
Abstract
UDP-glucuronosyltransferase (UGT) is an enzyme that catalyses a major phase II reaction in drug metabolism. Glucuronidation occurs mainly in the liver, but UGTs are also expressed in extrahepatic tissues, where they play an important role in local metabolism. UGT1A isoforms catalyse the glucuronidation of several drugs, neurotransmitters and neurosteroids that exert pharmacological and physiological effects on the brain. The aim of the current study was to determine UGT1A mRNA expression levels and glucuronidation activities in different regions of the rat brain (namely the cerebellum, frontal cortex, parietal cortex, piriform cortex, hippocampus, medulla oblongata, olfactory bulb, striatum and thalamus). It was found that all UGT1A isoforms were expressed in all the nine regions, but their expression levels differed between the regions. The difference between the regions of the brain where the mRNA levels were highest and those where they were lowest ranged between 2.1- to 7.8-fold. Glucuronidation activities were measured using the UGT substrates such as mycophenolic acid, p-nitrophenol and umbelliferone. Glucuronidation activity was detected in all nine regions of the brain. Activity levels differed between the regions, and were highest in the cerebellum, medulla oblongata and olfactory bulb. Differences in glucuronidation activity between regions with the highest rates and those with the lowest rates ranged from 5.3- to 10.1-fold. These results will contribute to our current understanding of the physiological and pharmacokinetic roles of drug-metabolizing enzymes in the brain. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Miki Katoh
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Kuniyuki Imai
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Yuya Kondo
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Yuki Asai
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | | | | |
Collapse
|
6
|
Sakakibara Y, Katoh M, Kondo Y, Nadai M. Effects of β-Naphthoflavone on Ugt1a6 and Ugt1a7 Expression in Rat Brain. Biol Pharm Bull 2016; 39:78-83. [PMID: 26725430 DOI: 10.1248/bpb.b15-00578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uridine 5'-diphosphate-glucuronosyltransferase (UGT) catalyzes a major phase II reaction in a drug-metabolizing enzyme system. Although the UGT1A subfamily is expressed mainly in the liver, it is also expressed in the brain. The purpose of the present study was to elucidate the effect of β-naphthoflavone (BNF), one of the major inducers of drug-metabolizing enzymes, on Ugt1a6 and Ugt1a7 mRNA expression and their glucuronidation in the rat brain. Eight-week-old male Sprague-Dawley rats were treated intraperitoneally with BNF (80 mg/kg), once daily for 7 d. Ugt1a6 and Ugt1a7 mRNA expression increased in the cerebellum and hippocampus (Ugt1a6: 2.1- and 2.3-fold, respectively; Ugt1a7: 1.7- and 2.8-fold, respectively); acetaminophen glucuronidation also increased in the same regions by 4.1- and 2.7-fold, respectively. BNF induced Ugt1a6 and Ugt1a7 mRNA expression and their glucuronidation, and the degree of induction differed among 9 regions. BNF also upregulated CYP1A1, CYP1A2, and CYP1B1 mRNAs in the rat brain. Since the aryl hydrocarbon receptor signaling pathway was activated by BNF, it is indicated that Ugt1a6 and Ugt1a7 were induced via AhR in the rat brain. This study clarified that Ugt1a6 and Ugt1a7 mRNA expression and their enzyme activities were altered by BNF, suggesting that these changes may lead to alteration in the pharmacokinetics of UGT substrate in rat brain.
Collapse
|
7
|
Ikushiro S, Nishikawa M, Masuyama Y, Shouji T, Fujii M, Hamada M, Nakajima N, Finel M, Yasuda K, Kamakura M, Sakaki T. Biosynthesis of Drug Glucuronide Metabolites in the Budding Yeast Saccharomyces cerevisiae. Mol Pharm 2016; 13:2274-82. [DOI: 10.1021/acs.molpharmaceut.5b00954] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Shinichi Ikushiro
- Department
of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Miyu Nishikawa
- Department
of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Imizu
Institute, TOPU BIO RESEARCH Co., Ltd, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yuuka Masuyama
- Department
of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Tadashi Shouji
- Department
of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Miharu Fujii
- Imizu
Institute, TOPU BIO RESEARCH Co., Ltd, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masahiro Hamada
- Department
of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Noriyuki Nakajima
- Department
of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Moshe Finel
- Division
of Pharmaceutical Chemistry and Technology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Kaori Yasuda
- Department
of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masaki Kamakura
- Department
of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Toshiyuki Sakaki
- Department
of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Imizu
Institute, TOPU BIO RESEARCH Co., Ltd, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
8
|
Sakakibara Y, Katoh M, Kawayanagi T, Nadai M. Species and tissue differences in serotonin glucuronidation. Xenobiotica 2015; 46:605-611. [PMID: 26526550 DOI: 10.3109/00498254.2015.1101509] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
1. Serotonin is a UGT1A6 substrate that is mainly found in the extrahepatic tissues where some UGT1As are expressed. The aim of the present study was to characterize serotonin glucuronidation in various tissues of humans and rodents. 2. Serotonin glucuronidation in the human liver and kidney fitted to the Michaelis-Menten model, and the Km values were similar to that of recombinant UGT1A6. However, serotonin glucuronidation in the human intestine fitted to the Hill equation, indicating that it is likely catalyzed not only by UGT1A6, but also by another UGT1A isoform. Serotonin glucuronidation in the rat liver, intestine and kidney fitted well to the Michaelis-Menten model and exhibited monophasic kinetics in the kidney, but biphasic kinetics in the liver and intestine. Furthermore, serotonin glucuronidation in the rat brain fitted best to the Hill equation. Serotonin glucuronidation in the mouse tissues fitted to the Michaelis-Menten model and exhibited monophasic kinetics in the liver and intestine microsomes, but biphasic kinetics in the kidney and brain microsomes. 3. In conclusion, we clarified that tissue and species differences exist in serotonin glucuronidation. It is necessary to take these potential differences into account when considering the pharmacodynamics and pharmacokinetics of serotonin.
Collapse
Affiliation(s)
- Yukiko Sakakibara
- a Department of Pharmaceutics , Faculty of Pharmacy, Meijo University , Nagoya , Japan
| | - Miki Katoh
- a Department of Pharmaceutics , Faculty of Pharmacy, Meijo University , Nagoya , Japan
| | - Taisho Kawayanagi
- a Department of Pharmaceutics , Faculty of Pharmacy, Meijo University , Nagoya , Japan
| | - Masayuki Nadai
- a Department of Pharmaceutics , Faculty of Pharmacy, Meijo University , Nagoya , Japan
| |
Collapse
|
9
|
Ouzzine M, Gulberti S, Ramalanjaona N, Magdalou J, Fournel-Gigleux S. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication. Front Cell Neurosci 2014; 8:349. [PMID: 25389387 PMCID: PMC4211562 DOI: 10.3389/fncel.2014.00349] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/06/2014] [Indexed: 12/12/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) form a multigenic family of membrane-bound enzymes expressed in various tissues, including brain. They catalyze the formation of β-D-glucuronides from structurally unrelated substances (drugs, other xenobiotics, as well as endogenous compounds) by the linkage of glucuronic acid from the high energy donor, UDP-α-D-glucuronic acid. In brain, UGTs actively participate to the overall protection of the tissue against the intrusion of potentially harmful lipophilic substances that are metabolized as hydrophilic glucuronides. These metabolites are generally inactive, except for important pharmacologically glucuronides such as morphine-6-glucuronide. UGTs are mainly expressed in endothelial cells and astrocytes of the blood brain barrier (BBB). They are also associated to brain interfaces devoid of BBB, such as circumventricular organ, pineal gland, pituitary gland and neuro-olfactory tissues. Beside their key-role as a detoxication barrier, UGTs play a role in the steady-state of endogenous compounds, like steroids or dopamine (DA) that participate to the function of the brain. UGT isoforms of family 1A, 2A, 2B and 3A are expressed in brain tissues to various levels and are known to present distinct but overlapping substrate specificity. The importance of these enzyme species with regard to the formation of toxic, pharmacologically or physiologically relevant glucuronides in the brain will be discussed.
Collapse
Affiliation(s)
- Mohamed Ouzzine
- UMR 7365 CNRS-Université de Lorraine "Ingénierie Moléculaire, Physiopathologie Articulaire" Vandoeuvre-lès-Nancy, France
| | - Sandrine Gulberti
- UMR 7365 CNRS-Université de Lorraine "Ingénierie Moléculaire, Physiopathologie Articulaire" Vandoeuvre-lès-Nancy, France
| | - Nick Ramalanjaona
- UMR 7365 CNRS-Université de Lorraine "Ingénierie Moléculaire, Physiopathologie Articulaire" Vandoeuvre-lès-Nancy, France
| | - Jacques Magdalou
- UMR 7365 CNRS-Université de Lorraine "Ingénierie Moléculaire, Physiopathologie Articulaire" Vandoeuvre-lès-Nancy, France
| | - Sylvie Fournel-Gigleux
- UMR 7365 CNRS-Université de Lorraine "Ingénierie Moléculaire, Physiopathologie Articulaire" Vandoeuvre-lès-Nancy, France
| |
Collapse
|