1
|
Formentini TA, Basile-Doelsch I, Legros S, Frierdich AJ, Pinheiro A, Fernandes CVS, Mallmann FJK, Borschneck D, da Veiga M, Doelsch E. Copper (Cu) speciation in organic-waste (OW) amended soil: Instability of OW-borne Cu(I) sulfide and role of clay and iron oxide minerals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157779. [PMID: 35926606 DOI: 10.1016/j.scitotenv.2022.157779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The geochemistry of copper (Cu) is generally assumed to be controlled by organic matter in soils. However, the role of clay and iron oxide minerals may be understated. Soil density fractionation, X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS) were combined to assess the long-term behavior of Cu in an agricultural soil subject to organic waste application. Two unprecedented molecular environments of natural Cu (i.e. Cu inherited from the parent rock) in soils are reported: Cu dimer in the interlayer of vermiculite and Cu structurally incorporated within hematite. Moreover, the soil naturally containing Cu-vermiculite, Cu-hematite, but also Cu-kaolinite (Cutotal = 122 mg·kg-1) was amended over 11 years with Cu-rich pig slurry in which Cu was 100 % Cu(I) sulfide. Natural Cu associated with clay and iron oxide minerals persisted in the amended soil, but the exogenous Cu(I) sulfide was unstable. The increase in Cu concentration in the amended soil to 174 mg·kg-1 was accounted for the increase of Cu sorbed to kaolinite and Cu bound to organic matter. These results are important for better understanding the natural occurrence of Cu in soils and for assessing the environmental impacts of organic waste recycling in agricultural fields.
Collapse
Affiliation(s)
- Thiago A Formentini
- Department of Soil and Environment, Swedish University of Agricultural Sciences, P. O. Box 7014, SE-750 07 Uppsala, Sweden; Department of Hydraulics and Sanitation, Federal University of Parana (UFPR), 81531-980 Curitiba, PR, Brazil.
| | - Isabelle Basile-Doelsch
- Aix-Marseille Université, CNRS, IRD, Coll France, INRA, CEREGE, F-13545 Aix-en-Provence, France
| | - Samuel Legros
- CIRAD, UPR Recyclage et risque, F-34398 Montpellier, France; Recyclage et Risque, Univ. Montpellier, CIRAD, Montpellier, France
| | - Andrew J Frierdich
- School of Earth, Atmosphere & Environment, Monash University, Clayton, Victoria, Australia
| | - Adilson Pinheiro
- Environmental Engineering Program, Regional University of Blumenau (FURB), 89030-000 Blumenau, SC, Brazil
| | - Cristovão V S Fernandes
- Department of Hydraulics and Sanitation, Federal University of Parana (UFPR), 81531-980 Curitiba, PR, Brazil
| | - Fábio J K Mallmann
- Department of Soils, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Daniel Borschneck
- Aix-Marseille Université, CNRS, IRD, Coll France, INRA, CEREGE, F-13545 Aix-en-Provence, France
| | | | - Emmanuel Doelsch
- CIRAD, UPR Recyclage et risque, F-34398 Montpellier, France; Recyclage et Risque, Univ. Montpellier, CIRAD, Montpellier, France
| |
Collapse
|
2
|
Chen J, Zhang H, Wei Q, Farooq U, Zhang Q, Lu T, Wang X, Chen W, Qi Z. Mobility of water-soluble aerosol organic matters (WSAOMs) and their effects on soil colloid-mediated transport of heavy metal ions in saturated porous media. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129733. [PMID: 35969951 DOI: 10.1016/j.jhazmat.2022.129733] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/19/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Water-soluble aerosol organic matters (WSAOMs) produced by biomass pyrolysis/burning can penetrate subsurface environment, and are anticipated to have a profound effect on the fate of contaminants in aquatic ecosystems. Herein, WSAOMs derived from corn straw (CS-WSAOMs) and pinewood sawdust (PW-WSAOMs) pyrolysis at 300-900 °C were utilized to investigate their mobility characteristics and impacts on the transport of heavy metal ions (i.e., Cd2+) in saturated quartz sand with or without soil colloids. This study clearly demonstrated that WSAOMs in subsurface systems exhibited high mobility, which increased as WSAOMs molecular sizes decreased and hydrogen-bond interactions between WSAOMs and sand grains declined. WSAOMs significantly improved heavy metal (i.e., Cd2+) and soil colloid-mediated Cd2+ mobility in the porous media, which stemmed from the increased binding affinities of colloids toward metal ions and the high mobility of WSAOMs. Interestingly, in terms of the mobility and colloid-facilitated transport of Cd2+, WSAOMs from higher pyrolysis temperatures exhibited enhanced effects; meanwhile, the PW-WSAOMs demonstrated stronger effects than the CS-WSAOMs. The trends were mainly attributed to the differences in the metal-binding affinities (e.g., cation-π interactions) and transport abilities of WSAOMs, as well as diverse Cd2+ adsorption capacities of colloids induced by various WSAOMs.
Collapse
Affiliation(s)
- Jiuyan Chen
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Huiying Zhang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/ School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Qiqi Wei
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Taotao Lu
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Xinhai Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/ School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
3
|
Zhen Y, Ge L, Chen Q, Xu J, Duan Z, Loor JJ, Wang M. Latent Benefits and Toxicity Risks Transmission Chain of High Dietary Copper along the Livestock-Environment-Plant-Human Health Axis and Microbial Homeostasis: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6943-6962. [PMID: 35666880 DOI: 10.1021/acs.jafc.2c01367] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The extensive use of high-concentration copper (Cu) in feed additives, fertilizers, pesticides, and nanoparticles (NPs) inevitably causes significant pollution in the ecological environment. This type of chain pollution begins with animal husbandry: first, Cu accumulation in animals poisons them; second, high Cu enters the soil and water sources with the feces and urine to cause toxicity, which may further lead to crop and plant pollution; third, this process ultimately endangers human health through consumption of livestock products, aquatic foods, plants, and even drinking water. High Cu potentially alters the antibiotic resistance of soil and water sources and further aggravates human disease risks. Thus, it is necessary to formulate reasonable Cu emission regulations because the benefits of Cu for livestock and plants cannot be ignored. The present review evaluates the potential hazards and benefits of high Cu in livestock, the environment, the plant industry, and human health. We also discuss aspects related to bacterial and fungal resistance and homeostasis and perspectives on the application of Cu-NPs and microbial high-Cu removal technology to reduce the spread of toxicity risks to humans.
Collapse
Affiliation(s)
- Yongkang Zhen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang 832000, China
| | - Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qiaoqing Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jun Xu
- Institute for Quality and Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330000, China
| | - Zhenyu Duan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang 832000, China
| | - Juan J Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang 832000, China
| |
Collapse
|
4
|
Bhagat SK, Pyrgaki K, Salih SQ, Tiyasha T, Beyaztas U, Shahid S, Yaseen ZM. Prediction of copper ions adsorption by attapulgite adsorbent using tuned-artificial intelligence model. CHEMOSPHERE 2021; 276:130162. [PMID: 34088083 DOI: 10.1016/j.chemosphere.2021.130162] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Copper (Cu) ion in wastewater is considered as one of the crucial hazardous elements to be quantified. This research is established to predict copper ions adsorption (Ad) by Attapulgite clay from aqueous solutions using computer-aided models. Three artificial intelligent (AI) models are developed for this purpose including Grid optimization-based random forest (Grid-RF), artificial neural network (ANN) and support vector machine (SVM). Principal component analysis (PCA) is used to select model inputs from different variables including the initial concentration of Cu (IC), the dosage of Attapulgite clay (Dose), contact time (CT), pH, and addition of NaNO3 (SN). The ANN model is found to predict Ad with minimum root mean square error (RMSE = 0.9283) and maximum coefficient of determination (R2 = 0.9974) when all the variables (i.e., IC, Dose, CT, pH, SN) were considered as input. The prediction accuracy of Grid-RF model is found similar to ANN model when a few numbers of predictors are used. According to prediction accuracy, the models can be arranged as ANN-M5> Grid-RF-M5> Grid-RF-M4> ANN-M4> SVM-M4> SVM-M5. Overall, the applied statistical analysis of the results indicates that ANN and Grid-RF models can be employed as a computer-aided model for monitoring and simulating the adsorption from aqueous solutions by Attapulgite clay.
Collapse
Affiliation(s)
- Suraj Kumar Bhagat
- Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Konstantina Pyrgaki
- Department of Geology & Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15784, Athens, Greece.
| | - Sinan Q Salih
- Computer Science Department, Dijlah University College, Baghdad, Iraq.
| | - Tiyasha Tiyasha
- Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Ufuk Beyaztas
- Department of Statistics, Marmara University, Istanbul, Turkey.
| | - Shamsuddin Shahid
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia.
| | - Zaher Mundher Yaseen
- New Era and Development in Civil Engineering Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, 64001, Iraq.
| |
Collapse
|
5
|
Lekfeldt JDS, Holm PE, Kjærgaard C, Magid J. Heavy Metal Leaching as Affected by Long-Time Organic Waste Fertilizer Application. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:871-878. [PMID: 28783778 DOI: 10.2134/jeq2016.11.0458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The recycling of urban waste products as fertilizers in agriculture may introduce contaminants such as heavy metals into soil that may leach and contaminate groundwater. In the present study, we investigated the leaching of heavy metals from intact soil cores collected in the long-term agricultural field trial CRUCIAL. At the time of sampling, the equivalent of >100 yr of urban waste fertilizers following Danish legislation had been applied. The leaching of Cu was significantly increased in the treatments receiving organic waste products compared with the unfertilized control but remained below the permissible level following Danish drinking water guidelines. The leaching of Cu was controlled primarily by the topsoil Cu content and by the leaching of dissolved organic carbon (DOC) but at the same time significantly correlated with leaching of colloids in soils that had not received fertilizer or had received an organic fertilizer with a low concentration of Cu. The leaching of Zn, Cd, and Co was not significantly increased in urban waste-fertilized treatments. The leaching of Mo was elevated in accelerated waste treatments (both agricultural and urban), and the leaching of Mo was linked to the leaching of DOC. Since leaching of Cr and Pb was strongly linked to the level of colloid leaching, leaching of these metals was reduced in the urban waste treatments. Overall, the results presented should not raise concern regarding the agricultural use of urban waste products in agriculture as long as the relevant guidelines are followed.
Collapse
|
6
|
Pérez-Rodríguez P, Soto-Gómez D, López-Periago JE, Paradelo M. Modeling raindrop strike performance on copper wash-off from vine leaves. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 150:472-478. [PMID: 25560655 DOI: 10.1016/j.jenvman.2014.12.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Copper lost in foliar wash-off from vine leaves treated with Cu-based fungicides was analyzed with a single-drop rainfall simulator. The temporal losses of the particulate Cu (CuP) and the solution Cu (CuS) from raindrop strikes on leaves were modeled using a Poisson point process. This model estimated maximum detachment rates of 0.82 ng CuP and 0.033 ng CuS per raindrop. The total amount of Cu (CuT) in the leaves before rainfall ranged between 0.4 and 4.4 g Cu kg(-1) dry weight. Wash-off reduced the amount of CuT present in the leaves by 0.6 g kg(-1). Particulate losses of CuT ranged from 75 to 90%, while soluble losses of CuT ranged from 10 to 25%. The kinetic energy of the raindrops influenced the loss of CuS but not the loss of CuP. The Poisson point approach can provide an interesting starting point to model non-point source pollution produced from agricultural chemicals washed-off by rain.
Collapse
Affiliation(s)
- P Pérez-Rodríguez
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Ciencias, Universidad de Vigo, 32004 Ourense, Spain; SIMBIOS Centre, University of Abertay Dundee, Kydd Building, 40 Bell Street, Dundee DD1 1HG, Scotland, UK.
| | - D Soto-Gómez
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Ciencias, Universidad de Vigo, 32004 Ourense, Spain
| | - J E López-Periago
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Ciencias, Universidad de Vigo, 32004 Ourense, Spain
| | - M Paradelo
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Ciencias, Universidad de Vigo, 32004 Ourense, Spain; Department of Agroecology, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, P.O. Box 50, 8830 Tjele, Denmark
| |
Collapse
|
7
|
Norgaard T, Moldrup P, Ferré TPA, Katuwal S, Olsen P, de Jonge LW. Field-scale Variation in Colloid Dispersibility and Transport: Multiple Linear Regressions to Soil Physico-Chemical and Structural Properties. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:1764-1778. [PMID: 25603261 DOI: 10.2134/jeq2013.12.0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Water-dispersible soil colloids (WDC) act as carriers for sorbing chemicals in macroporous soils and hence constitute a significant risk for the aquatic environment. The prediction of WDC readily available for facilitated chemical transport is an unsolved challenge. This study identifies key parameters and predictive indicators for assessing field-scale variation of WDC. Samples representing three measurement scales (1- to 2-mm aggregates, intact 100-cm rings, and intact 6283 cm columns) were retrieved from the topsoil of a 1.69-ha agricultural field in a 15-m by 15-m grid to determine colloid dispersibility, mobilization, and transport. The amount of WDC was determined using (i) a laser diffraction method on 1- to 2-mm aggregates and (ii) an end-over-end shaking method on 100-cm intact rings. The accumulated amount of colloids leached from 20-cm by 20-cm intact columns was determined as a measure of the integrated colloid mobilization and transport. The WDC and the accumulated colloid transport were higher in samples from the northern part of the field. Using multiple linear regression (MLR) analyses, WDC or amount of colloids transported were predicted at the three measurement scales from 24 measured, geo-referenced parameters to identify parameters that could serve as indicator parameters for screening for colloid dispersibility, mobilization, and transport. The MLR analyses were performed at each sample scale using all, only northern, and only southern field locations. Generally, the predictive power of the regression models was best on the smallest 1- to 2-mm aggregate scale. Overall, our results suggest that different drivers controlled colloid dispersibility and transport at the three measurement scales and in the two subareas of the field.
Collapse
|
8
|
Kumari KGID, Moldrup P, Paradelo M, Elsgaard L, Hauggaard-Nielsen H, de Jonge LW. Effects of biochar on air and water permeability and colloid and phosphorus leaching in soils from a natural calcium carbonate gradient. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:647-657. [PMID: 25602666 DOI: 10.2134/jeq2013.08.0334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Application of biochar to agricultural fields to improve soil quality has increased in popularity in recent years, but limited attention is generally paid to existing field conditions before biochar application. This study examined the short-term physicochemical effects of biochar amendment in an agricultural field in Denmark with a calcium carbonate (CaCO) gradient. The field comprised four reference plots and four plots to which biochar (birch wood pyrolyzed at 500°C) was applied at a rate of 20 t ha. Five undisturbed soil columns (10 cm diam., 8 cm height) were sampled from each plot 7 mo after biochar application, and a series of leaching experiments was conducted. The leachate was analyzed for tritium (used as a tracer), colloids, and phosphorus concentration. The results revealed that the presence of CaCO has resulted in marked changes in soil structure (bulk density) and soil chemical properties (e.g., pH and ionic strength), which significantly affected air and water transport and colloid and phosphorous leaching. In denser soils (bulk density, 1.57-1.69 g cm) preferential flow dominated the transport and caused an enhanced movement of air and water, whereas in less dense soils (bulk density, 1.38-1.52 g cm) matrix flow predominated the transport. Compared with reference soils, biochar-amended soils showed slightly lower air permeability and a shorter travel time for 5% of the applied tracer (tritium) to leach through the soil columns. Colloid and phosphorus leaching was observed to be time dependent in soils with low CaCO. Biochar-amended soils showed higher colloid and P release than reference soils. Field-scale variations in total colloid and P leaching reflected clear effects of changes in pH and ionic strength due to the presence of CaCO. There was a linear relationship between colloid and P concentrations in the leachate, suggesting that colloid-facilitated P leaching was the dominant P transport mechanism.
Collapse
|