1
|
Galamini G, Ferretti G, Rosinger C, Huber S, Medoro V, Mentler A, Díaz-Pinés E, Gorfer M, Faccini B, Keiblinger KM. Recycling nitrogen from liquid digestate via novel reactive struvite and zeolite minerals to mitigate agricultural pollution. CHEMOSPHERE 2023; 317:137881. [PMID: 36657582 DOI: 10.1016/j.chemosphere.2023.137881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Recycling nutrients is of paramount importance. For this reason, struvite and nitrogen enriched zeolite fertilizers produced from wastewater treatments are receiving growing attention in European markets. However, their effects on agricultural soils are far from certain, especially struvite, which only recently was implemented in EU Fertilizing Product Regulations. In this paper, we investigate the effects of these materials in acid sandy arable soil, particularly focusing on N dynamics, evaluating potential losses, transformation pathways, and the effects of struvite and zeolitic tuffs on main soil biogeochemical parameters, in comparison to traditional fertilization with digestate. Liming effect (pH alkalinization) was observed in all treatments with varying intensities, affecting most of the soil processes. The struvite was quickly solubilized due to soil acidity, and the release of nutrients stimulated nitrifying and denitrifying microorganisms. Zeolitic tuff amendments decreased the NOx gas emissions, which are precursors to the powerful climate altering N2O gas, and the N enriched chabazite tuff also recorded smaller NH3 emissions compared to the digestate. However, a high dosage of zeolites in soil increased NH3 emissions after fertilization, due to pronounced pH shifts. Contrasting effects were observed between the two zeolitic tuffs when applied as soil amendments; while the chabazite tuff had a strong positive effect - increasing up to ∼90% the soil microbial N immobilization - the employed clinoptilolite tuff had immediate negative effects on the microbial biomass, likely due to the large quantities of sulphur released. However, when applied at lower dosages, the N enriched clinoptilolite also contributed to the increase of microbial N. From these outcomes, we confirm the potential of struvite and zeolites to mitigate the outfluxes of nutrients from agricultural systems. To gain the best results and significantly lower environmental impacts, extension practitioners could give recommendations based on the soils that are planned for zeolite application.
Collapse
Affiliation(s)
- Giulio Galamini
- Department of Physics and Earth Science, University of Ferrara (UNIFE), Via Saragat 1, 44122, Ferrara, Italy
| | - Giacomo Ferretti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara (UNIFE), Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Christoph Rosinger
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna (BOKU), Peter Jordan Strasse 82, 1190, Vienna, Austria; Department of Crop Sciences, Institute of Agronomy, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Straße 24, 3430, Tulln an der Donau, Austria
| | - Sabine Huber
- Department of Crop Sciences, Institute of Agronomy, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Straße 24, 3430, Tulln an der Donau, Austria
| | - Valeria Medoro
- Department of Physics and Earth Science, University of Ferrara (UNIFE), Via Saragat 1, 44122, Ferrara, Italy
| | - Axel Mentler
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna (BOKU), Peter Jordan Strasse 82, 1190, Vienna, Austria
| | - Eugenio Díaz-Pinés
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna (BOKU), Peter Jordan Strasse 82, 1190, Vienna, Austria
| | - Markus Gorfer
- Center for Health & Bioresources, Austrian Institute of Technology (AIT), Konrad-Lorenz-Straße 24, Tulln, Austria
| | - Barbara Faccini
- Department of Physics and Earth Science, University of Ferrara (UNIFE), Via Saragat 1, 44122, Ferrara, Italy
| | - Katharina Maria Keiblinger
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna (BOKU), Peter Jordan Strasse 82, 1190, Vienna, Austria
| |
Collapse
|
2
|
Song H, Peng C, Zhang K, Zhu Q. Integrating major agricultural practices into the TRIPLEX-GHG model v2.0 for simulating global cropland nitrous oxide emissions: Development, sensitivity analysis and site evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156945. [PMID: 35764156 DOI: 10.1016/j.scitotenv.2022.156945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Nitrous oxide (N2O) emissions from croplands are one of the most important greenhouse gas sources while the estimation of which remains large uncertainties globally. To simulate N2O emissions from global croplands, the process-based TRIPLEX-GHG model v2.0 was improved by coupling the major agricultural activities. Sensitivity experiment was used to measure the impact of the integrated processes to modeled N2O emission found chemical N fertilization have the highest relative effect sizes. While the coefficient of the NO3- consumption rate for denitrification (COEdNO3), controlling the first step of the denitrification process was identified to be the most sensitive parameter based on sensitivity analysis of model parameters. The model performed well when simulating the magnitude of the daily N2O emissions for 39 calibration sites and the continental mean of the parameters were used to producing reasonable estimations for the means of the measured daily N2O fluxes (R2 = 0.87, slope = 1.07) and emission factors (EFs, R2 = 0.70, slope = 0.72) during the experiment periods. The model reliability was further confirmed by model validation. General trend of modeled daily N2O emissions were reasonably consistent with the observations of selected validated sites. In addition, high correlations between the results of modeled and observed mean N2O emissions (R2 = 0.86, slope = 0.82) and EFs (R2 = 0.66, slope = 0.83) from 68 validation sites were obtained. Further improvement on more detailed estimations for the variation of the environmental factors, management effects as well as accurate model input model driving data are required to reduce the uncertainties of model simulations. Consequently, our simulation results demonstrate that the TRIPLEX-GHG model v2.0 can reliably estimate N2O emissions from various croplands at the global scale, which contributes to closing global N2O budget and sustainable development of agriculture.
Collapse
Affiliation(s)
- Hanxiong Song
- Institut des sciences de l'environnement, Université du Québec à Montréal, Montreal, Case Postale 8888, Succ. Centre-Ville, Montreal H3C 3P8, Canada.
| | - Changhui Peng
- Institut des sciences de l'environnement, Université du Québec à Montréal, Montreal, Case Postale 8888, Succ. Centre-Ville, Montreal H3C 3P8, Canada; School of Geographic Sciences, Hunan Normal University, Changsha 410081, China.
| | - Kerou Zhang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China.
| | - Qiuan Zhu
- College of Hydrology and Water Resources, Hohai University, Nanjing 210024, China.
| |
Collapse
|
3
|
Davamani V, Poornima R, Arulmani S, Parameswari E, John JE, Deepasri M. Mitigation of nitrous oxide emission through fertigation and 'N' inhibitors - A sustainable climatic crop cultivation in tomato. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152419. [PMID: 34923005 DOI: 10.1016/j.scitotenv.2021.152419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/14/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The impact of nitrous oxide (N2O) released from the fertilized agro-ecosystems are of increasing concern. Governing fertilizer requirements and utilizing nitrification inhibitors (NI) are effective methodologies to increase nitrogen retention and reduce N2O emissions from soil. Therefore, the effect of potassium thiosulfate (KTS) and neem-coated urea (NCU) on N2O efflux under irrigated tomato cultivation was assessed. Soil Test Crop Response (STCR) based recommendation of NPK with normal Urea and KTS at 1% of applied N (183:160:125 kg ha-1) (STCR-U + KTS) recorded the least N2O emission and high efficiency in suppressing the nitrate reductase activity. STCR-NCU was on par with STCR-U + KTS, reporting a higher reduction of N2O (21.1, 31.2, and 34.4% during the basal application, 1st and 2nd top dressing, respectively) compared to the blanket recommendation of nutrients. Similarly, STCR-U + KTS recorded the highest reduction (26.2, 25.6, and 30.9% during the basal application, 1st and 2nd top dressing, respectively) after fertilizer application. Besides, the yield of tomatoes is increased in the STCR-NCU (14.08%) and STCR-U + KTS (12.48%) with good quality fruit along (AA, Lycopene, and TSS contents) with low N2O emissions. The DeNitrification-DeComposition (DNDC) model further revealed that the simulated data and assessed findings were in good accord, proving the model's reliability and use as a tool for predicting the efficiency of fertilizer application.
Collapse
Affiliation(s)
- Veeraswamy Davamani
- Department of Environmental Sciences, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India.
| | - Ramesh Poornima
- Department of Environmental Sciences, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Subramanian Arulmani
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam 638 401, Tamil Nadu, India.
| | - Ettiyagounder Parameswari
- Department of Environmental Sciences, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Joseph Ezra John
- Department of Environmental Sciences, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Mohan Deepasri
- Division of Environmental Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar 190025, Jammu and Kashmir Union Territory, India
| |
Collapse
|
4
|
Cardenas LM, Bhogal A, Chadwick DR, McGeough K, Misselbrook T, Rees RM, Thorman RE, Watson CJ, Williams JR, Smith KA, Calvet S. Nitrogen use efficiency and nitrous oxide emissions from five UK fertilised grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:696-710. [PMID: 30684838 PMCID: PMC6383039 DOI: 10.1016/j.scitotenv.2019.01.082] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/31/2018] [Accepted: 01/08/2019] [Indexed: 05/15/2023]
Abstract
Intensification of grasslands is necessary to meet the increasing demand of livestock products. The application of nitrogen (N) on grasslands affects the N balance therefore the nitrogen use efficiency (NUE). Emissions of nitrous oxide (N2O) are produced due to N fertilisation and low NUE. These emissions depend on the type and rates of N applied. In this study we have compiled data from 5 UK N fertilised grassland sites (Crichton, Drayton, North Wyke, Hillsborough and Pwllpeiran) covering a range of soil types and climates. The experiments evaluated the effect of increasing rates of inorganic N fertiliser provided as ammonium nitrate (AN) or calcium ammonium nitrate (CAN). The following fertiliser strategies were also explored for a rate of 320 kg N ha-1: using the nitrification inhibitor dicyandiamide (DCD), changing to urea as an N source and splitting fertiliser applications. We measured N2O emissions for a full year in each experiment, as well as soil mineral N, climate data, pasture yield and N offtake. N2O emissions were greater at Crichton and North Wyke whereas Drayton, Hillsborough and Pwllpeiran had the smallest emissions. The resulting average emission factor (EF) of 1.12% total N applied showed a range of values for all the sites between 0.6 and 2.08%. NUE depended on the site and for an application rate of 320 kg N ha-1, N surplus was on average higher than 80 kg N ha-1, which is proposed as a maximum by the EU Nitrogen Expert Panel. N2O emissions tended to be lower when urea was applied instead of AN or CAN, and were particularly reduced when using urea with DCD. Finally, correlations between the factors studied showed that total N input was related to Nofftake and Nexcess; while cumulative emissions and EF were related to yield scaled emissions.
Collapse
Affiliation(s)
- L M Cardenas
- Rothamsted Research, Okehampton, Devon, EX20 2SB, UK.
| | - A Bhogal
- ADAS Boxworth, Battlegate Road, Boxworth, Cambridge CB23 4NN, UK
| | - D R Chadwick
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - K McGeough
- Agri-Food and Biosciences Institute, 18a, Newforge Lane, BT9 5PX Belfast, UK
| | - T Misselbrook
- Rothamsted Research, Okehampton, Devon, EX20 2SB, UK
| | - R M Rees
- Scotland's Rural College (SRUC), King's Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - R E Thorman
- ADAS Boxworth, Battlegate Road, Boxworth, Cambridge CB23 4NN, UK
| | - C J Watson
- Agri-Food and Biosciences Institute, 18a, Newforge Lane, BT9 5PX Belfast, UK
| | - J R Williams
- ADAS Boxworth, Battlegate Road, Boxworth, Cambridge CB23 4NN, UK
| | - K A Smith
- School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, and Weston Road, Totnes TQ9 5AH, Devon, UK
| | - S Calvet
- Universitat Politècnica de València, Institute of Animal Science and Technology, Camino de Vera s.n., 46022, Valencia, Spain
| |
Collapse
|