1
|
Guo J, Rong H, He L, Chen C, Zhang B, Tong M. Effects of arsenic on the transport and attachment of microplastics in porous media. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134285. [PMID: 38640672 DOI: 10.1016/j.jhazmat.2024.134285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/23/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Understanding the impact of arsenic (As(III), inorganic pollutant widely present in natural environments) on microplastics (MPs, one type of emerging contaminants) mobility is essential to predict MPs fate and distribution in soil-groundwater systems, yet relevant research is lacking. This study explored the effects of As(III) copresent in suspensions (0.05, 0.5, and 5 mg/L) on MPs transport/attachment behaviors in porous media containing varied water contents (θ = 100 %, 90 %, and 60 %) under different ionic strengths (5, 10, and 50 mM NaCl) and flow rates (2, 4, and 8 m/day). Despite solution ionic strengths, flow rates, porous media water contents, sizes, and surface charges of MPs, with coexisting humic acid, and in actual water samples, As(III) of three concentrations increased MPs transport in quartz sand and natural sandy soil. The increased electrostatic repulsion between MPs and sand caused by the altered MPs surface charge via the adsorption of As(III) together with steric repulsion from As(III) in solution contributed to the promoted MPs mobility in porous media. The occupying attachment sites by As(III) partially contributed to the increased mobility of MPs with negative surface charge in porous media. Clearly, As(III) coexisting in suspensions would enhance MPs transport in porous media, increasing MPs environment risks.
Collapse
Affiliation(s)
- Jia Guo
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, College of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Haifeng Rong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Cuibai Chen
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, College of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, College of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China.
| |
Collapse
|
2
|
Gong X, Tian L, Wang P, Wang Z, Zeng L, Hu J. Microplastic pollution in the groundwater under a bedrock island in the South China sea. ENVIRONMENTAL RESEARCH 2023; 239:117277. [PMID: 37778600 DOI: 10.1016/j.envres.2023.117277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Groundwater is the only freshwater resource on islands. Research on microplastic pollution in groundwater on islands is scarce. This study is the first to explore microplastic pollution in the groundwater under a bedrock island (Dawanshan Island) located in the South China Sea. The influence of hydrogeological factors on the distribution, source, and ageing features of microplastics in the groundwater were investigated. Despite the small scale of industrial and agricultural activities on the island, the amount of microplastics in the groundwater ranged from 34 to 64 particles/L, with over 80% of the microplastics being polyester fibres with diameters smaller than 2 mm, which is comparable to those in coastal cities. These microplastics were originated from inland plastic usage, rather than from the surrounding sea, which was confirmed by the lack of seawater intrusion on the island. Owing to the low permeability of granite, microplastics were mainly distributed in the water of the loose layer of porous sediment, and their quantity decreased with depth. In addition, the abundance of microplastics in pore groundwater increased with an increase in the velocity of groundwater flow. The severity of microplastic pollution in the groundwater increased with an increase and decrease in the content of total dissolved solids and dissolved oxygen, respectively. The microplastics originated from plastic waste disposed of on the island, rather than from seawater intrusion. Also, through groundwater infiltration into exposed soil at recharge areas, artificial wells at residential areas, and water exchange with surface water at valley areas. Microplastics buried in the groundwater aged faster along the migration path of the groundwater. These microplastics threaten the safety of people and plants on the island through exposure resulting from the extraction of groundwater for irrigation, while they endanger marine life through submarine groundwater discharge.
Collapse
Affiliation(s)
- Xing Gong
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong Province, 511400, China
| | - Lingning Tian
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong Province, 511400, China
| | - Peng Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong Province, 511400, China.
| | - Zhongzhong Wang
- Guangdong Geological Survey Institute, Guangzhou, Guangdong Province, 510030, China
| | - Lvdan Zeng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong Province, 511400, China
| | - Jiyuan Hu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong Province, 511400, China
| |
Collapse
|
3
|
Wang Y, Xie Y, Fan W, Yang Z, Tan W, Huo M, Huo Y. Mechanism comparisons of transport-deposition-reentrainment between microplastics and natural mineral particles in porous media: A theoretical and experimental study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157998. [PMID: 35964749 DOI: 10.1016/j.scitotenv.2022.157998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The migration and distribution of microplastic particles (MPs) in the natural environment has attracted global attention in recent years. However, little is known about the transport-deposition-reentrainment differences between MPs and natural mineral particles in porous media. In this study, polystyrene (PS) and silica (SiO2) particles, representing model MPs and natural mineral particles, respectively, were selected to study the responses of different particle types to changes in specific particle size and flow velocity. Three typical particle sizes and various flow velocities were chosen to compare and delineate the transport-deposition-reentrainment characteristics of PS and SiO2 in a packed-bed laboratory column. Collector efficiency was calculated using Tufenkji and Elimelech (TE) equation. The particle fractions released from the collector surfaces were predicted using DLVO theory and force analysis. Two types of particles were attached in the secondary minimum, which were either retained on the collector surface or reentrained to the fluid. The staged elution experiment wherein the flow velocity was increased experienced a period of flow shock, thus breaking the force balance of the particle. An increase in the flow velocity resulted in various degrees of particle elution. The breakthrough experiment at a specific flow velocity showed that the corresponding velocity alteration in staged elution experiment contributed to reentrainment to varying extents. When the effect of gravity on particle deposition was negligible, the particle size was larger, and the lower the velocity for releasing the particles. However, the opposite tendency was observed when considering the effect of gravity on particle deposition. Moreover, the deposition, mainly due to gravity, easily causes particle reentrainment as the flow velocity increases. This study further predicts and reveals the nature of transport and deposition differences between MPs and natural mineral particles, which helps to further assess the risk and potential of groundwater contamination with MPs of different sizes.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin jianzhu University, No. 5088, Xincheng Street, Nanguan District, 130118 Changchun, Jilin, China
| | - Yuxuan Xie
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin jianzhu University, No. 5088, Xincheng Street, Nanguan District, 130118 Changchun, Jilin, China
| | - Wei Fan
- School of Environment, Northeast Normal University, No. 2555, Jingyue Street, Nanguan District, 130117 Changchun, Jilin, China
| | - Zihao Yang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin jianzhu University, No. 5088, Xincheng Street, Nanguan District, 130118 Changchun, Jilin, China
| | - Wenda Tan
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin jianzhu University, No. 5088, Xincheng Street, Nanguan District, 130118 Changchun, Jilin, China
| | - Mingxin Huo
- School of Environment, Northeast Normal University, No. 2555, Jingyue Street, Nanguan District, 130117 Changchun, Jilin, China
| | - Yang Huo
- School of Physics, Northeast Normal University, No. 5268, Renmin Street, Nanguan District, 130024 Changchun, Jilin, China.
| |
Collapse
|
4
|
Sadeghnejad S, Enzmann F, Kersten M. Numerical Simulation of Particle Retention Mechanisms at the Sub-Pore Scale. Transp Porous Media 2022. [DOI: 10.1007/s11242-022-01843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Gui X, Ren Z, Xu X, Chen X, Chen M, Wei Y, Zhao L, Qiu H, Gao B, Cao X. Dispersion and transport of microplastics in three water-saturated coastal soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127614. [PMID: 34740510 DOI: 10.1016/j.jhazmat.2021.127614] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The coastal area is one of the key zones for transport and fate of microplastics (MPs). This study investigated the transport behaviors of different sized MPs in three water-saturated coastal soils, with the aim to explore effects of properties of three different coastal soils on the dispersion and migration of three-sized MPs (0.3, 0.5, and 1 µm). All three-sized MPs had the strongest dispersion in Soil 3 solution, followed by that in Soil 1 solution and then that in Soil 2 solution. The strongest dispersion of MPs in Soil 3 solution was attributed to the lowest ionic strength. Such a high dispersion favored MPs movement in soil solution but readily be sorbed and fixed by rich Fe and Al oxides in Soil 3 solid through strong electrostatic attraction, leading to the lowest transport rate (20.5-41.2%). The high ionic strength in the Soil 1 solution decreased the dispersion of MPs, but the presence of high content of humic acid enhanced the electrostatic repulsion and steric hindrance between MPs and soil particles, resulting in the highest transport ability of MPs in Soil 1 (39.4-72.5%). The large amount of dissolved Ca2+ and Mg2+ in Soil 2 solution favored MPs bridged with fulvic acid, resulting in the highest aggregation of MPs and relatively lower transport ability (34.1-49.6%). Large-sized MPs had higher electrostatic repulsion between the particles, thus increasing the dispersion and transport capacity of MPs in soil. Modeling showed the experiment-consistent results that Soil 3 had the lowest MPs transport after 600 mm of heavy rainfall, with the maximum migration distance of 7.50-10.5 cm, which was smaller than that in Soil 2 (8.10-12.0 cm) and that in Soil 1 (9.00-18.3 cm). These results indicated that MPs transport in coastal soil is significant and soil solution and solid composition plays an important role in the dispersion and transport of MPs, respectively. These findings afforded a great basis for the assessment of the fate and risk of MPs in coastal areas.
Collapse
Affiliation(s)
- Xiangyang Gui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhefan Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiang Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yaqiang Wei
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Ali MU, Lin S, Yousaf B, Abbas Q, Munir MAM, Ali MU, Rasihd A, Zheng C, Kuang X, Wong MH. Environmental emission, fate and transformation of microplastics in biotic and abiotic compartments: Global status, recent advances and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148422. [PMID: 34412398 DOI: 10.1016/j.scitotenv.2021.148422] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 05/27/2023]
Abstract
The intensive use and wide-ranging application of plastic- and plastic-derived products have resulted in alarming levels of plastic pollution in different environmental compartments worldwide. As a result of various biogeochemical mechanisms, this plastic litter is converted into small, ubiquitous and persistent fragments called microplastics (<5 mm), which are of significant and increasing concern to the scientific community. Microplastics have spread across the globe and now exist in virtually all environmental compartments (the soil, atmosphere, and water). Although these compartments are often considered to be independent environments, in reality, they are very closely linked. Ample research has been done on microplastics, but there are still questions and knowledge gaps regarding the emission, occurrence, distribution, detection, environmental fate and transport of MPs in different environmental compartments. The current article is intended to provide a systematic overview of MP emissions, pollution conditions, sampling and analytical approaches, transport, fates and transformation mechanisms in different environmental compartments. It also identifies research gaps and future research directions and perspectives.
Collapse
Affiliation(s)
- Muhammad Ubaid Ali
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Siyi Lin
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Balal Yousaf
- Department of Environment Engineering, Middle East Technical University, Ankara 06800, Turkey; CAS-Key Laboratory of Crust-Mantle Materials and the Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China.
| | - Qumber Abbas
- Department of Environment Engineering, Middle East Technical University, Ankara 06800, Turkey.
| | - Mehr Ahmed Mujtaba Munir
- CAS-Key Laboratory of Crust-Mantle Materials and the Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China.
| | - Muhammad Uzair Ali
- Business School of Xiangtan University, Xiangtan University, Hunan, China.
| | - Audil Rasihd
- Department of Botany, Faculty of Science, University of Gujrat, Gujrat 50700, Pakistan.
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Xingxing Kuang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Ming Hung Wong
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
7
|
Park S, Anggraini TM, Chung J, Kang PK, Lee S. Microfluidic pore model study of precipitates induced by the pore-scale mixing of an iron sulfate solution with simulated groundwater. CHEMOSPHERE 2021; 271:129857. [PMID: 33736220 DOI: 10.1016/j.chemosphere.2021.129857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Precipitates induced by the pore-scale mixing of iron sulfate solutions with simulated groundwater were investigated using a microfluidic pore model to assess the environmental impacts of the infiltration of acid mine drainage into a shallow aquifer. This model was employed to visualize the formation of precipitates in a porous network and to evaluate their physicochemical influences on pore flow. Four types of groundwater (Na-HCO3, Na-SO4, Na-Cl, and Ca-Cl) were evaluated, and precipitation rates were calculated by processing images of precipitates in the pores captured via microscopy. The results showed that all groundwater types formed a yellow-brownish precipitate at the interface of the iron solution and simulated groundwater flow. Microscopic X-ray analyses demonstrated that precipitate morphology varied with groundwater type. Faster precipitation was observed in the following order by groundwater type: Na-HCO3 > Na-Cl > Na-SO4 > Ca-Cl, which was attributed to the different stability constants of the major anions in each simulated groundwater with Fe ions. Chemical equilibrium models suggested that precipitates were Fe minerals, with FeOOH as the predominant form consistent with the results of X-ray photoelectron spectrometry. The presence of FeOOH implies that precipitates may serve as an effective sorption barrier against some nutrients and heavy metals for the underlying groundwater. However, dye-flow experiments suggested that the precipitates may clog aquifer pores, thereby altering hydrogeological properties in the aquifer.
Collapse
Affiliation(s)
- Saerom Park
- Urban Water Circulation Research Center, Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Gyeonggi-do, 10223, Republic of Korea
| | - Theresia May Anggraini
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jaeshik Chung
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Peter K Kang
- Department of Earth and Environmental Sciences, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, United States
| | - Seunghak Lee
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
8
|
Colloid retention and mobilization mechanisms under different physicochemical conditions in porous media: A micromodel study. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.08.086] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Quantification of colloidal filtration of polystyrene micro-particles on glass substrate using a microfluidic device. Colloids Surf B Biointerfaces 2018. [PMID: 29529580 DOI: 10.1016/j.colsurfb.2018.02.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A microfluidic device was designed to investigate filtration of particles in an electrolyte in the presence of liquid flow. Polystyrene spheres in potassium chloride solution at concentrations of 3-100 mM were allowed to settle and adhere to a glass substrate. A particle free solution at the same concentration was then flushed through the microfluidic channel at 0.03-4.0 mL/h. As the hydrodynamic drag on the adhered particles exceeded the intersurface interaction with the substrate, "pull-off" occurred and the particles detached. Filtration efficiency, α, was shown to a function of both ionic concentration of the liquid medium and flow speed, consistent with a phenomenological model based on the classical DLVO theory. The results elucidates the underlying physics of filtration.
Collapse
|
10
|
Alimi OS, Farner Budarz J, Hernandez LM, Tufenkji N. Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1704-1724. [PMID: 29265806 DOI: 10.1021/acs.est.7b05559] [Citation(s) in RCA: 1216] [Impact Index Per Article: 202.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plastic litter is widely acknowledged as a global environmental threat, and poor management and disposal lead to increasing levels in the environment. Of recent concern is the degradation of plastics from macro- to micro- and even to nanosized particles smaller than 100 nm in size. At the nanoscale, plastics are difficult to detect and can be transported in air, soil, and water compartments. While the impact of plastic debris on marine and fresh waters and organisms has been studied, the loads, transformations, transport, and fate of plastics in terrestrial and subsurface environments are largely overlooked. In this Critical Review, we first present estimated loads of plastics in different environmental compartments. We also provide a critical review of the current knowledge vis-à-vis nanoplastic (NP) and microplastic (MP) aggregation, deposition, and contaminant cotransport in the environment. Important factors that affect aggregation and deposition in natural subsurface environments are identified and critically analyzed. Factors affecting contaminant sorption onto plastic debris are discussed, and we show how polyethylene generally exhibits a greater sorption capacity than other plastic types. Finally, we highlight key knowledge gaps that need to be addressed to improve our ability to predict the risks associated with these ubiquitous contaminants in the environment by understanding their mobility, aggregation behavior and their potential to enhance the transport of other pollutants.
Collapse
Affiliation(s)
- Olubukola S Alimi
- Department of Chemical Engineering, McGill University , Montreal, Quebec Canada H3A 0C5
| | - Jeffrey Farner Budarz
- Department of Chemical Engineering, McGill University , Montreal, Quebec Canada H3A 0C5
| | - Laura M Hernandez
- Department of Chemical Engineering, McGill University , Montreal, Quebec Canada H3A 0C5
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University , Montreal, Quebec Canada H3A 0C5
| |
Collapse
|
11
|
Seetha N, Raoof A, Mohan Kumar MS, Majid Hassanizadeh S. Upscaling of nanoparticle transport in porous media under unfavorable conditions: Pore scale to Darcy scale. JOURNAL OF CONTAMINANT HYDROLOGY 2017; 200:1-14. [PMID: 28366612 DOI: 10.1016/j.jconhyd.2017.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 01/06/2017] [Accepted: 03/01/2017] [Indexed: 06/07/2023]
Abstract
Transport and deposition of nanoparticles in porous media is a multi-scale problem governed by several pore-scale processes, and hence, it is critical to link the processes at pore scale to the Darcy-scale behavior. In this study, using pore network modeling, we develop correlation equations for deposition rate coefficients for nanoparticle transport under unfavorable conditions at the Darcy scale based on pore-scale mechanisms. The upscaling tool is a multi-directional pore-network model consisting of an interconnected network of pores with variable connectivities. Correlation equations describing the pore-averaged deposition rate coefficients under unfavorable conditions in a cylindrical pore, developed in our earlier studies, are employed for each pore element. Pore-network simulations are performed for a wide range of parameter values to obtain the breakthrough curves of nanoparticle concentration. The latter is fitted with macroscopic 1-D advection-dispersion equation with a two-site linear reversible deposition accounting for both equilibrium and kinetic sorption. This leads to the estimation of three Darcy-scale deposition coefficients: distribution coefficient, kinetic rate constant, and the fraction of equilibrium sites. The correlation equations for the Darcy-scale deposition coefficients, under unfavorable conditions, are provided as a function of measurable Darcy-scale parameters, including: porosity, mean pore throat radius, mean pore water velocity, nanoparticle radius, ionic strength, dielectric constant, viscosity, temperature, and surface potentials of the particle and grain surfaces. The correlation equations are found to be consistent with the available experimental results, and in qualitative agreement with Colloid Filtration Theory for all parameters, except for the mean pore water velocity and nanoparticle radius.
Collapse
Affiliation(s)
- N Seetha
- Department of Civil Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Amir Raoof
- Department of Earth Sciences, Utrecht University, P.O. Box 80021, 3508 TA Utrecht, The Netherlands
| | - M S Mohan Kumar
- Department of Civil Engineering and Indo-French Cell for Water Sciences, Indian Institute of Science, Bangalore 560012, India.
| | - S Majid Hassanizadeh
- Department of Earth Sciences, Utrecht University, P.O. Box 80021, 3508 TA Utrecht, The Netherlands
| |
Collapse
|
12
|
Bradford SA, Schijven J, Harter T. Microbial Transport and Fate in the Subsurface Environment: Introduction to the Special Section. JOURNAL OF ENVIRONMENTAL QUALITY 2015; 44:1333-1337. [PMID: 26436251 DOI: 10.2134/jeq2015.07.0375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Microorganisms constitute an almost exclusive form of life in the earth's subsurface environment (not including caves), particularly at depths exceeding the soil horizon. While of broad interest to ecology and geology, scientific interest in the fate and transport of microorganisms, particularly those introduced through the anthropogenic environment, has focused on understanding the subsurface environment as a pathway for human pathogens and on optimizing the use of microbial organisms for remediation of potable groundwater. This special section, inspired by the 2014 Ninth International Symposium for Subsurface Microbiology, brings together recent efforts to better understand the spatiotemporal occurrence of anthropogenic microbial groundwater contamination and the fate and transport of microbes in the subsurface environment: in soils, deep unsaturated zones, and within aquifer systems. Work includes field reconnaissance, controlled laboratory studies to improve our understanding of specific fate and transport processes, and the development and application of improved mechanistic understanding of microbial fate and transport processes in the subsurface environment. The findings confirm and also challenge the limitations of our current understanding of highly complex microbial fate and transport processes across spatiotemporal scales in the subsurface environment; they also add to the increasing knowledge base to improve our ability to protect drinking water resources and perform in situ environmental remediation.
Collapse
|