1
|
Mosallam FM, Helmy EA, Nasser HA, El-Batal AI. Novel griseofulvin zinc nanohybrid emulsion for intensifying the antimicrobial control of dermatophytes and some opportunistic pathogens. J Mycol Med 2024; 34:101489. [PMID: 38925022 DOI: 10.1016/j.mycmed.2024.101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Dermatophytosis is a critical sort of skin infection caused by dermatophytes. The long-term treatment of such skin infections may be improved through the application of nanotechnology. This study aimed to prepare griseofulvin zinc Nanohybrid emulsion (GF-Zn-NHE) to improve griseofulvin activity against dermatophytes and some opportunistic pathogenic yeasts and bacteria. The GF-Zn-NHE is prepared by ultra-homogenization ultra-sonication strategies and validated by UV-visible spectroscopy analysis that confirms presences of griseofulvin and Zn-NPs peaks at 265 and 360 nm, respectively. The GF-Zn-NHE has mean distribution size 50 nm and zeta potential in the range from -40 to -36 mV with no significant changes in size distribution and particle size within 120 day ageing. Fourier transform infrared spectroscopy spectrum confirmed the presence of griseofulvin and Zn-NPs stretching vibration peaks. Gamma ray has a negative influence on GF-Zn-NE production and stability. GF-Zn-NHE drug release 95% up to 24 h and 98% up to 72 h of GF was observed and Zinc 90% up to 24 h and 95% up to 72 h, respectively. High antimicrobial activity was observed with GF-Zn-NHE against dermatophytic pathogens in compare with GF, GF-NE, zinc nitrate and ketoconazole with inhibition zone ranged from 14 to 36 mm. The results have shown that the MIC value for Cryptococcus neoformans, Prophyromonas gingivalis and Pseudomonas aeruginosa is 0.125 mg ml -1 and for Trichophyton rubrum, L. bulgaricus and Escherichia coli value is 0.25 mg ml -1 and for Candida albicans, Malassezia furfur and Enterococcus faecalis is 0.5 mg ml -1 and finally 1 mg ml -1 for Streptococcus mutans. TEM of treated Cryptococcus neoformans cells with GF-Zn-NHE displayed essentially modified morphology, degradation, damage of organelles, vacuoles and other structures.
Collapse
Affiliation(s)
- Farag M Mosallam
- Drug Radiation Research Department, Microbiology Lab., Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Eman A Helmy
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo, Egypt
| | - Hebatallah A Nasser
- Microbilogy and Public health Department, Faculty of pharmacy, Heliopolis University, Egypt
| | - Ahmed I El-Batal
- Drug Radiation Research Department, Microbiology Lab., Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
2
|
Jiang S, Li X, Xue W, Xia S, Wang J, Sai Y, Dai G, Su W. Preclinical pharmacokinetic characterization of amdizalisib, a novel PI3Kδ inhibitor for the treatment of hematological malignancies. Front Pharmacol 2024; 15:1392209. [PMID: 38948472 PMCID: PMC11211886 DOI: 10.3389/fphar.2024.1392209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Amdizalisib, also named HMPL-689, a novel selective and potent PI3Kδ inhibitor, is currently under Phase II clinical development in China for treating hematological malignancies. The preclinical pharmacokinetics (PK) of amdizalisib were extensively characterized in vitro and in vivo to support the further development of amdizalisib. We characterized the plasma protein binding, blood-to-plasma partition ratio, cell permeability, hepatic microsomal metabolic stability, and drug-drug interaction potential of amdizalisib using in vitro experiments. In vivo PK assessment was undertaken in mice, rats, dogs, and monkeys following a single intravenous or oral administration of amdizalisib. The tissue distribution and excretion of amdizalisib were evaluated in rats. The PK parameters (CL and Vss) of amdizalisib in preclinical species (mice, rats, dogs, and monkeys) were utilized for the human PK projection using the allometric scaling (AS) approach. Amdizalisib was well absorbed and showed low-to-moderate clearance in mice, rats, dogs, and monkeys. It had high cell permeability without P-glycoprotein (P-gp) or breast cancer resistance protein (BCRP) substrate liability. Plasma protein binding of amdizalisib was high (approximately 90%). It was extensively distributed but with a low brain-to-plasma exposure ratio in rats. Amdizalisib was extensively metabolized in vivo, and the recovery rate of the prototype drug was low in the excreta. Amdizalisib and/or its metabolites were primarily excreted via the bile and urine in rats. Amdizalisib showed inhibition potential on P-gp but not on BCRP and was observed to inhibit CYP2C8 and CYP2C9 with IC50 values of 30.4 and 10.7 μM, respectively. It exhibited induction potential on CYP1A2, CYP2B6, CYP3A4, and CYP2C9. The preclinical data from these ADME studies demonstrate a favorable pharmacokinetic profile for amdizalisib, which is expected to support the future clinical development of amdizalisib as a promising anti-cancer agent.
Collapse
Affiliation(s)
| | | | | | | | - Jian Wang
- HUTCHMED Limited, Zhangjiang Hi-Tech Park, Shanghai, China
| | | | | | | |
Collapse
|
3
|
Prediction of Oral Drug Absorption in Rats from In Vitro Data. Pharm Res 2023; 40:359-373. [PMID: 35169960 DOI: 10.1007/s11095-022-03173-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/19/2022] [Indexed: 01/06/2023]
Abstract
PURPOSE In drug discovery, rats are widely used for pharmacological and toxicological studies. We previously reported that a mechanism-based oral absorption model, the gastrointestinal unified theoretical framework (GUT framework), can appropriately predict the fraction of a dose absorbed (Fa) in humans and dogs. However, there are large species differences between humans and rats. The purpose of the present study was to evaluate the predictability of the GUT framework for rat Fa. METHOD The Fa values of 20 model drugs (a total of 39 Fa data) were predicted in a bottom-up manner. Based on the literature survey, the bile acid concentration (Cbile) and the intestinal fluid volume were set to 15 mM and 4 mL/kg, respectively, five and two times higher than in humans. LogP, pKa, molecular weight, intrinsic solubility, bile micelle partition coefficients, and Caco-2 permeability were used as input data. RESULTS The Fa values were appropriately predicted for highly soluble drugs (absolute average fold error (AAFE) = 1.65, 18 Fa data) and poorly soluble drugs (AAFE = 1.57, 21 Fa data). When the species difference in Cbile was ignored, Fa was over- and under-predicted for permeability and solubility limited cases, respectively. High Cbile in rats reduces the free fraction of drug molecules available for epithelial membrane permeation while increasing the solubility of poorly soluble drugs. CONCLUSION The Fa values in rats were appropriately predicted by the GUT framework. This result would be of great help for a better understanding of species differences and model-informed preclinical formulation development.
Collapse
|
4
|
Aungst BJ. The Effects of Dose Volume and Excipient Dose on Luminal Concentration and Oral Drug Absorption. AAPS JOURNAL 2020; 22:99. [DOI: 10.1208/s12248-020-00490-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023]
|
5
|
Dong CL, Zheng SD, Liu YY, Cui WQ, Hao MQ, God'spower BO, Chen XY, Li YH. Albendazole solid dispersions prepared using PEG6000 and Poloxamer188: formulation, characterization and in vivo evaluation. Pharm Dev Technol 2020; 25:1043-1052. [PMID: 32546042 DOI: 10.1080/10837450.2020.1783553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study aimed to optimize the preparation process of albendazole (ABZ) solid dispersion (SD) and enhance its dissolution rate and oral bioavailability in dogs. The ABZ-SD formulations were prepared by a fusion method with ABZ and polyethylene glycol 6000 (PEG 6000), poloxamer 188 (P 188) polymers at various weight ratios or the combination of PEG 6000&P 188. The characterizations of the optimal formulations were performed by scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), in vitro dissolution test and molecular docking. The in vivo pharmacokinetic study was conducted in beagle dogs. As a result, ABZ solid dispersion based on PEG 6000&P 188 (1:2) was successfully prepared. The ABZ-SD formulation could significantly improve the apparent solubility and dissolution rate of ABZ compared with commercial tablets. Furthermore, the water solubility of ABZ-SD was improved mainly based on hydrogen bond association. Besides, at an oral dosage of 15 mg/kg ABZ, the SDs had higher Cmax values and areas under the curve (AUCs) compared to those of commercial ABZ tablets. Preparation of ABZ-loaded SDs by PEG 6000&P 188 is a promising strategy to improve the oral bioavailability of ABZ.
Collapse
Affiliation(s)
- Chun-Liu Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Si-Di Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yan-Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Wen-Qiang Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Mei-Qi Hao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Bello-Onaghise God'spower
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Xue-Ying Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yan-Hua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| |
Collapse
|
6
|
Kamiya Y, Otsuka S, Miura T, Yoshizawa M, Nakano A, Iwasaki M, Kobayashi Y, Shimizu M, Kitajima M, Shono F, Funatsu K, Yamazaki H. Physiologically Based Pharmacokinetic Models Predicting Renal and Hepatic Concentrations of Industrial Chemicals after Virtual Oral Doses in Rats. Chem Res Toxicol 2020; 33:1736-1751. [PMID: 32500706 DOI: 10.1021/acs.chemrestox.0c00009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently developed high-throughput in vitro assays in combination with computational models could provide alternatives to animal testing. The purpose of the present study was to model the plasma, hepatic, and renal pharmacokinetics of approximately 150 structurally varied types of drugs, food components, and industrial chemicals after virtual external oral dosing in rats and to determine the relationship between the simulated internal concentrations in tissue/plasma and their lowest-observed-effect levels. The model parameters were based on rat plasma data from the literature and empirically determined pharmacokinetics measured after oral administrations to rats carried out to evaluate hepatotoxic or nephrotic potentials. To ensure that the analyzed substances exhibited a broad diversity of chemical structures, their structure-based location in the chemical space underwent projection onto a two-dimensional plane, as reported previously, using generative topographic mapping. A high-throughput in silico one-compartment model and a physiologically based pharmacokinetic (PBPK) model consisting of chemical receptor (gut), metabolizing (liver), central (main), and excreting (kidney) compartments were developed in parallel. For 159 disparate chemicals, the maximum plasma concentrations and the areas under the concentration-time curves obtained by one-compartment models and modified simple PBPK models were closely correlated. However, there were differences between the PBPK modeled and empirically obtained hepatic/renal concentrations and plasma maximal concentrations/areas under the concentration-time curves of the 159 chemicals. For a few compounds, the lowest-observed-effect levels were available for hepatotoxicity and nephrotoxicity in the Hazard Evaluation Support System Integrated Platform in Japan. The areas under the renal or hepatic concentration-time curves estimated using PBPK modeling were inversely associated with these lowest-observed-effect levels. Using PBPK forward dosimetry could provide the plasma/tissue concentrations of drugs and chemicals after oral dosing, thereby facilitating estimates of nephrotoxic or hepatotoxic potential as a part of the risk assessment.
Collapse
Affiliation(s)
- Yusuke Kamiya
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Shohei Otsuka
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Tomonori Miura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Manae Yoshizawa
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Ayane Nakano
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Miyu Iwasaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Yui Kobayashi
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Masato Kitajima
- Fujitsu Kyusyu Systems, Higashi-hie, Hakata-ku, Fukuoka 812-0007, Japan
| | - Fumiaki Shono
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kimito Funatsu
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
7
|
Preclinical Development of Inhalable d-Cycloserine and Ethionamide To Overcome Pharmacokinetic Interaction and Enhance Efficacy against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2019; 63:AAC.00099-19. [PMID: 30962335 DOI: 10.1128/aac.00099-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/28/2019] [Indexed: 11/20/2022] Open
Abstract
We compared the pharmacokinetics and efficacy of a combination of d-cycloserine (DCS) and ethionamide (ETO) via oral and inhalation routes in mice. The plasma half-life (t 1/2) of oral ETO at a human-equivalent dose decreased from 4.63 ± 0.61 h to 1.64 ± 0.40 h when DCS was coadministered. The area under the concentration-time curve from 0 h to time t (AUC0- t ) was reduced to one-third. Inhalation overcame the interaction. Inhalation, but not oral doses, reduced the lung CFU/g of Mycobacterium tuberculosis H37Rv from 6 to 3 log10 in 4 weeks, indicating bactericidal activity.
Collapse
|
8
|
Characterization of the GI transit conditions in Beagle dogs with a telemetric motility capsule. Eur J Pharm Biopharm 2019; 136:221-230. [DOI: 10.1016/j.ejpb.2019.01.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/05/2018] [Accepted: 01/26/2019] [Indexed: 12/12/2022]
|
9
|
Application of a Refined Developability Classification System. J Pharm Sci 2018; 108:1090-1100. [PMID: 30389565 DOI: 10.1016/j.xphs.2018.10.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/12/2018] [Accepted: 10/11/2018] [Indexed: 11/24/2022]
Abstract
In 2010, the Developability Classification System was proposed as an extension of the Biopharmaceutics Classification System to align the classification system with the need for early evaluation of drug candidates according to their developability as oral formulations. Recent work on the Developability Classification System has resulted in the refined developability classification system (rDCS), consisting of standard investigations to estimate drug candidate solubility and permeability and offering customized investigations that are triggered when there is a potential for supersaturation/precipitation (e.g., salts of acids, weak bases) or to investigate permeation versus dissolution-limited absorption. In the present study, the rDCS concept was successfully applied to 6 marketed compounds (aciclovir, albendazole, danazol, dantrolene, dipyridamole, and piroxicam), for which there is a rich database of information. Furthermore, the rDCS was applied to 20 pipeline compounds from past and current research projects at Bayer AG. The rDCS was able to predict the results in humans correctly in 80% of cases. Overall, the results suggest that the rDCS is a highly useful tool for estimating the in vivo behavior of new drug candidates.
Collapse
|
10
|
Gobeau N, Stringer R, De Buck S, Tuntland T, Faller B. Evaluation of the GastroPlus™ Advanced Compartmental and Transit (ACAT) Model in Early Discovery. Pharm Res 2016; 33:2126-39. [PMID: 27278908 DOI: 10.1007/s11095-016-1951-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/23/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE The aim of this study was to evaluate the oral exposure predictions obtained early in drug discovery with a generic GastroPlus Advanced Compartmental And Transit (ACAT) model based on the in vivo intravenous blood concentration-time profile, in silico properties (lipophilicity, pKa) and in vitro high-throughput absorption-distribution-metabolism-excretion (ADME) data (as determined by PAMPA, solubility, liver microsomal stability assays). METHODS The model was applied to a total of 623 discovery molecules and their oral exposure was predicted in rats and/or dogs. The predictions of Cmax, AUClast and Tmax were compared against the observations. RESULTS The generic model proved to make predictions of oral Cmax, AUClast and Tmax within 3-fold of the observations for rats in respectively 65%, 68% and 57% of the 537 cases. For dogs, it was respectively 77%, 79% and 85% of the 124 cases. Statistically, the model was most successful at predicting oral exposure of Biopharmaceutical Classification System (BCS) class 1 compounds compared to classes 2 and 3, and was worst at predicting class 4 compounds oral exposure. CONCLUSION The generic GastroPlus ACAT model provided reasonable predictions especially for BCS class 1 compounds. For compounds of other classes, the model may be refined by obtaining more information on solubility and permeability in secondary assays. This increases confidence that such a model can be used in discovery projects to understand the parameters limiting absorption and extrapolate predictions across species. Also, when predictions disagree with the observations, the model can be updated to test hypotheses and understand oral absorption.
Collapse
Affiliation(s)
- N Gobeau
- Metabolism and Pharmacokinetics (MAP) Department, Novartis Institutes for Biomedical Research, Basel, Switzerland.
- Medicines for Malaria Venture, Route de Pré-Bois 20, PO Box 1826, 1215, Geneva 15, Switzerland.
| | - R Stringer
- Metabolism and Pharmacokinetics (MAP) Department, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - S De Buck
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - T Tuntland
- Metabolism and Pharmacokinetics (MAP) Department, Genomics Institute of the Novartis Foundation, Novartis Institutes for Biomedical Research, San Diego, California, USA
| | - B Faller
- Metabolism and Pharmacokinetics (MAP) Department, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
11
|
Tanaka Y, Kubota A, Matsuo A, Kawakami A, Kamizi H, Mochigoe A, Hiramachi T, Kasaoka S, Yoshikawa H, Nagata S. Effect of Absorption Behavior of Solubilizers on Drug Dissolution in the Gastrointestinal Tract: Evaluation Based on In Vivo Luminal Concentration-Time Profile of Cilostazol, a Poorly Soluble Drug, and Solubilizers. J Pharm Sci 2016; 105:2825-2831. [PMID: 27025982 DOI: 10.1016/j.xphs.2016.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/20/2016] [Accepted: 02/24/2016] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to evaluate the effect of absorption behavior of solubilizers on drug dissolution in the gastrointestinal tract. After oral administration of FITC-dextran (FD-10), a nonabsorbable marker, and cilostazol (CZ), a low-solubility drug, with or without solubilizers (dimethyl sulfoxide [DMSO], and d-α-tocopherol polyethylene glycol 1000 succinate [TPGS]), the in vivo rat luminal concentrations of these compounds were determined by direct sampling of residual water in each segment of the gastrointestinal tract. DMSO was rapidly absorbed and not detected in the middle small intestine. Conversely, the TPGS concentration increased by 1.5- and 2-fold relative to the initial dose concentration in the middle and lower small intestine, respectively, owing to condensation. Then, normalized area under the luminal concentration-time curve of solid CZ was calculated from the luminal concentration-time profiles of FD-10 and solid CZ to evaluate in vivo dissolution behavior of CZ. The dissolution of CZ was marked when administered with TPGS compared with that when administered with DMSO, especially in the lower small intestine. This clearly indicates that absorbability of solubilizers is one of the important factors in determining the solubilizing effect. These findings may be beneficial to development of oral lipophilic drugs.
Collapse
Affiliation(s)
- Yusuke Tanaka
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Hiroshima, 737-0112, Japan.
| | - Atsuo Kubota
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Hiroshima, 737-0112, Japan
| | - Akira Matsuo
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Hiroshima, 737-0112, Japan
| | - Ayaka Kawakami
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Hiroshima, 737-0112, Japan
| | - Hiroki Kamizi
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Hiroshima, 737-0112, Japan
| | - Akane Mochigoe
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Hiroshima, 737-0112, Japan
| | - Takahiro Hiramachi
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Hiroshima, 737-0112, Japan
| | - Satoshi Kasaoka
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Hiroshima, 737-0112, Japan
| | - Hiroshi Yoshikawa
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Hiroshima, 737-0112, Japan
| | - Shunji Nagata
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Hiroshima, 737-0112, Japan
| |
Collapse
|
12
|
Yano K, Kataoka M, Ono S, Hiramatsu M, Matsumoto I, Kim SI, Higashino H, Sakuma S, Yamashita S. Evaluation of dose-dependent oral absorption of a newly developed drug candidate: In vitro-in vivo correlation. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|