1
|
Spill C, Gassmann M. Long-term sulfamethazine leaching simulation in two different soils using the MACRO model. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:364-376. [PMID: 35172377 DOI: 10.1002/jeq2.20337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Physically based models have been part of many risk assessment studies concerning pesticide or nutrient transport within (sub)catchments or at plot scale, but they are only poorly validated for simulating the transport of veterinary medicinal products. Veterinary medicinal products not only pose a risk to the quality of our waters but also tend to accumulate in soils, where they are associated with the appearance of resistant bacteria and long-term leaching. In this study, the physically based leaching model MACRO 5.2 was applied for simulating sulfamethazine (SMZ) transport over a period of more than 10 yr. The model was set up using reversible kinetic adsorption and equilibrium adsorption forming non-extractable residues. Two different calibration periods were used to estimate uncertainties in predicted SMZ leaching associated with calibration based on short-term data. Using the whole period for model calibration, SMZ leaching could be simulated adequately, but parameter ranges were wide due to correlation between the parameters. When using only the first period for calibration, the quality of the prediction strongly depended on the information content of the data set. The calculation of temporal sensitivity indices revealed that the effect of complex sorption parameters on the model output increased with time. Thus, parameters that appeared insensitive in a short-term calibration were required for reliable long-term simulations. In conclusion, a temporal sensitivity analysis beyond the calibration period might identify parameters that were not constrained enough by the calibration procedure. This could help to confirm leaching predictions even for periods without sampling data.
Collapse
Affiliation(s)
- Caroline Spill
- Dep. of Hydrology and Substance Balance, Univ. of Kassel, Kurt-Wolters-Str. 3, Kassel, 34125, Germany
| | - Matthias Gassmann
- Dep. of Hydrology and Substance Balance, Univ. of Kassel, Kurt-Wolters-Str. 3, Kassel, 34125, Germany
| |
Collapse
|
2
|
Monahan C, Nag R, Morris D, Cummins E. Antibiotic residues in the aquatic environment - current perspective and risk considerations. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:733-751. [PMID: 33979269 DOI: 10.1080/10934529.2021.1923311] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Antimicrobial resistance is a major concern for human and animal health, projected to deteriorate with time and given current trends of antimicrobial usage. Antimicrobial use, particularly in healthcare and agriculture, can result in the release of antimicrobials into surface waters, promoting the development of antibiotic resistance in the environment, and potentially leading to human health risks. This study reviews relevant literature, and investigates current European and Irish antimicrobial usage trends in humans and animals, as well as potential pathways that antibiotics can take into surface waters following use. Reported levels in the aquatic environment are summarized, with particular focus on Ireland. There are relatively few studies examining Irish water bodies or sewage effluent for antibiotic residues, however, five antibiotics, namely azithromycin, ciprofloxacin, clarithromycin, metronidazole, and trimethoprim, have been measured in Irish waters, in concentrations predicted to select for resistance. Numerous isolates of multi-drug resistant bacteria have also been found in water bodies throughout Ireland and Europe. The value of risk assessment methodologies in understanding risks posed by antibiotic residues is reviewed including the advantages and disadvantages of specific approaches. Hazard quotient and bespoke Monte Carlo approaches are predominant risk assessment tools used to examine antimicrobial release and their complex pathways. This study highlights the need for monitoring of antimicrobial releases and the potential for resistance development, persistence and transmission while highlighting the role of risk assessment methodologies in assessing potential human and environmental health impacts.
Collapse
Affiliation(s)
- Ciaran Monahan
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Rajat Nag
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Dearbháile Morris
- Galway School of Medicine, National University of Ireland, Galway, Ireland
| | - Enda Cummins
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Gassmann M, Weidemann E, Stahl T. Combined leaching and plant uptake simulations of PFOA and PFOS under field conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2097-2107. [PMID: 32865684 PMCID: PMC7785559 DOI: 10.1007/s11356-020-10594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are used in industrial production and manufacturing but were repeatedly detected in agricultural soils and therefore in cash crops in recent years. Dissipation of perfluoroalkyl acids (PFAAs), a sub-group of PFASs, in the environment was rather attributed to the formation of non-extractable residues (NER) than to degradation or transformation. Currently, there are no models describing the fate of PFAAs in the soil-plant continuum under field conditions, which hampers an assessment of potential groundwater and food contamination. Therefore, we tested the ability of the pesticide-leaching model MACRO to simulate the leaching and plant uptake of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in a field lysimeter using two concepts of adsorption: a kinetic two-side sorption concept usually applied for pesticide leaching (scenario I) and the formation of NER (scenario II). The breakthrough of substances could be simulated adequately in scenario II only. Scenario I, however, was not able to reproduce sampled leaching concentrations. Plant uptake was simulated well in the first year after contamination but lacked adequacy in the following years. The model results suggest that more than 90% of PFOA and PFOS are in the pool of NER after 8 years, which is more compared with other studies. However, since NER formation was hypothesized to be a kinetic process and our study used a PFASs leaching time series over a period of 8 years, the results are reasonable. Further research is required on the formation of NER and the uptake of PFAAs into plants in order to gain a better model performance and extend the simulation approach to other PFAAs.
Collapse
Affiliation(s)
- Matthias Gassmann
- Department Hydrology and Substance Balance, University of Kassel, Kassel, Germany.
| | - Eva Weidemann
- Department Hydrology and Substance Balance, University of Kassel, Kassel, Germany
| | - Thorsten Stahl
- Chemical and Veterinary Analytical Institute Münsterland-Emscher-Lippe, Münster, Germany
| |
Collapse
|
4
|
Nolan S, Thorn CE, Ashekuzzaman SM, Kavanagh I, Nag R, Bolton D, Cummins E, O'Flaherty V, Abram F, Richards K, Fenton O. Landspreading with co-digested cattle slurry, with or without pasteurisation, as a mitigation strategy against pathogen, nutrient and metal contamination associated with untreated slurry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140841. [PMID: 32755776 DOI: 10.1016/j.scitotenv.2020.140841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
North Atlantic European grassland systems have a low nutrient use efficiency and high rainfall. This grassland is typically amended with unprocessed slurry, which counteracts soil organic matter depletion and provides essential plant micronutrients but can be mobilised during rainfall events thereby contributing to pathogen, nutrient and metal incidental losses. Co-digesting slurry with waste from food processing mitigates agriculture-associated environmental impacts but may alter microbial, nutrient and metal profiles and their transmission to watercourses, and/or soil persistence, grass yield and uptake. The impact of EU and alternative pasteurisation regimes on transmission potential of these various pollutants is not clearly understood, particularly in pasture-based agricultural systems. This study utilized simulated rainfall (Amsterdam drip-type) at a high intensity indicative of a worst-case scenario of ~11 mm hr-1 applied to plots 1, 2, 15 and 30 days after grassland application of slurry, unpasteurised digestate, pasteurised digestate (two conditions) and untreated controls. Runoff and soil samples were collected and analysed for a suite of potential pollutants including bacteria, nutrients and metals following rainfall simulation. Grass samples were collected for three months following application to assess yield as well as nutrient and metal uptake. For each environmental parameter tested: microbial, nutrient and metal runoff losses; accumulation in soil and uptake in grass, digestate from anaerobic co-digestion of slurry with food processing waste resulted in lower pollution potential than traditional landspreading of slurry without treatment. Reduced microbial runoff from digestate was the most prominent advantage of digestate application. Pasteurisation of the digestate further augmented those environmental benefits, without impacting grass output. Anaerobic co-digestion of slurry is therefore a multi-beneficial circular approach to reducing impacts of livestock production on the environment.
Collapse
Affiliation(s)
- S Nolan
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Co. Galway, Ireland; Teagasc, Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - C E Thorn
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Co. Galway, Ireland
| | - S M Ashekuzzaman
- Teagasc, Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - I Kavanagh
- Teagasc, Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - R Nag
- School of Biosystems and Food Engineering, UCD, Dublin, Ireland
| | - D Bolton
- Teagasc, Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| | - E Cummins
- School of Biosystems and Food Engineering, UCD, Dublin, Ireland
| | - V O'Flaherty
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Co. Galway, Ireland
| | - F Abram
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Co. Galway, Ireland
| | - K Richards
- Teagasc, Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - O Fenton
- Teagasc, Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland.
| |
Collapse
|
5
|
Iwu CD, Korsten L, Okoh AI. The incidence of antibiotic resistance within and beyond the agricultural ecosystem: A concern for public health. Microbiologyopen 2020; 9:e1035. [PMID: 32710495 PMCID: PMC7520999 DOI: 10.1002/mbo3.1035] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
The agricultural ecosystem creates a platform for the development and dissemination of antimicrobial resistance, which is promoted by the indiscriminate use of antibiotics in the veterinary, agricultural, and medical sectors. This results in the selective pressure for the intrinsic and extrinsic development of the antimicrobial resistance phenomenon, especially within the aquaculture‐animal‐manure‐soil‐water‐plant nexus. The existence of antimicrobial resistance in the environment has been well documented in the literature. However, the possible transmission routes of antimicrobial agents, their resistance genes, and naturally selected antibiotic‐resistant bacteria within and between the various niches of the agricultural environment and humans remain poorly understood. This study, therefore, outlines an overview of the discovery and development of commonly used antibiotics; the timeline of resistance development; transmission routes of antimicrobial resistance in the agro‐ecosystem; detection methods of environmental antimicrobial resistance determinants; factors involved in the evolution and transmission of antibiotic resistance in the environment and the agro‐ecosystem; and possible ways to curtail the menace of antimicrobial resistance.
Collapse
Affiliation(s)
- Chidozie D Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
6
|
Yang W, Feng T, Flury M, Li B, Shang J. Effect of sulfamethazine on surface characteristics of biochar colloids and its implications for transport in porous media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113482. [PMID: 31679872 DOI: 10.1016/j.envpol.2019.113482] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/11/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Antibiotics are contaminants of emerging concern due to their potential effect on antibiotic resistance and human health. Antibiotics tend to sorb strongly to organic materials, and biochar, a high efficient agent for adsorbing and immobilizing pollutants, can thus be used for remediation of antibiotic-contaminated soil and water. The effect of ionizable antibiotics on surface characteristics and transport of biochar colloids (BC) in the environment is poorly studied. Column experiments of BC were conducted in 1 mM NaCl solution under three pH (5, 7, and 10) conditions in the presence of sulfamethazine (SMT). Additionally, the adsorption of SMT by BC and the zeta potential of BC were also studied. The experimental results showed that SMT sorption to BC was enhanced at pH 5 and 7, but reduced at pH 10. SMT sorption reduced the surface charge of BC at pH 5 and 7 due to charge shielding, but increased surface charge at pH 10 due to adsorption of the negatively charged SMT species. The mobility of BC was inhibited by SMT under acidic or neutral conditions, while enhanced by SMT under alkaline conditions, which can be well explained by the change of electrostatic repulsion between BC and sand grains. These findings imply that pH conditions played a crucial role in deciding whether the transport of BC would be promoted by SMT or not. Biochar for antibiotics remediation will be more effective under acidic and neutral soil conditions, and the mobility of BC will be less than in alkaline soils.
Collapse
Affiliation(s)
- Wen Yang
- Department of Soil and Water Sciences, China Agricultural University, Key Laboratory of Plant-Soil Interactions, The Ministry of Education, Key Laboratory of Arable Land Conservation in North China, The Ministry of Agriculture, Beijing 100193, PR China
| | - Tongtong Feng
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Markus Flury
- Department of Crop and Soil Sciences, Washington State University, Puyallup, WA 98374, United States
| | - Baoguo Li
- Department of Soil and Water Sciences, China Agricultural University, Key Laboratory of Plant-Soil Interactions, The Ministry of Education, Key Laboratory of Arable Land Conservation in North China, The Ministry of Agriculture, Beijing 100193, PR China
| | - Jianying Shang
- Department of Soil and Water Sciences, China Agricultural University, Key Laboratory of Plant-Soil Interactions, The Ministry of Education, Key Laboratory of Arable Land Conservation in North China, The Ministry of Agriculture, Beijing 100193, PR China.
| |
Collapse
|
7
|
Guo T, Lou C, Zhai W, Tang X, Hashmi MZ, Murtaza R, Li Y, Liu X, Xu J. Increased occurrence of heavy metals, antibiotics and resistance genes in surface soil after long-term application of manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:995-1003. [PMID: 29710621 DOI: 10.1016/j.scitotenv.2018.04.194] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/10/2018] [Accepted: 04/14/2018] [Indexed: 05/20/2023]
Abstract
The purpose of this study was to investigate the impact of long-term application of pig manure on the accumulation of heavy metals, antibiotics and ARGs in surface soil sampled from the Jiaxing long-term field experimental site with three manure treatments, N-PM (0 kg/ha/y, dw), L-PM (7720 kg/ha/y, dw), and H-PM (11,580 kg/ha/y, dw), in 2013 and 2014. The results showed that most serious metal pollution of Zn and Cu was recorded in all manured samples in both years, and their contents exceeded the soil quality standards. Among the three tetracyclines, chlortetracycline was the predominant antibiotic detected with a range of 3.04-98.03 μg·kg-1 in 2013 and 28.67-344.74 μg·kg-1 in 2014 after long-term pig manure application. Q-PCR results showed that the average accumulation of ribosomal protection protein genes (tetM, tetO, tetQ and tetW) was lower than most of the efflux pump genes (tetA and tetG). The abundance of tet and sul genes of those sites with manure application was significantly higher than that of sites without manure application in both years. Metagenomics analysis of ARGs revealed that the abundance of multidrug resistance genes was the most abundant subtype, followed by fluoroquinolone, bacitracin, sulfonamide and tetracycline. There was a positive correlation between the levels of ARGs; soil organic matter, antibiotics, Cu, As, and Zn levels in both years. These results may shed light on the mechanism underlining the effects of long-term manure application on the occurrence and dissemination of ARGs in surface soil.
Collapse
Affiliation(s)
- Ting Guo
- Institute of Soil, Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Chenlu Lou
- Institute of Soil, Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Zhai
- Institute of Soil, Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Xianjin Tang
- Institute of Soil, Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Z Hashmi
- Center for Climate Research and Development, COMSATS Institute of Information Technology, Islamabad Campus, Park Road, Chak Shahzad, Islamabad, Pakistan
| | - Rabbia Murtaza
- Center for Climate Research and Development, COMSATS Institute of Information Technology, Islamabad Campus, Park Road, Chak Shahzad, Islamabad, Pakistan
| | - Yong Li
- Institute of Soil, Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Xingmei Liu
- Institute of Soil, Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Jianming Xu
- Institute of Soil, Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Modelling and shadowgraph imaging of cocrystal dissolution and assessment of in vitro antimicrobial activity for sulfadimidine/4-aminosalicylic acid cocrystals. Eur J Pharm Sci 2016; 89:125-36. [DOI: 10.1016/j.ejps.2016.04.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/30/2016] [Accepted: 04/24/2016] [Indexed: 11/24/2022]
|
9
|
Fate and effects of veterinary antibiotics in soil. Trends Microbiol 2014; 22:536-45. [DOI: 10.1016/j.tim.2014.05.005] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/15/2014] [Accepted: 05/21/2014] [Indexed: 12/15/2022]
|
10
|
Kasteel R, Mboh CM, Unold M, Groeneweg J, Vanderborght J, Vereecken H. Transformation and sorption of the veterinary antibiotic sulfadiazine in two soils: a short-term batch study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:4651-4657. [PMID: 20465301 DOI: 10.1021/es100141m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The worldwide use of veterinary antibiotics poses a continuous threat to the environment. There is, however, a lack of mechanistic studies on sorption and transformation processes for environmental assessment in soils. Two-week batch sorption experiments were performed with the antibiotic sulfadiazine (SDZ) in the plow layer and the subsoil of a loamy sand and a silty loam. The sorption and transformation parameters of SDZ and its main transformation products N1-2-(4-hydroxypyrimidinyl) benzenesulfanilamide (4-OH-SDZ) and 4-(2-iminopyrimidin-1(2H)-yl)aniline (An-SDZ) were estimated using a global optimization algorithm. A two-stage, one-rate sorption model combined with a first-order transformation model adequately described the batch data. Sorption of SDZ was nonlinear, time-dependent, and affected by pH, with a higher sorption capacity for the loamy sand. Transformation of SDZ into 4-OH-SDZ occurred only in the liquid phase, with half-life values of 1 month in the plow layers and 6 months in the subsoils. Under the exclusion of light, An-SDZ was formed in substantial amounts in the silty loam only, with liquid phase half-life values of 2 to 3 weeks. Despite the rather large parameter uncertainties, which may be reduced using additional information obtained from sequential solid phase extraction, the proposed method provides a framework to assess the fate of antibiotics in soils.
Collapse
Affiliation(s)
- Roy Kasteel
- Agrosphere Institute, ICG 4, Forschungszentrum Julich GmbH, Leo Brandtstrasse, D-52425 Julich, Germany.
| | | | | | | | | | | |
Collapse
|