1
|
Lee B, Park J. The complete chloroplast genome of Zoysia matrella (L.) Merr. isolated in Korea (Poaceae): investigation of intraspecific variations on chloroplast genomes. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:572-574. [PMID: 33628934 PMCID: PMC7889194 DOI: 10.1080/23802359.2021.1875907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Completed chloroplast genome of Zoysia matrella (L.) Merr. isolated in Korea is 135,888 bp long (GC ratio is 38.4%) and has four subregions: 81,370 bp of large single copy (36.3%) and 12,594 bp of small single copy (32.7%) regions are separated by 20,962 bp of inverted repeat (44.1%) regions including 130 genes (83 protein-coding genes, eight rRNAs, 38 tRNAs, and one pseudogene). 28 SNPs and 57 INDELs were identified ss intraspecific variations against previously sequenced chloroplast genome. Phylogenetic trees show that Z. matrella and Z. tenuifolia (=Z. pacifica) are clustered in one clade with low level of variations on chloroplast genomes.
Collapse
Affiliation(s)
- Bumkyu Lee
- Department of Environmental Science & Biotechnology, Medicical Science, Jeonju University, Jeonju, Republic of Korea
| | - Jongsun Park
- InfoBoss Inc., Seoul, Republic of Korea.,InfoBoss Research Center, Seoul, Republic of Korea
| |
Collapse
|
2
|
Zuo ZF, Kang HG, Hong QC, Park MY, Sun HJ, Kim J, Song PS, Lee HY. A novel basic helix-loop-helix transcription factor, ZjICE2 from Zoysia japonica confers abiotic stress tolerance to transgenic plants via activating the DREB/CBF regulon and enhancing ROS scavenging. PLANT MOLECULAR BIOLOGY 2020; 102:447-462. [PMID: 31898148 DOI: 10.1007/s11103-019-00957-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/26/2019] [Indexed: 05/21/2023]
Abstract
ZjICE2 works as a positive regulator in abiotic stress responses and ZjICE2 is a valuable genetic resource to improve abiotic stress tolerance in the molecular breeding program of Zoysia japonica. The basic helix-loop-helix (bHLH) family transcription factors (TFs) play an important role in response to biotic or abiotic stresses in plants. However, the functions of bHLH TFs in Zoysia japonica, one of the warm-season turfgrasses, remain poorly understood. Here, we identified ZjICE2 from Z. japonica, a novel MYC-type bHLH transcription factor that was closely related to ICE homologs in the phylogenetic tree, and its expression was regulated by various abiotic stresses. Transient expression of ZjICE2-GFP in onion epidermal cells revealed that ZjICE2 was a nuclear-localized protein. Also, ZjICE2 bound the MYC cis-element in the promoter of dehydration responsive element binding 1 of Z. japonica (ZjDREB1) using yeast one-hybrid assay. A phenotypic analysis showed that overexpression of the ZjICE2 in Arabidopsis enhanced tolerance to cold, drought, and salt stresses. The transgenic Arabidopsis and Z. japonica accumulated more transcripts of cold-responsive DREB/CBFs and their downstream genes than the wild type (WT) after cold treatment. Furthermore, the transgenic plants exhibited an enhanced Reactive oxygen species (ROS) scavenging ability, which resulted in an efficient maintenance of oxidant-antioxidant homeostasis. In addition, overexpression of the ZjICE2 in Z. japonica displayed intensive cold tolerance with increases in chlorophyll contents and photosynthetic efficiency. Our study suggests that ZjICE2 works as a positive regulator in abiotic stress responses and the ICE-DREB/CBFs response pathway involved in cold stress tolerance is also conserved in Z. japonica. These results provide a valuable genetic resource for the molecular breeding program especially for warm-season grasses as well as other leaf crop plants.
Collapse
Affiliation(s)
- Zhi-Fang Zuo
- Department of Biotechnology, Jeju National University, Jeju, Korea
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Korea
| | - Hong-Gyu Kang
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Korea.
| | - Quan-Chun Hong
- Department of Life Science, Shangqiu Normal University, Henan, China
| | - Mi-Young Park
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Korea
| | - Hyeon-Jin Sun
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Korea
| | - Jeongsik Kim
- Faculty of Science Education, Jeju National University, Jeju, Korea
| | - Pill-Soon Song
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Korea
| | - Hyo-Yeon Lee
- Department of Biotechnology, Jeju National University, Jeju, Korea.
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Korea.
| |
Collapse
|
3
|
Ganesan M, Lee HY, Kim JI, Song PS. Development of transgenic crops based on photo-biotechnology. PLANT, CELL & ENVIRONMENT 2017; 40:2469-2486. [PMID: 28010046 DOI: 10.1111/pce.12887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
The phenotypes associated with plant photomorphogenesis such as the suppressed shade avoidance response and de-etiolation offer the potential for significant enhancement of crop yields. Of many light signal transducers and transcription factors involved in the photomorphogenic responses of plants, this review focuses on the transgenic overexpression of the photoreceptor genes at the uppermost stream of the signalling events, particularly phytochromes, crytochromes and phototropins as the transgenes for the genetic engineering of crops with improved harvest yields. In promoting the harvest yields of crops, the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the tolerance to abiotic stresses such as drought, salinity and heavy metal ions. As a genetic engineering approach, the term photo-biotechnology has been coined to convey the idea that the greater the photosynthetic efficiency that crop plants can be engineered to possess, the stronger the resistance to biotic and abiotic stresses. Development of GM crops based on photoreceptor transgenes (mainly phytochromes, crytochromes and phototropins) is reviewed with the proposal of photo-biotechnology that the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the added benefits of crops' tolerance to environmental stresses.
Collapse
Affiliation(s)
- Markkandan Ganesan
- Subtropical Horticulture Research Institute and Faculty of Biotechnology, Jeju National University, Jeju, 63243, Korea
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Hyo-Yeon Lee
- Subtropical Horticulture Research Institute and Faculty of Biotechnology, Jeju National University, Jeju, 63243, Korea
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Korea
| | - Pill-Soon Song
- Subtropical Horticulture Research Institute and Faculty of Biotechnology, Jeju National University, Jeju, 63243, Korea
| |
Collapse
|
4
|
Gururani MA, Venkatesh J, Ganesan M, Strasser RJ, Han Y, Kim JI, Lee HY, Song PS. In Vivo Assessment of Cold Tolerance through Chlorophyll-a Fluorescence in Transgenic Zoysiagrass Expressing Mutant Phytochrome A. PLoS One 2015; 10:e0127200. [PMID: 26010864 PMCID: PMC4444231 DOI: 10.1371/journal.pone.0127200] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/13/2015] [Indexed: 01/06/2023] Open
Abstract
Chlorophyll-a fluorescence analysis provides relevant information about the physiology of plants growing under abiotic stress. In this study, we evaluated the influence of cold stress on the photosynthetic machinery of transgenic turfgrass, Zoysia japonica, expressing oat phytochrome A (PhyA) or a hyperactive mutant phytochrome A (S599A) with post-translational phosphorylation blocked. Biochemical analysis of zoysiagrass subjected to cold stress revealed reduced levels of hydrogen peroxide, increased proline accumulation, and enhanced specific activities of antioxidant enzymes compared to those of control plants. Detailed analyses of the chlorophyll-a fluorescence data through the so-called OJIP test exhibited a marked difference in the physiological status among transgenic and control plants. Overall, these findings suggest an enhanced level of cold tolerance in S599A zoysiagrass cultivars as reflected in the biochemical and physiological analyses. Further, we propose that chlorophyll-a fluorescence analysis using OJIP test is an efficient tool in determining the physiological status of plants under cold stress conditions.
Collapse
Affiliation(s)
- Mayank Anand Gururani
- Subtropical Horticulture Research Institute, Faculty of Biotechnology, Jeju National University, Jeju 690–756, South Korea
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook 712–749, South Korea
| | - Jelli Venkatesh
- Department of Molecular Biotechnology, Konkuk University, Seoul 143–701, South Korea
| | - Markkandan Ganesan
- Subtropical Horticulture Research Institute, Faculty of Biotechnology, Jeju National University, Jeju 690–756, South Korea
- Department of Biological Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Reto Jörg Strasser
- Bioenergetics Laboratory, University of Geneva, Jussy, CH-1254, Geneva, Switzerland
| | - Yunjeong Han
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500–757, South Korea
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500–757, South Korea
| | - Hyo-Yeon Lee
- Subtropical Horticulture Research Institute, Faculty of Biotechnology, Jeju National University, Jeju 690–756, South Korea
| | - Pill-Soon Song
- Subtropical Horticulture Research Institute, Faculty of Biotechnology, Jeju National University, Jeju 690–756, South Korea
| |
Collapse
|
5
|
Lee J, Sun HJ, Lee HY. Biohazard surveillance of allergic contact dermatitis in genetically-modified Zoysiagrasses using patch testing. ALLERGY ASTHMA & RESPIRATORY DISEASE 2015. [DOI: 10.4168/aard.2015.3.2.134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jaechun Lee
- Jeju National University School of Medicine, Jeju, Korea
| | - Hyeon-Jin Sun
- Faculty of Biotechnology and Subtropical Horticulture Research Institute, Jeju National University, Jeju, Korea
| | - Hyo-Yeon Lee
- Faculty of Biotechnology and Subtropical Horticulture Research Institute, Jeju National University, Jeju, Korea
| |
Collapse
|
6
|
Wang ZY, Brummer EC. Is genetic engineering ever going to take off in forage, turf and bioenergy crop breeding? ANNALS OF BOTANY 2012; 110:1317-25. [PMID: 22378838 PMCID: PMC3478041 DOI: 10.1093/aob/mcs027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/05/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Genetic engineering offers the opportunity to generate unique genetic variation that is either absent in the sexually compatible gene pool or has very low heritability. The generation of transgenic plants, coupled with breeding, has led to the production of widely used transgenic cultivars in several major cash crops, such as maize, soybean, cotton and canola. The process for regulatory approval of genetically engineered crops is slow and subject to extensive political interference. The situation in forage grasses and legumes is more complicated. SCOPE Most widely grown forage, turf and bioenergy species (e.g. tall fescue, perennial ryegrass, switchgrass, alfalfa, white clover) are highly self-incompatible and outcrossing. Compared with inbreeding species, they have a high potential to pass their genes to adjacent plants. A major biosafety concern in these species is pollen-mediated transgene flow. Because human consumption is indirect, risk assessment of transgenic forage, turf and bioenergy species has focused on their environmental or ecological impacts. Although significant progress has been made in genetic modification of these species, commercialization of transgenic cultivars is very limited because of the stringent and costly regulatory requirements. To date, the only transgenic forage crop deregulated in the US is 'Roundup Ready' (RR) alfalfa. The approval process for RR alfalfa was complicated, involving several rounds of regulation, deregulation and re-regulation. Nevertheless, commercialization of RR alfalfa is an important step forward in regulatory approval of a perennial outcrossing forage crop. As additional transgenic forage, turf and bioenergy crops are generated and tested, different strategies have been developed to meet regulatory requirements. Recent progress in risk assessment and deregulation of transgenic forage and turf species is summarized and discussed.
Collapse
Affiliation(s)
- Zeng-Yu Wang
- Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA.
| | | |
Collapse
|
7
|
Ganesan M, Han YJ, Bae TW, Hwang OJ, Chandrasekhar T, Chandrasekkhar T, Shin AY, Goh CH, Nishiguchi S, Song IJ, Lee HY, Kim JI, Song PS. Overexpression of phytochrome A and its hyperactive mutant improves shade tolerance and turf quality in creeping bentgrass and zoysiagrass. PLANTA 2012; 236:1135-50. [PMID: 22644765 DOI: 10.1007/s00425-012-1662-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/03/2012] [Indexed: 06/01/2023]
Abstract
Phytochrome A (phyA) in higher plants is known to function as a far-red/shade light-sensing photoreceptor in suppressing shade avoidance responses (SARs) to shade stress. In this paper, the Avena PHYA gene was introduced into creeping bentgrass (Agrostis stolonifera L.) and zoysiagrass (Zoysia japonica Steud.) to improve turf quality by suppressing the SARs. In addition to wild-type PHYA, a hyperactive mutant gene (S599A-PHYA), in which a phosphorylation site involved in light-signal attenuation was removed, was also transformed into the turfgrasses. Phenotypic traits of the transgenic plants were compared to assess the suppression of SARs under a simulated shade condition and outdoor field conditions after three growth seasons. Under the shade condition, the S599A-PhyA transgenic creeping bentgrass plants showed shade avoidance-suppressing phenotypes with a 45 % shorter leaf lengths, 24 % shorter internode lengths, and twofold increases in chlorophyll concentrations when compared with control plants. Transgenic zoysiagrass plants overexpressing S599A-PHYA also showed shade-tolerant phenotypes under the shade condition with reductions in leaf length (15 %), internode length (30 %), leaf length/width ratio (19 %) and leaf area (22 %), as well as increases in chlorophyll contents (19 %) and runner lengths (30 %) compared to control plants. The phenotypes of transgenic zoysiagrass were also investigated in dense field habitats, and the transgenic turfgrass exhibited shade-tolerant phenotypes similar to those observed under laboratory shade conditions. Therefore, the present study suggests that the hyperactive phyA is effective for the development of shade-tolerant plants, and that the shade tolerance nature is sustained under field conditions.
Collapse
Affiliation(s)
- Markkandan Ganesan
- Faculty of Biotechnology and Subtropical Horticulture Research Institute, Jeju National University, Jeju 690-756, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sandhu S, Blount AR, Quesenberry KH, Altpeter F. Apomixis and ploidy barrier suppress pollen-mediated gene flow in field grown transgenic turf and forage grass (Paspalum notatum Flüggé). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:919-29. [PMID: 20512558 DOI: 10.1007/s00122-010-1360-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 05/12/2010] [Indexed: 05/05/2023]
Abstract
Bahiagrass (Paspalum notatum Flüggé) is the predominant forage grass in the southeastern US. The commercially important bahiagrass cultivar 'Argentine' is preferred for genetic transformation over sexual diploid cytotypes, since it produces uniform seed progeny through apomixis. Pseudogamous apomictic seed production in Argentine bahiagrass may contribute to transgene confinement. It is characterized by embryo development which is independent of fertilization of the egg cell, but requires fertilization with compatible pollen to produce the endosperm. Pollen-mediated gene transfer from transgenic, glufosinate-resistant apomictic bahiagrass as pollen donor at close proximity (0.5-3.5 m) with non-transgenic sexual or apomictic bahiagrass cultivars as pollen receptors was evaluated under field conditions. Hybridization frequency was evaluated by glufosinate herbicide resistance in >23,300 seedlings derived from open-pollinated (OP) pollen receptor plants. Average gene transfer between transgenic apomictic, tetraploid and sexual diploid bahiagrass was 0.03%. Herbicide-resistant hybrids confirmed by immuno-chromatographic detection of the PAT protein displayed a single copy bar gene identical to the pollen parent. Hybrids resulting from diploid pollen receptors were confirmed as triploids or aneu-triploids with significantly reduced vigor and seed set as compared to the parents. Transmission of transgenes to sexual bahiagrass is severely restricted by the ploidy difference between tetraploid apomicts and diploid sexual bahiagrass. Average gene transfer between transgenic apomictic tetraploid and non-transgenic, apomictic tetraploid bahiagrass was 0.17%, confirming a very low frequency of amphimixis in apomictic bahiagrass cultivars. While not providing complete transgene containment, gene transfer between transgenic apomictic and non-transgenic bahiagrass occurs at a much lower frequency than reported for other cross-pollinating or facultative apomictic grasses.
Collapse
Affiliation(s)
- Sukhpreet Sandhu
- Plant Molecular and Cellular Biology Program, Agronomy Department, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| | | | | | | |
Collapse
|
9
|
Sandhu S, James VA, Quesenberry KH, Altpeter F. Risk assessment of transgenic apomictic tetraploid bahiagrass, cytogenetics, breeding behavior and performance of intra-specific hybrids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:1383-1395. [PMID: 19701742 DOI: 10.1007/s00122-009-1142-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 08/12/2009] [Indexed: 05/28/2023]
Abstract
Pollen-mediated gene transfer from stress tolerant or herbicide-resistant transgenic plants may cause environmental or agronomic problems. Apomictic seed production found in some bahiagrass cultivars may serve as a natural transgene containment system. Under greenhouse conditions, the average gene transfer frequency from an herbicide-resistant apomictic tetraploid to a population of sexual diploid bahiagrass genotypes or apomictic tetraploid bahiagrass was 0.16% when the transgenic pollen donor was placed at 0.5-1.5 m distance from the non-transgenic pollen receptors. The herbicide-resistant hybrids were characterized for transgene integration, expression and ploidy, by Southern blot analysis, immuno-chromatography and flow cytometry, respectively. Hybrids resulting from open pollination of non-transgenic diploid female plants with transgenic tetraploid male plants were triploids or near-triploids, with 2n = 26-34. These hybrids displayed a wide range of phenotypic variability, including some non-persistent or non-flowering dwarf-type hybrids with good vigor, or hybrids with vegetative growth similar to non-transgenic plants, but with significantly reduced seed set. Non-flowering aneu-triploids with good vigor/field performance will provide the highest level of transgene containment. Embryo sac analysis of pollinated spikelets confirmed a high proportion of aborted ovules. An apospory-linked RFLP marker was detected in 13 of the 15 near-triploid hybrids. All flowering aneuploid hybrids displayed significantly reduced seed set, and none of the sexual near-triploid hybrids produced any seeds. All tetraploid gene transfer events carried the apospory-linked RFLP marker, suggesting that despite the presence of the aposporus locus, a low degree of sexuality co-exists in apomictic tetraploid cultivars. Thus, tetraploid apomictic bahiagrass does not provide complete transgene containment, although intra-specific gene transfer is drastically reduced compared to sexually reproducing perennial grasses.
Collapse
Affiliation(s)
- Sukhpreet Sandhu
- Plant Molecular and Cellular Biology Program, Agronomy Department, Genetics Institute, IFAS, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
10
|
Di Carli M, Villani ME, Renzone G, Nardi L, Pasquo A, Franconi R, Scaloni A, Benvenuto E, Desiderio A. Leaf proteome analysis of transgenic plants expressing antiviral antibodies. J Proteome Res 2009; 8:838-48. [PMID: 19099506 DOI: 10.1021/pr800359d] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The expression of exogenous antibodies in plant is an effective strategy to confer protection against viral infection or to produce molecules with pharmaceutical interest. However, the acceptance of the transgenic technology to obtain self-protecting plants depends on the assessment of their substantial equivalence compared to non-modified crops with an established history of safe use. In fact, the possibility exists that the introduction of transgenes in plants may alter expression of endogenous genes and/or normal production of metabolites. In this study, we investigated whether the expression in plant of recombinant antibodies directed against viral proteins may influence the host leaf proteome. Two transgenic plant models, generated by Agrobacterium tumefaciens-mediated transformation, were analyzed for this purpose, namely, Lycopersicon esculentum cv. MicroTom and Nicotiana benthamiana, expressing recombinant antibodies against cucumber mosaic virus and tomato spotted wilt virus, respectively. To obtain a significant representation of plant proteomes, optimized extraction procedures have been devised for each plant species. The proteome repertoire of antibody-expressing and control plants was compared by 2-DE associated to DIGE technology. Among the 2000 spots detected within the gels, about 10 resulted differentially expressed in each transgenic model and were identified by MALDI-TOF PMF and muLC-ESI-IT-MS/MS procedures. Protein variations were restricted to a limited number of defined differences with an average ratio below 2.4. Most of the differentially expressed proteins were related to photosynthesis or defense function. The overall results suggest that the expression of recombinant antibodies in both systems does not significantly alter the leaf proteomic profile, contributing to assess the biosafety of resistant plants expressing antiviral antibodies.
Collapse
Affiliation(s)
- Mariasole Di Carli
- Sezione Genetica e Genomica Vegetale, Dipartimento BAS-BIOTEC, ENEA Casaccia, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|