1
|
Wang S, Liu Q, Liu Z, Chen W, Zhao X, Zhang J, Bao L, Zhang N. Distribution and soil threshold of selenium in the cropland of southwest mountainous areas in China. Sci Rep 2024; 14:16923. [PMID: 39043698 PMCID: PMC11266564 DOI: 10.1038/s41598-024-67450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
To investigate the distribution characteristics of selenium (Se) in mountainous soil-crop systems and examine the threshold value of Se-rich soil, 275 soil samples and 153 associated crop samples (rice, maize, tea, nuts, konjac, mushrooms, buckwheat, and coffee) were collected in Ximeng County, a typical mountainous area in southwest China. The total Se, available Se, organic matter, pH, sampling point elevation, and crop Se content were analyzed to examine the distribution characteristics of soil Se and the ability of primary crops to enrich Se in Ximeng County. Random forest and multiple regression models were established to identify the factors influencing the available soil Se and the crop Se enrichment coefficient. Finally, the Se-rich soil threshold was examined based on the total Se, available Se, and Se content in primary crops (rice, maize, and tea). The results showed soil Se resource abundance in the study region, with high Se soil accounting for 64.72% of the entire area. The soil Se content displayed significant spatial autocorrelation. The average Se enrichment coefficient of the main cultivated crops included mushrooms > nuts > rice > coffee > tea > maize > buckwheat > konjac. The total Se content in the soil had the highest impact on the available Se content in the soil and the Se enrichment coefficient of crops. A Se-rich soil threshold of 0.3 mg·kg-1 was used for rice and maize, while that of tea was 0.4 mg·kg-1. This result provided a theoretical basis for developing and utilizing Se resources in mountainous soil in southwestern China and dividing the Se-rich soil threshold.
Collapse
Affiliation(s)
- Sheng Wang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Yunnan Soil Fertility and Pollution Remediation Engineering Research Center, Kunming, 650201, Yunnan, China
| | - Qi Liu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Yunnan Soil Fertility and Pollution Remediation Engineering Research Center, Kunming, 650201, Yunnan, China
| | - Zhizong Liu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Yunnan Soil Fertility and Pollution Remediation Engineering Research Center, Kunming, 650201, Yunnan, China
| | - Wen Chen
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Yunnan Soil Fertility and Pollution Remediation Engineering Research Center, Kunming, 650201, Yunnan, China
| | - Xuanyue Zhao
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Yunnan Soil Fertility and Pollution Remediation Engineering Research Center, Kunming, 650201, Yunnan, China
| | - Jilai Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Yunnan Soil Fertility and Pollution Remediation Engineering Research Center, Kunming, 650201, Yunnan, China
| | - Li Bao
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Yunnan Soil Fertility and Pollution Remediation Engineering Research Center, Kunming, 650201, Yunnan, China
| | - Naiming Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- Yunnan Soil Fertility and Pollution Remediation Engineering Research Center, Kunming, 650201, Yunnan, China.
| |
Collapse
|
2
|
Popović AV, Čamagajevac IŠ, Vuković R, Matić M, Velki M, Gupta DK, Galić V, Lončarić Z. Biochemical and molecular responses of the ascorbate-glutathione cycle in wheat seedlings exposed to different forms of selenium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108460. [PMID: 38447422 DOI: 10.1016/j.plaphy.2024.108460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
Biofortification aims to increase selenium (Se) concentration and bioavailability in edible parts of crops such as wheat (Triticum aestivum L.), resulting in increased concentration of Se in plants and/or soil. Higher Se concentrations can disturb protein structure and consequently influence glutathione (GSH) metabolism in plants which can affect antioxidative and other detoxification pathways. The aim of this study was to elucidate the impact of five different concentrations of selenate and selenite (0.4, 4, 20, 40 and 400 mg kg-1) on the ascorbate-glutathione cycle in wheat shoots and roots and to determine biochemical and molecular tissue-specific responses. Content of investigated metabolites, activities of detoxification enzymes and expression of their genes depended both on the chemical form and concentration of the applied Se, as well as on the type of plant tissue. The most pronounced changes in the expression level of genes involved in GSH metabolism were visible in wheat shoots at the highest concentrations of both forms of Se. Obtained results can serve as a basis for further research on Se toxicity and detoxification mechanisms in wheat. New insights into the Se impact on GSH metabolism could contribute to the further development of biofortification strategies.
Collapse
Affiliation(s)
- Ana Vuković Popović
- Department of Biology, Josip Juraj Strossmayer University, 31000, Osijek, Croatia
| | | | - Rosemary Vuković
- Department of Biology, Josip Juraj Strossmayer University, 31000, Osijek, Croatia
| | - Magdalena Matić
- Faculty of Agrobiotechnical Sciences Osijek, 31000, Osijek, Croatia
| | - Mirna Velki
- Department of Biology, Josip Juraj Strossmayer University, 31000, Osijek, Croatia
| | - Dharmendra K Gupta
- Ministry of Environment, Forest and Climate Change, 110003, New Delhi, India
| | - Vlatko Galić
- Agricultural Institute Osijek, Južno predgrađe 17, 31000, Osijek, Croatia
| | - Zdenko Lončarić
- Faculty of Agrobiotechnical Sciences Osijek, 31000, Osijek, Croatia
| |
Collapse
|
3
|
Fatemi SF, Irankhah K, Kruger J, Bruins MJ, Sobhani SR. Implementing micronutrient fortification programs as a potential practical contribution to achieving sustainable diets. NUTR BULL 2023; 48:411-424. [PMID: 37503811 DOI: 10.1111/nbu.12630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
Due to sustainability concerns related to current diets and environmental challenges, it is crucial to have sound policies to protect human and planetary health. It is proposed that sustainable diets will improve public health and food security and decrease the food system's effect on the environment. Micronutrient deficiencies are a well-known major public health concern. One-third to half of the world's population suffers from nutrient deficiencies, which have a negative impact on society in terms of unrealised potential and lost economic productivity. Large-scale fortification with different micronutrients has been found to be a useful strategy to improve public health. As a cost-effective strategy to improve micronutrient deficiency, this review explores the role of micronutrient fortification programmes in ensuring the nutritional quality (and affordability) of diets that are adjusted to help ensure environmental sustainability in the face of climate change, for example by replacing some animal-sourced foods with nutrient-dense, plant-sourced foods fortified with the micronutrients commonly supplied by animal-sourced foods. Additionally, micronutrient fortification considers food preferences based on the dimensions of a culturally sustainable diet. Thus, we conclude that investing in micronutrient fortification could play a significant role in preventing and controlling micronutrient deficiencies, improving diets and being environmentally, culturally and economically sustainable.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Fatemi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiyavash Irankhah
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Johanita Kruger
- Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | | | - Seyyed Reza Sobhani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Wang M, Zhou F, Cheng N, Chen P, Ma Y, Zhai H, Qi M, Liu N, Liu Y, Meng L, Bañuelos GS, Liang D. Soil and foliar selenium application: Impact on accumulation, speciation, and bioaccessibility of selenium in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:988627. [PMID: 36186067 PMCID: PMC9516304 DOI: 10.3389/fpls.2022.988627] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
A comprehensive study in selenium (Se) biofortification of staple food is vital for the prevention of Se-deficiency-related diseases in human beings. Thus, the roles of exogenous Se species, application methods and rates, and wheat growth stages were investigated on Se accumulation in different parts of wheat plant, and on Se speciation and bioaccessibility in whole wheat and white all-purpose flours. Soil Se application at 2 mg kg-1 increased grains yield by 6% compared to control (no Se), while no significant effects on yield were observed with foliar Se treatments. Foliar and soil Se application of either selenate or selenite significantly increased the Se content in different parts of wheat, while selenate had higher bioavailability than selenite in the soil. Regardless of Se application methods, the Se content of the first node was always higher than the first internode. Selenomethionine (SeMet; 87-96%) and selenocystine (SeCys2; 4-13%) were the main Se species identified in grains of wheat. The percentage of SeMet increased by 6% in soil with applied selenite and selenate treatments at 0.5 mg kg-1 and decreased by 12% compared with soil applied selenite and selenate at 2 mg kg-1, respectively. In addition, flour processing resulted in losses of Se; the losses were 12-68% in white all-purpose flour compared with whole wheat flour. The Se bioaccessibility in whole wheat and white all-purpose flours for all Se treatments ranged from 6 to 38%. In summary, foliar application of 5 mg L-1 Se(IV) produced wheat grains that when grounds into whole wheat flour, was the most efficient strategy in producing Se-biofortified wheat. This study provides an important reference for the future development of high-quality and efficient Se-enriched wheat and wheat flour processing.
Collapse
Affiliation(s)
- Min Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Nan Cheng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Ping Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanzhe Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Zhai
- Key Laboratory of Oasis Ministry of Education, College of Ecology and Environment, Xinjiang University, Urumqi, China
| | - Mingxing Qi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Nana Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
- Center of Regional Watershed Environment Comprehensive Control Technology in Jiangsu Province, Academy of Environmental Planning & Design, Co., Ltd, Nanjing University, Nanjing, China
| | - Yang Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Li Meng
- School of Arts, Ankang University, Ankang, Shaanxi, China
| | - Gary S. Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Liu Y, Huang S, Jiang Z, Wang Y, Zhang Z. Selenium Biofortification Modulates Plant Growth, Microelement and Heavy Metal Concentrations, Selenium Uptake, and Accumulation in Black-Grained Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:748523. [PMID: 34733304 PMCID: PMC8560013 DOI: 10.3389/fpls.2021.748523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/10/2021] [Indexed: 05/17/2023]
Abstract
In Se-deficient populations, Selenium- (Se-) enriched wheat is a source of Se supplementation, and Se content can be improved by agronomic biofortification. Thus, black-grained wheat (BGW) and white-grained wheat (WGW) (as the control) were grown in Se naturally contained soils at different concentrations (11.02, 2.21, 2.02, and 0.20 mg·kg-1). Then, a field experiment was conducted to assess agronomic performance, the concentration of microelements and heavy metals, and the uptake and distribution of Se in the BGW under the application of Se ore powder. The results showed that the grain yield and grain Se concentration of wheat respectively show a significant increase and decrease from high Se to low Se areas. Higher grain yield and crude protein content were observed in Se-rich areas. The soil application of Se ore powder increased wheat grain yield and its components (biomass, harvest index, grain number, and 1,000 kernels weight). The concentrations of Zn, Fe, Mn, total Se, and organic Se in the grains of wheat were also increased, but Cu concentration was decreased. The concentrations of Pb, As, Hg, and Cr in wheat grains were below the China food regulation limits following the soil application of Se ore powder. Compared with the control, Se ore powder treatment increased the uptake of Se in various parts of wheat plants. More Se accumulation was observed in roots following Se ore powder application, with a smaller amount in grains. In addition, compared with the control, BGW had significantly higher concentrations of Zn, Fe, and Mn and accumulated more Se in grains and shoots and less Se in roots. The results indicate that wheat grown in Se-rich areas increases its grain yield and crude protein content. The soil application of Se ore powder promotes wheat growth and grain yield. Compared with WGW, BGW accumulated more Se in grains and had a higher concentration of organic Se in grains. In conclusion, the application of Se ore powder from Ziyang as Se-enriched fertilizer could be a promising strategy for Se biofortification in the case of wheat, and BGW is the most Se-rich potential genotype.
Collapse
Affiliation(s)
- Yuxiu Liu
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Shuhua Huang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Zonghao Jiang
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Yizhao Wang
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Zhengmao Zhang
- College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Maltzahn LE, Zenker SG, Lopes JL, Pereira RM, Verdi CA, Rother V, Busanello C, Viana VE, Batista BL, de Oliveira AC, Pegoraro C. Brazilian Genetic Diversity for Desirable and Undesirable Elements in the Wheat Grain. Biol Trace Elem Res 2021; 199:2351-2365. [PMID: 32797369 DOI: 10.1007/s12011-020-02338-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/06/2020] [Indexed: 11/30/2022]
Abstract
Micronutrient deficiency affects billions of people, especially in countries where the diet is low in diversity with inadequate consumption of fruits, vegetables, and animal-source foods, and higher consumption of staple food, i.e., cereals, that have low concentrations of micronutrients. Genetic biofortification is a strategy to mitigate this problem and ensure nutritional security. Wheat is a target of genetic biofortification since it contributes significantly to the caloric requirement. The biofortification process involves a screening related to the presence of genetic variability for grain mineral content. Also, the accumulation of toxic elements must be considered to ensure food safety, because if ingested above the allowed concentrations, it represents health risks. In this sense, this study aimed to quantify the micronutrients iron, zinc, copper, selenium, and manganese and toxic elements arsenic and cadmium in a Brazilian wheat panel grown in Southern Brazil. The presence of genetic variability for the accumulation of micronutrients in the grain was detected; however, we observed that only the copper and manganese accumulation meet the human daily requirements. Iron, zinc, and selenium were detected in insufficient concentration to meet the daily demand. Arsenic and cadmium accumulation were not detected in wheat grain. The wheat genotypes grown in Brazil displayed a similar profile to that found in other countries which may be due to common high-yield breeding goals and the narrowing of the genetic variability, observed worldwide. Thus, the wheat genetic biofortification success in Brazil depends on the introduction of foreign genotypes, landraces, and wild relatives.
Collapse
Affiliation(s)
- Latóia Eduarda Maltzahn
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Stefânia Garcia Zenker
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Jennifer Luz Lopes
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Rodrigo Mendes Pereira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Campus Santo André, Santo André, SP, 09210-580, Brazil
| | - Cezar Augusto Verdi
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Vianei Rother
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Carlos Busanello
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Vívian Ebeling Viana
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Bruno Lemos Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Campus Santo André, Santo André, SP, 09210-580, Brazil
| | - Antonio Costa de Oliveira
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Camila Pegoraro
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil.
| |
Collapse
|
7
|
Xie M, Sun X, Li P, Shen X, Fang Y. Selenium in cereals: Insight into species of the element from total amount. Compr Rev Food Sci Food Saf 2021; 20:2914-2940. [PMID: 33836112 DOI: 10.1111/1541-4337.12748] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
Selenium (Se) is a trace mineral micronutrient essential for human health. The diet is the main source of Se intake. Se-deficiency is associated with many diseases, and up to 1 billion people suffer from Se-deficiency worldwide. Cereals are considered a good choice for Se intake due to their daily consumption as staple foods. Much attention has been paid to the contents of Se in cereals and other foods. Se-enriched cereals are produced by biofortification. Notably, the gap between the nutritional and toxic levels of Se is fairly narrow. The chemical structures of Se compounds, rather than their total contents, contribute to the bioavailability, bioactivity, and toxicity of Se. Organic Se species show better bioavailability, higher nutritional value, and less toxicity than inorganic species. In this paper, we reviewed the total content of Se in cereals, Se speciation methods, and the biological effects of Se species on human health. Selenomethionine (SeMet) is generally the most prevalent and important Se species in cereal grains. In conclusion, Se species should be considered in addition to the total Se content when evaluating the nutritional and toxic values of foods such as cereals.
Collapse
Affiliation(s)
- Minhao Xie
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| | - Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China.,Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| |
Collapse
|
8
|
Izydorczyk G, Ligas B, Mikula K, Witek-Krowiak A, Moustakas K, Chojnacka K. Biofortification of edible plants with selenium and iodine - A systematic literature review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141983. [PMID: 33254892 DOI: 10.1016/j.scitotenv.2020.141983] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 05/21/2023]
Abstract
Soil depletion with absorbed forms of microelements is a realistic problem leading to the formation of many human, plant, animal diseases related with micronutrient deficiencies. Searching for new ways to solve this problem is a crucial for the agro-chemical approach to food production. There are many research papers on plant micronutrient fertilization. However, there is still a lack of systematic review of the literature, which summarizes the most recent knowledge on biofortification of food of plant origin with microelements. This work is a systematic review which presents the various methodologies and compares the results of the applied doses and types of fertilizer formulation with the yield and micronutrient content of edible parts of plants. The PRISMA protocol-based review of the most recent literature data from the last 5 years (2015-2020) concerns enrichment of plants with selenium and iodine. These elements, in contrast to other microelements (zinc, manganese, iron, copper and others) are given to plants most often in anionic form: selenium - SeO32- and SeO42-, iodine - I- and IO3-, making them a separate subgroup of microelements. The review focuses on original research papers (not reviews), collected in 3 popular scientific databases: Scopus, Web of Knowledge, PubMed. This study shows how to effectively cope with hidden hunger taking into account the significance of optimized fertilization. Based on the collected data, the best method of micronutrients administration an integrated fortification strategy for selected trace elements and prospects in research/action development was proposed. It was found that the best way to enrich plants with selenium is foliar fertilization with Se(VI), in increased doses. The effectiveness of fortification is supported by the balanced nutrients fertilization, the presence of microorganisms and selection of plant varieties. Foliar fertilization, in increased doses with iodide (I-) is in turn an effective way to enrich plants with iodine.
Collapse
Affiliation(s)
- Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland.
| | - Bartosz Ligas
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Katarzyna Mikula
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780 Athens, Greece
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| |
Collapse
|
9
|
Wang M, Ali F, Qi M, Peng Q, Wang M, Bañuelos GS, Miao S, Li Z, Dinh QT, Liang D. Insights into uptake, accumulation, and subcellular distribution of selenium among eight wheat (Triticum aestivum L.) cultivars supplied with selenite and selenate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111544. [PMID: 33254403 DOI: 10.1016/j.ecoenv.2020.111544] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 05/12/2023]
Abstract
Selenium (Se)-enriched wheat can be improved by altering Se sources and selecting wheat cultivars. Such improvement can affect subcellular distribution and speciation of Se in wheat. Thus, a pot experiment was conducted to investigate Se uptake and distribution when Se was applied as selenite or selenate at low and high rates (1 and 10 mg kg-1, respectively). Moreover, Se's impact on the grain and biomass yield of eight wheat cultivars was also investigated. The subcellular distribution and speciation of Se were also explored to elucidate Se metabolism and micro-distribution pattern in wheat. Results showed that biomass and grain yield were decreased with the application of both selenite and selenate in almost all the cultivars, regardless of the Se rate. Application high Se rate resulted in a significant (p < 0.05) decrease in grain yield and biomass compared with low rate of Se. Compared with the low rate of selenite application, the grain and the biomass yield of ZM-9023 significantly (p < 0.05) increased by about 15% for low rate of selenate application. In addition, both selenite and selenate treatment increased the uptake of Se in each part of wheat, compared with the control. Selenium was mostly accumulated in the grain and root of wheat under selenite treatment, while more Se accumulation was found in leaves and straw for selenate application. Further investigation on the subcellular distribution of Se showed that the proportion of Se in soluble fraction was significantly (p < 0.05) higher in wheat leaves than that in organelle fraction and cell walls (46%-66%). Meanwhile, Se6+ was the main species found in soluble fraction, whereas SeMet and MeSeCys were the species predominantly stored in organelle fraction. In conclusion, wheat cultivar ZM-9023 is the most Se-rich potential cultivar, and the isolation of Se in the soluble fraction plays an important role in Se tolerance and accumulation.
Collapse
Affiliation(s)
- Min Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fayaz Ali
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingxing Qi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qin Peng
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Mengke Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Guangdong Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Gary S Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648-9757, USA
| | - Shuyin Miao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhe Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 61801 IL, USA
| | - Quang Toan Dinh
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Center for Monitoring and Environmental Protection Thanh Hoa-Department of Natural Resources and Environment of Thanh Hoa, Thanh Hoa city, Thanh Hoa, Vietnam
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
Gupta PK, Balyan HS, Sharma S, Kumar R. Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1-35. [PMID: 33136168 DOI: 10.1007/s00122-020-03709-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/13/2020] [Indexed: 05/02/2023]
Abstract
Knowledge of genetic variation, genetics, physiology/molecular basis and breeding (including biotechnological approaches) for biofortification and bioavailability for Zn, Fe and Se will help in developing nutritionally improved wheat. Biofortification of wheat cultivars for micronutrients is a priority research area for wheat geneticists and breeders. It is known that during breeding of wheat cultivars for productivity and quality, a loss of grain micronutrient contents occurred, leading to decline in nutritional quality of wheat grain. Keeping this in view, major efforts have been made during the last two decades for achieving biofortification and bioavailability of wheat grain for micronutrients including Zn, Fe and Se. The studies conducted so far included evaluation of gene pools for contents of not only grain micronutrients as above, but also for phytic acid (PA) or phytate and phytase, so that, while breeding for the micronutrients, bioavailability is also improved. For this purpose, QTL interval mapping and GWAS were carried out to identify QTLs/genes and associated markers that were subsequently used for marker-assisted selection (MAS) during breeding for biofortification. Studies have also been conducted to understand the physiology and molecular basis of biofortification, which also allowed identification of genes for uptake, transport and storage of micronutrients. Transgenics using transgenes have also been produced. The breeding efforts led to the development of at least a dozen cultivars with improved contents of grain micronutrients, although land area occupied by these biofortified cultivars is still marginal. In this review, the available information on different aspects of biofortification and bioavailability of micronutrients including Zn, Fe and Se in wheat has been reviewed for the benefit of those, who plan to start work or already conducting research in this area.
Collapse
Affiliation(s)
- P K Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India.
| | - H S Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| | - Rahul Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| |
Collapse
|
11
|
Selenium and Nano-Selenium Biofortification for Human Health: Opportunities and Challenges. SOIL SYSTEMS 2020. [DOI: 10.3390/soilsystems4030057] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is an essential micronutrient required for the health of humans and lower plants, but its importance for higher plants is still being investigated. The biological functions of Se related to human health revolve around its presence in 25 known selenoproteins (e.g., selenocysteine or the 21st amino acid). Humans may receive their required Se through plant uptake of soil Se, foods enriched in Se, or Se dietary supplements. Selenium nanoparticles (Se-NPs) have been applied to biofortified foods and feeds. Due to low toxicity and high efficiency, Se-NPs are used in applications such as cancer therapy and nano-medicines. Selenium and nano-selenium may be able to support and enhance the productivity of cultivated plants and animals under stressful conditions because they are antimicrobial and anti-carcinogenic agents, with antioxidant capacity and immune-modulatory efficacy. Thus, nano-selenium could be inserted in the feeds of fish and livestock to improvise stress resilience and productivity. This review offers new insights in Se and Se-NPs biofortification for edible plants and farm animals under stressful environments. Further, extensive research on Se-NPs is required to identify possible adverse effects on humans and their cytotoxicity.
Collapse
|
12
|
do Nascimento da Silva E, Cadore S. Bioavailability Assessment of Copper, Iron, Manganese, Molybdenum, Selenium, and Zinc from Selenium-Enriched Lettuce. J Food Sci 2019; 84:2840-2846. [PMID: 31517998 DOI: 10.1111/1750-3841.14785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 01/16/2023]
Abstract
Cu, Fe, Mn, Mo, Selenium (Se), and Zn bioavailability from selenate- and selenite-enriched lettuce plants was studied by in vitro gastrointestinal digestion followed by an assay with Caco-2 cells. The plants were cultivated in the absence and presence of two concentrations (25 and 40 µmol/L of Se). After 28 days of cultivation, the plants were harvested, dried, and evaluated regarding the total concentration, bioaccessibility, and bioavailability of the analytes. The results showed that biofortification with selenate leads to higher Se absorption by the plant than biofortification with selenite. For the other nutrients, Mo showed high accumulation in the plants of selenate assays, and the presence of any Se species led to a reduction of the plant uptake of Cu and Fe. The accumulation of Zn and Mn was not strongly influenced by the presence of any Se species. The bioaccessibility values were approximately 71%, 10%, 52%, 84%, 71%, and 86% for Cu, Fe, Mn, Mo, Se, and Zn, respectively, and the contribution of the biofortified lettuce to the ingestion of these minerals is very small (except for Se and Mo). Due to the low concentrations of elements from digested plants, it was not possible to estimate the bioavailability for some elements, and for Mo and Zn, the values are below 6.9% and 3.4% of the total concentration, respectively. For Se, the bioavailability was greater for selenite-enriched than selenate-enriched plants (22% and 6.0%, respectively), because selenite is biotransformed by the plant to organic forms that are better assimilated by the cells.
Collapse
Affiliation(s)
- Emanueli do Nascimento da Silva
- Inst. of Chemistry, Univ. of Campinas, Campinas, SP, Brazil
- Dept. of Chemistry, Inst. of Exact and Biologic Sciences, Federal Univ. of Ouro Preto, Ouro Preto, MG, Brazil
| | - Solange Cadore
- Inst. of Chemistry, Univ. of Campinas, Campinas, SP, Brazil
| |
Collapse
|
13
|
Lara TS, Lessa JHDL, de Souza KRD, Corguinha APB, Martins FAD, Lopes G, Guilherme LRG. Selenium biofortification of wheat grain via foliar application and its effect on plant metabolism. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Ohno T, Hettiarachchi GM. Soil Chemistry and the One Health Initiative: Introduction to the Special Section. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:1305-1309. [PMID: 30512058 DOI: 10.2134/jeq2018.08.0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Population growth and technical and social changes have always exerted pressure on environmental quality. However, we are experiencing unprecedented change in the rate and scale of human impacts on the environment. The One Health Initiative recognizes that improving the quality of life for humans and other animal species requires a holistic and integrated framework to seek multidisciplinary solutions to global environmental quality challenges. This special section is designed to elucidate the connections among soil health, environmental quality, food safety and security, and human health. Soil chemistry is defined as the field of soil science that deals with the chemical constituents, properties, and reactions of soils. Soil chemistry plays a central role in food production and the protection of human health. Chemical reactions between nutrients or contaminants and soil solids, and the composition of the soil solution and the atmosphere, influence crop growth as well as the quality of our food, air, and water. This collection of nine papers brings together studies that highlight how soil chemical constituents, properties, and reactions can be examined or managed using a multidisciplinary approach to move toward a more efficient, sustainable, nutrient-rich, and low-contaminant food production system that affords protection of soil, water, and human and animal health. We believe that studies such as these are needed to maintain and enhance environmental quality through interdisciplinary scientific approaches for human, animal, and environmental health outcomes.
Collapse
|