1
|
Lee J, Beers JL, Geffert RM, Jackson KD. A Review of CYP-Mediated Drug Interactions: Mechanisms and In Vitro Drug-Drug Interaction Assessment. Biomolecules 2024; 14:99. [PMID: 38254699 PMCID: PMC10813492 DOI: 10.3390/biom14010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Drug metabolism is a major determinant of drug concentrations in the body. Drug-drug interactions (DDIs) caused by the co-administration of multiple drugs can lead to alteration in the exposure of the victim drug, raising safety or effectiveness concerns. Assessment of the DDI potential starts with in vitro experiments to determine kinetic parameters and identify risks associated with the use of comedication that can inform future clinical studies. The diverse range of experimental models and techniques has significantly contributed to the examination of potential DDIs. Cytochrome P450 (CYP) enzymes are responsible for the biotransformation of many drugs on the market, making them frequently implicated in drug metabolism and DDIs. Consequently, there has been a growing focus on the assessment of DDI risk for CYPs. This review article provides mechanistic insights underlying CYP inhibition/induction and an overview of the in vitro assessment of CYP-mediated DDIs.
Collapse
Affiliation(s)
- Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.L.B.); (R.M.G.)
| | | | | | - Klarissa D. Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.L.B.); (R.M.G.)
| |
Collapse
|
2
|
Nilotinib alleviated acetaminophen-induced acute hepatic injury in mice through inhibiting HIF-1alpha/VEGF-signaling pathway. Int Immunopharmacol 2022; 112:109268. [PMID: 36182876 DOI: 10.1016/j.intimp.2022.109268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/20/2022]
Abstract
The current study inspects the impact of nilotinib (Nil) on liver damage caused by acetaminophen (APAP). Adult male mice were pre-treated with nilotinib (Nil,5 and 10 mg/kg) orally once daily for 7 days followed by a single intraperitoneal administration of acetaminophen (APAP, 200 mg/kg) on the 7th day. The results indicated that nilotinib significantly decreased APAP-induced elevation of biochemical markers (ALT, AST, ALP, LDH, ɤ GT, and total bilirubin). Additionally, nilotinib significantly increased hepatic GSH and SOD content, while decreased MDA content. Nil significantly suppressed the expression of HIF-1α and VEGF. Histopathological examination of hepatic tissue from Nil-treated mice revealed that Nil reduced acetaminophen-induced necrosis.
Collapse
|
3
|
Tan YW. Is dose modification or discontinuation of nilotinib necessary in nilotinib-induced hyperbilirubinemia? World J Meta-Anal 2021; 9:488-495. [DOI: 10.13105/wjma.v9.i6.488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 10/14/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Nilotinib is a specific breakpoint cluster region-Abelson leukemia virus-tyrosine kinase inhibitor that is used as an effective first- or second-line treatment in imatinib-resistant chronic myelogenous leukemia (CML) patients. Hepatotoxicity due to nilotinib is a commonly reported side effect; however, abnormal liver function test (LFT) results have been reported in asymptomatic cases. When alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels are more than five-fold the upper limit of the normal (ULN) or when the serum total bilirubin level is more than three-fold the ULN, dose modification or discontinuation of nilotinib is recommended, resulting in decreased levels of hematological indicators in certain patients with CML. Nilotinib-induced hyperbilirubinemia typically manifests as indirect bilirubinemia without elevated ALT or AST levels. Such abnormal liver functioning is thus not attributed to the presence of a true histologic lesion of the liver. The underlying mechanism may be related to the inhibition of uridine diphosphate glucuronosyltransferase activity. Therefore, nilotinib dose adjustment is not recommended for this type of hyperbilirubinemia, and in the absence of elevated liver enzyme levels or presence of abnormal LFT findings, physicians should consider maintaining nilotinib dose intensity without modifications.
Collapse
Affiliation(s)
- You-Wen Tan
- Department of Hepatology, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang 212003, Jiangsu Province, China
| |
Collapse
|
4
|
Komatsu H, Enomoto M, Shiraishi H, Morita Y, Hashimoto D, Nakayama S, Funakoshi S, Hirano S, Terada Y, Miyamura M, Fujimoto S. Severe hypoglycemia caused by a small dose of repaglinide and concurrent use of nilotinib and febuxostat in a patient with type 2 diabetes. Diabetol Int 2020; 11:388-392. [DOI: 10.1007/s13340-020-00434-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/25/2020] [Indexed: 11/28/2022]
|
5
|
Holbeck SL, Camalier R, Crowell JA, Govindharajulu JP, Hollingshead M, Anderson LW, Polley E, Rubinstein L, Srivastava A, Wilsker D, Collins JM, Doroshow JH. The National Cancer Institute ALMANAC: A Comprehensive Screening Resource for the Detection of Anticancer Drug Pairs with Enhanced Therapeutic Activity. Cancer Res 2017; 77:3564-3576. [PMID: 28446463 PMCID: PMC5499996 DOI: 10.1158/0008-5472.can-17-0489] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 12/22/2022]
Abstract
To date, over 100 small-molecule oncology drugs have been approved by the FDA. Because of the inherent heterogeneity of tumors, these small molecules are often administered in combination to prevent emergence of resistant cell subpopulations. Therefore, new combination strategies to overcome drug resistance in patients with advanced cancer are needed. In this study, we performed a systematic evaluation of the therapeutic activity of over 5,000 pairs of FDA-approved cancer drugs against a panel of 60 well-characterized human tumor cell lines (NCI-60) to uncover combinations with greater than additive growth-inhibitory activity. Screening results were compiled into a database, termed the NCI-ALMANAC (A Large Matrix of Anti-Neoplastic Agent Combinations), publicly available at https://dtp.cancer.gov/ncialmanac Subsequent in vivo experiments in mouse xenograft models of human cancer confirmed combinations with greater than single-agent efficacy. Concomitant detection of mechanistic biomarkers for these combinations in vivo supported the initiation of two phase I clinical trials at the NCI to evaluate clofarabine with bortezomib and nilotinib with paclitaxel in patients with advanced cancer. Consequently, the hypothesis-generating NCI-ALMANAC web-based resource has demonstrated value in identifying promising combinations of approved drugs with potent anticancer activity for further mechanistic study and translation to clinical trials. Cancer Res; 77(13); 3564-76. ©2017 AACR.
Collapse
Affiliation(s)
- Susan L Holbeck
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland
| | - Richard Camalier
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland
| | - James A Crowell
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jeevan Prasaad Govindharajulu
- Clinical Pharmacodynamics Program, Applied/Developmental Research Directorate, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Melinda Hollingshead
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland
| | - Lawrence W Anderson
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland
| | - Eric Polley
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland
| | - Larry Rubinstein
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland
| | - Apurva Srivastava
- Clinical Pharmacodynamics Program, Applied/Developmental Research Directorate, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Deborah Wilsker
- Clinical Pharmacodynamics Program, Applied/Developmental Research Directorate, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jerry M Collins
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland.
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
6
|
Backman JT, Filppula AM, Niemi M, Neuvonen PJ. Role of Cytochrome P450 2C8 in Drug Metabolism and Interactions. Pharmacol Rev 2016; 68:168-241. [PMID: 26721703 DOI: 10.1124/pr.115.011411] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During the last 10-15 years, cytochrome P450 (CYP) 2C8 has emerged as an important drug-metabolizing enzyme. CYP2C8 is highly expressed in human liver and is known to metabolize more than 100 drugs. CYP2C8 substrate drugs include amodiaquine, cerivastatin, dasabuvir, enzalutamide, imatinib, loperamide, montelukast, paclitaxel, pioglitazone, repaglinide, and rosiglitazone, and the number is increasing. Similarly, many drugs have been identified as CYP2C8 inhibitors or inducers. In vivo, already a small dose of gemfibrozil, i.e., 10% of its therapeutic dose, is a strong, irreversible inhibitor of CYP2C8. Interestingly, recent findings indicate that the acyl-β-glucuronides of gemfibrozil and clopidogrel cause metabolism-dependent inactivation of CYP2C8, leading to a strong potential for drug interactions. Also several other glucuronide metabolites interact with CYP2C8 as substrates or inhibitors, suggesting that an interplay between CYP2C8 and glucuronides is common. Lack of fully selective and safe probe substrates, inhibitors, and inducers challenges execution and interpretation of drug-drug interaction studies in humans. Apart from drug-drug interactions, some CYP2C8 genetic variants are associated with altered CYP2C8 activity and exhibit significant interethnic frequency differences. Herein, we review the current knowledge on substrates, inhibitors, inducers, and pharmacogenetics of CYP2C8, as well as its role in clinically relevant drug interactions. In addition, implications for selection of CYP2C8 marker and perpetrator drugs to investigate CYP2C8-mediated drug metabolism and interactions in preclinical and clinical studies are discussed.
Collapse
Affiliation(s)
- Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Anne M Filppula
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Pertti J Neuvonen
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| |
Collapse
|
7
|
Lee CA, O’Connor MA, Ritchie TK, Galetin A, Cook JA, Ragueneau-Majlessi I, Ellens H, Feng B, Taub ME, Paine MF, Polli JW, Ware JA, Zamek-Gliszczynski MJ. Breast Cancer Resistance Protein (ABCG2) in Clinical Pharmacokinetics and Drug Interactions: Practical Recommendations for Clinical Victim and Perpetrator Drug-Drug Interaction Study Design. Drug Metab Dispos 2015; 43:490-509. [DOI: 10.1124/dmd.114.062174] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
8
|
PharmGKB summary: very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 8. Pharmacogenet Genomics 2014; 23:721-8. [PMID: 23962911 DOI: 10.1097/fpc.0b013e3283653b27] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Wang Y, Wang M, Qi H, Pan P, Hou T, Li J, He G, Zhang H. Pathway-Dependent Inhibition of Paclitaxel Hydroxylation by Kinase Inhibitors and Assessment of Drug–Drug Interaction Potentials. Drug Metab Dispos 2014; 42:782-95. [DOI: 10.1124/dmd.113.053793] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|