1
|
Pires AJ, Pereira G, Fangueiro D, Bexiga R, Oliveira M. When the solution becomes the problem: a review on antimicrobial resistance in dairy cattle. Future Microbiol 2024; 19:903-929. [PMID: 38661710 PMCID: PMC11290761 DOI: 10.2217/fmb-2023-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Antibiotics' action, once a 'magic bullet', is now hindered by widespread microbial resistance, creating a global antimicrobial resistance (AMR) crisis. A primary driver of AMR is the selective pressure from antimicrobial use. Between 2000 and 2015, antibiotic consumption increased by 65%, reaching 34.8 billion tons, 73% of which was used in animals. In the dairy cattle sector, antibiotics are crucial for treating diseases like mastitis, posing risks to humans, animals and potentially leading to environmental contamination. To address AMR, strategies like selective dry cow therapy, alternative treatments (nanoparticles, phages) and waste management innovations are emerging. However, most solutions are in development, emphasizing the urgent need for further research to tackle AMR in dairy farms.
Collapse
Affiliation(s)
- Ana José Pires
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Gonçalo Pereira
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - David Fangueiro
- LEAF Research Center, Terra Associate Laboratory, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Ricardo Bexiga
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Manuela Oliveira
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
- cE3c—Centre for Ecology, Evolution & Environmental Changes & CHANGE—Global Change & Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
2
|
Allegrini M, Iocoli GA, Zabaloy MC. Combined use of digestate and inorganic fertilizer alleviates the burden of class 1 integrons in perennial ryegrass rhizosphere without compromising aerial biomass production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47132-47143. [PMID: 38985425 DOI: 10.1007/s11356-024-34279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Antimicrobial resistance (AMR) is one of the main global health challenges. Anaerobic digestion (AD) can significantly reduce the burden of antibiotic resistance genes (ARGs) in animal manures. However, the reduction is often incomplete. The agronomic use of digestates requires assessments of their effects on soil ARGs. The objective of this study was to assess the effect of digestate on the abundance of ARGs and mobile genetic elements (MGEs) in the rhizosphere of ryegrass (Lolium perenne L.) and to determine whether half-dose replacement of digestate with urea (combined fertilizer) can be implemented as a safer approach while maintaining a similar biomass production. A greenhouse assay was conducted during 190 days under a completely randomized design with two experimental factors: fertilizer type (unfertilized control and fertilized treatments with equal N dose: digestate, urea and combined fertilizer) and sampling date (16 and 148 days after the last application). The results indicated that the digestate significantly increased the abundance of clinical class 1 integrons (intI1 gene) relative to the unfertilized control at both sampling dates (P < 0.05), while the combined fertilizer only increased them at the first sampling. Sixteen days after completing the fertilization scheme only the combined fertilizer and urea significantly increased the biomass production relative to the control (P < 0.05). Additionally, by the end of the assay, the combined fertilizer showed significantly lower levels of the macrolide-resistance gene ermB than digestate and a cumulative biomass similar to urea or digestate. Overall, the combined fertilizer can alleviate the burden of integrons and ermB while simultaneously improving biomass production.
Collapse
Affiliation(s)
- Marco Allegrini
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario (UNR)-CONICET, Zavalla, Argentina
| | - Gastón Alejandro Iocoli
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María Celina Zabaloy
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina.
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
3
|
Li Y, An X, Liu G, Li G, Yin Y. The fate of sulfonamides in microenvironments of rape and hot pepper rhizosphere soil system. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:159-168. [PMID: 37424147 DOI: 10.1080/15226514.2023.2231552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Sulfonamides (SAs) in agricultural soils can be degraded in rhizosphere, but can also be taken up by vegetables, which thereby poses human health and ecological risks. A glasshouse experiment was conducted using multi-interlayer rhizoboxes to investigate the fate of three SAs in rape and hot pepper rhizosphere soil systems to examine the relationship between the accumulation and their physicochemical processes. SAs mainly entered pepper shoots in which the accumulation ranged from 0.40 to 30.64 mg kg-1, while SAs were found at high levels in rape roots ranged from 3.01 to 16.62 mg kg-1. The BCFpepper shoot exhibited a strong positive linear relationship with log Dow, while such relationship was not observed between other bioconcentration factors (BCFs) and log Dow. Other than lipophilicity, the dissociation of SAs may also influence the uptake and translocation process. Larger TF and positive correlation with log Dow indicate preferential translocation of pepper SAs. There was a significant (p < 0.05) dissipation gradient of SAs observed away from the vegetable roots. In addition, pepper could uptake more SAs under solo exposure, while rape accumulated more SAs under combined exposure. When SAs applied in mixture, competition between SAs might occur to influence the translocation and dissipation patterns of SAs.
Collapse
Affiliation(s)
- Yaning Li
- Laboratory of Environmental Science and Engineering, Nankai University BinHai College, Tianjin, China
| | - Xinlong An
- OceanCollege, Hebei Agricultural University, Qinhuangdao, China
| | - Gang Liu
- Laboratory of Environmental Science and Engineering, Nankai University BinHai College, Tianjin, China
| | - Guodong Li
- Laboratory of Environmental Science and Engineering, Nankai University BinHai College, Tianjin, China
| | - Yanyan Yin
- Laboratory of Environmental Science and Engineering, Nankai University BinHai College, Tianjin, China
| |
Collapse
|
4
|
Li J, Daniell TJ, Jin MK, Chang RY, Wang T, Zhang J, Yang XR, Zhu YG. Phyllosphere antibiotic resistome in a natural primary vegetation across a successional sequence after glacier retreat. ENVIRONMENT INTERNATIONAL 2023; 174:107903. [PMID: 37058975 DOI: 10.1016/j.envint.2023.107903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
The spread of antibiotic-resistance genes (ARGs) has posed a significant threat to human health over the past decades. Despite the fact that the phyllosphere represents a crucial pool of microorganisms, little is known about the profile and drivers of ARGs in less human interference natural habitats. In order to minimize the influence of environmental factors, here we collected leaf samples from the early-, middle- and late-successional stages across a primary vegetation successional sequence within 2 km, to investigate how the phyllosphere ARGs develop in natural habitats. Phyllosphere ARGs were determined using high-throughput quantitative PCR. Bacterial community and leaf nutrient content were also measured to assess their contribution to the phyllosphere ARGs. A total of 151 unique ARGs were identified, covering almost all recognized major antibiotic classes. We further found that there was some stochastic and a core set of the phyllosphere ARGs during the plant community succession process, due to the fluctuant phyllosphere habitat and specific selection effect of plant individuals. The ARG abundance significantly decreased due to the reduction of the phyllosphere bacterial diversity, community complexity, and leaf nutrient content during the plant community succession process. While the closer links between soil and fallen leaf resulted in a higher ARG abundance in leaf litter than in fresh leaf. In summary, our study reveals that the phyllosphere harbors a broad spectrum of ARGs in the natural environment. These phyllosphere ARGs are driven by various environmental factors, including the plant community composition, host leaf properties, and the phyllosphere microbiome.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, C.A.S. Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Tim J Daniell
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Ming-Kang Jin
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Rui-Ying Chang
- CAS Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Tao Wang
- CAS Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jing Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, C.A.S. Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, C.A.S. Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
5
|
Zhang L, Bai J, Zhang K, Wei Z, Wang Y, Liu H, Xiao R, Jorquera MA. Characterizing bacterial communities in Phragmites australis rhizosphere and non-rhizosphere sediments under pressure of antibiotics in a shallow lake. Front Microbiol 2022; 13:1092854. [PMID: 36560949 PMCID: PMC9763296 DOI: 10.3389/fmicb.2022.1092854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Antibiotics are ubiquitous pollutants and widely found in aquatic ecosystems, which of rhizosphere sediment and rhizosphere bacterial communities had certain correlation. However, the response of bacterial communities in Phragmites australis rhizosphere and non-rhizosphere sediments to antibiotics stress is still poorly understood. Methods To address this knowledge gap, the samples of rhizosphere (R) and non-rhizosphere (NR) sediments of P. australis were collected to investigate the differences of bacterial communities under the influence of antibiotics and key bacterial species and dominate environmental factors in Baiyangdian (BYD) Lake. Results The results showed that the contents of norfloxacin (NOR), ciprofloxacin (CIP) and total antibiotics in rhizosphere sediments were significantly higher than that in non-rhizosphere sediments, meanwhile, bacterial communities in non-rhizosphere sediments had significantly higher diversity (Sobs, Shannon, Simpsoneven and PD) than those in rhizosphere sediments. Furthermore, total antibiotics and CIP were found to be the most important factors in bacterial diversity. The majority of the phyla in rhizosphere sediments were Firmicutes, Proteobacteria and Campilobacterota, while Proteobacteria, Chloroflexi was the most abundant phyla followed by Bacteroidota, Actinobacteriota in non-rhizosphere sediments. The dominate factors of shaping the bacterial communities in rhizosphere were total antibiotics, pH, sediment organic matter (SOM), and NH4-N, while dissolved organic carbon (DOC), NO3-N, pH, and water contents (WC) in non-rhizosphere sediments. Discussion It is suggested that antibiotics may have a substantial effect on bacterial communities in P. australis rhizosphere sediment, which showed potential risk for ARGs selection pressure and dissemination in shallow lake ecosystems.
Collapse
Affiliation(s)
- Ling Zhang
- School of Environment, Beijing Normal University, Beijing, China,School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China
| | - Junhong Bai
- School of Environment, Beijing Normal University, Beijing, China,*Correspondence: Junhong Bai,
| | - Kegang Zhang
- Department of Environmental Engineering and Science, North China Electric Power University, Baoding, China
| | - Zhuoqun Wei
- School of Environment, Beijing Normal University, Beijing, China
| | - Yaqi Wang
- School of Environment, Beijing Normal University, Beijing, China
| | - Haizhu Liu
- School of Environment, Beijing Normal University, Beijing, China
| | - Rong Xiao
- College of Environment and Safety Engineering, FuZhou University, Fuzhou, China
| | - Milko A. Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
6
|
Huo M, Ma W, Zhou K, Xu X, Liu Z, Huang L. Migration and toxicity of toltrazuril and its main metabolites in the environment. CHEMOSPHERE 2022; 302:134888. [PMID: 35561774 DOI: 10.1016/j.chemosphere.2022.134888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/13/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Veterinary drugs heavily used in livestock are passed into the environment through different ways, resulting in risks to terrestrial environments and humans. The migration of toltrazuril (TOL), an important anticoccidial drug used intensively in livestock, and its main metabolites between the chicken manure compost, soil and vegetables was investigated, and then the impacts of TOL on the soil bacterial community and ARGs, soil enzyme activities and phytotoxicity were detected. In the process of aerobic composting for 80 days, except for toltrazuril sulfoxide (the degradation half-life was 59.74 d), TOL and ponazuril (PON) were not significantly degraded. However, TOL and its metabolites were significantly degraded in fertilized soil, and the degradation half-life was 28.17-346.50 d. Among the three drugs, only PON could migrate from soil to vegetables, and the residual concentrations of PON in lettuce and radish were 2.64-70.02 μg kg-1 and 0-2.80 μg kg-1, respectively. Moreover, TOL and its main metabolisms had no significant effect on the bacterial community structure and the abundance of antibiotic resistance genes during composting, but affected the microbial activity in the soil. The presence of TOL and its main metabolites reduced soil urease activity, increased catalase activity, and decreased alkaline phosphatase activity at the beginning and then increased slightly. They had negative effects on plant growth. Compared with the control group, the inhibition rates of TOL and its metabolites on lettuce and radish seed germination were 8.33% and 26.74% respectively, and the inhibition rates of root elongation length were 25.88% and 34.45% respectively. These results showed that TOL and its main metabolites were ineffectively removed by aerobic composting, and could be migrated from composting to soil and vegetables, which had adverse effects on soil enzyme activity and plant growth. Therefore, its environmental ecological risk and human health risk needs to be further evaluated.
Collapse
Affiliation(s)
- Meixia Huo
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan, 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei, 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, 430070, China
| | - Wenjin Ma
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan, 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei, 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, 430070, China
| | - Kaixiang Zhou
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan, 430070, China; MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, 430070, China
| | - Xiangyue Xu
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan, 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei, 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, 430070, China
| | - Zhenli Liu
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan, 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei, 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, 430070, China
| | - Lingli Huang
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan, 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei, 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan, 430070, China; MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Keenum I, Wind L, Ray P, Guron G, Chen C, Knowlton K, Ponder M, Pruden A. Metagenomic tracking of antibiotic resistance genes through a pre-harvest vegetable production system: an integrated lab-, microcosm- and greenhouse-scale analysis. Environ Microbiol 2022; 24:3705-3721. [PMID: 35466491 PMCID: PMC9541739 DOI: 10.1111/1462-2920.16022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
Prior research demonstrated the potential for agricultural production systems to contribute to the environmental spread of antibiotic resistance genes (ARGs). However, there is a need for integrated assessment of critical management points for minimizing this potential. Shotgun metagenomic sequencing data were analysed to comprehensively compare total ARG profiles characteristic of amendments (manure or compost) derived from either beef or dairy cattle (with and without dosing antibiotics according to conventional practice), soil (loamy sand or silty clay loam) and vegetable (lettuce or radish) samples collected across studies carried out at laboratory-, microcosm- and greenhouse-scale. Vegetables carried the greatest diversity of ARGs (n = 838) as well as the most ARG-mobile genetic element co-occurrences (n = 945). Radishes grown in manure- or compost-amended soils harboured a higher relative abundance of total (0.91 and 0.91 ARGs/16S rRNA gene) and clinically relevant ARGs than vegetables from other experimental conditions (average: 0.36 ARGs/16S rRNA gene). Lettuce carried the highest relative abundance of pathogen gene markers among the metagenomes examined. Total ARG relative abundances were highest on vegetables grown in loamy sand receiving antibiotic-treated beef amendments. The findings emphasize that additional barriers, such as post-harvest processes, merit further study to minimize potential exposure to consumers.
Collapse
Affiliation(s)
- Ishi Keenum
- Department of Civil and Environmental EngineeringVirginia TechBlacksburgVAUSA
| | - Lauren Wind
- Department of Biological Systems EngineeringVirginia TechBlacksburgVAUSA
| | - Partha Ray
- Department of Animal Sciences, School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingRG6 6ARUK
| | - Giselle Guron
- Department of Food Science and TechnologyVirginia TechBlacksburgVAUSA
| | - Chaoqi Chen
- Department of Crop and Soil Environmental SciencesVirginia TechBlacksburgVAUSA
| | | | - Monica Ponder
- Department of Food Science and TechnologyVirginia TechBlacksburgVAUSA
| | - Amy Pruden
- Department of Civil and Environmental EngineeringVirginia TechBlacksburgVAUSA
| |
Collapse
|
8
|
Du S, Ge AH, Liang ZH, Xiang JF, Xiao JL, Zhang Y, Liu YR, Zhang LM, Shen JP. Fumigation practice combined with organic fertilizer increase antibiotic resistance in watermelon rhizosphere soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150426. [PMID: 34818756 DOI: 10.1016/j.scitotenv.2021.150426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Chemical fumigants and organic fertilizer are commonly used in facility agriculture to control soil-borne diseases and promote soil health. However, there is a lack of evidence for the effect of non-antibiotic fumigants on the distribution of antibiotic resistance genes (ARGs) in plant rhizosphere soils. Here, the response of a wide spectrum of ARGs and mobile genetic elements (MGEs) to dazomet fumigation practice in the rhizosphere soil of watermelon was investigated along its branching, flowering and fruiting growth stages in plastic shelters using high-throughput quantitative PCR approach. Our results indicated that soil fumigation combined with organic fertilizer application significantly increased the relative abundance of ARGs and MGEs in the rhizosphere soil of watermelon plant. The positive correlations between the relative abundance of ARGs and MGEs suggested that soil fumigation might increase the horizontal gene transfer (HGT) potential of ARGs. This result was further confirmed by the enhanced associations between ARG and MGE subtypes in the networks of fumigation treatments. Moreover, bipartite associations between ARGs/MGEs and microbial communities (bacteria and fungi) revealed a higher percentage of linkage between MGEs and microbial taxa in the fumigated soils. Structural equation model analysis further suggested that the increases in antibiotic resistance after fumigation and organic fertilizer application were mainly driven by MGEs and fungal community. Together, our results provide vital evidence that dazomet fumigation process combined with organic fertilizer in plastic shelters has the great potential to promote ARGs' dissemination in the rhizosphere, and raise cautions of the acquired resistance by soil-borne fungal pathogen and the potential spreading of ARGs along soil-plant continuum.
Collapse
Affiliation(s)
- Shuai Du
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - An-Hui Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Huai Liang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ji-Fang Xiang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ji-Ling Xiao
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yi Zhang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yu-Rong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ju-Pei Shen
- University of Chinese Academy of Sciences, Beijing 100049, China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
9
|
McCubbin KD, Anholt RM, de Jong E, Ida JA, Nóbrega DB, Kastelic JP, Conly JM, Götte M, McAllister TA, Orsel K, Lewis I, Jackson L, Plastow G, Wieden HJ, McCoy K, Leslie M, Robinson JL, Hardcastle L, Hollis A, Ashbolt NJ, Checkley S, Tyrrell GJ, Buret AG, Rennert-May E, Goddard E, Otto SJG, Barkema HW. Knowledge Gaps in the Understanding of Antimicrobial Resistance in Canada. Front Public Health 2021; 9:726484. [PMID: 34778169 PMCID: PMC8582488 DOI: 10.3389/fpubh.2021.726484] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/16/2021] [Indexed: 01/21/2023] Open
Abstract
Current limitations in the understanding and control of antimicrobial resistance (AMR) in Canada are described through a comprehensive review focusing on: (1) treatment optimization; (2) surveillance of antimicrobial use and AMR; and (3) prevention of transmission of AMR. Without addressing gaps in identified areas, sustained progress in AMR mitigation is unlikely. Expert opinions and perspectives contributed to prioritizing identified gaps. Using Canada as an example, this review emphasizes the importance and necessity of a One Health approach for understanding and mitigating AMR. Specifically, antimicrobial use in human, animal, crop, and environmental sectors cannot be regarded as independent; therefore, a One Health approach is needed in AMR research and understanding, current surveillance efforts, and policy. Discussions regarding addressing described knowledge gaps are separated into four categories: (1) further research; (2) increased capacity/resources; (3) increased prescriber/end-user knowledge; and (4) policy development/enforcement. This review highlights the research and increased capacity and resources to generate new knowledge and implement recommendations needed to address all identified gaps, including economic, social, and environmental considerations. More prescriber/end-user knowledge and policy development/enforcement are needed, but must be informed by realistic recommendations, with input from all relevant stakeholders. For most knowledge gaps, important next steps are uncertain. In conclusion, identified knowledge gaps underlined the need for AMR policy decisions to be considered in a One Health framework, while highlighting critical needs to achieve realistic and meaningful progress.
Collapse
Affiliation(s)
- Kayley D. McCubbin
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- One Health at UCalgary, University of Calgary, Calgary, AB, Canada
| | | | - Ellen de Jong
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- One Health at UCalgary, University of Calgary, Calgary, AB, Canada
| | - Jennifer A. Ida
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Diego B. Nóbrega
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - John P. Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - John M. Conly
- One Health at UCalgary, University of Calgary, Calgary, AB, Canada
- O'Brien Institute of Public Health, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada
| | - Karin Orsel
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- One Health at UCalgary, University of Calgary, Calgary, AB, Canada
| | - Ian Lewis
- One Health at UCalgary, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Leland Jackson
- One Health at UCalgary, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Hans-Joachim Wieden
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Kathy McCoy
- One Health at UCalgary, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Myles Leslie
- One Health at UCalgary, University of Calgary, Calgary, AB, Canada
- O'Brien Institute of Public Health, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- School of Public Policy, University of Calgary, Calgary, AB, Canada
| | - Joan L. Robinson
- Department of Pediatrics, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Lorian Hardcastle
- One Health at UCalgary, University of Calgary, Calgary, AB, Canada
- O'Brien Institute of Public Health, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Law, University of Calgary, Calgary, AB, Canada
| | - Aidan Hollis
- One Health at UCalgary, University of Calgary, Calgary, AB, Canada
- O'Brien Institute of Public Health, University of Calgary, Calgary, AB, Canada
- Department of Economics, Faculty of Arts, University of Calgary, Calgary, AB, Canada
| | - Nicholas J. Ashbolt
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Sylvia Checkley
- One Health at UCalgary, University of Calgary, Calgary, AB, Canada
- O'Brien Institute of Public Health, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Gregory J. Tyrrell
- Alberta Precision Laboratories, Alberta Health Services, Calgary, AB, Canada
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Calgary, AB, Canada
| | - André G. Buret
- One Health at UCalgary, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Elissa Rennert-May
- One Health at UCalgary, University of Calgary, Calgary, AB, Canada
- O'Brien Institute of Public Health, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ellen Goddard
- Department of Resource Economics and Environmental Sociology, Faculty of Agriculture, Life and Environmental Science, University of Alberta, Edmonton, AB, Canada
| | - Simon J. G. Otto
- HEAT-AMR Research Group, School of Public Health, University of Alberta, Edmonton, AB, Canada
- Thematic Area Lead, Healthy Environments, Centre for Healthy Communities, School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- One Health at UCalgary, University of Calgary, Calgary, AB, Canada
- O'Brien Institute of Public Health, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Cui E, Cui B, Fan X, Li S, Gao F. Ryegrass (Lolium multiflorum L.) and Indian mustard (Brassica juncea L.) intercropping can improve the phytoremediation of antibiotics and antibiotic resistance genes but not heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147093. [PMID: 33895506 DOI: 10.1016/j.scitotenv.2021.147093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/19/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Lolium multiflorum and Brassica juncea display phytoremediation potential for heavy metals and antibiotics pollution. However, there is limited understanding of their function in removing combined pollutants (heavy metals, antibiotics and antibiotic resistance genes (ARGs)) under different cropping patterns. Sole cropping had little effect on heavy metals, but reduced antibiotics by 2.46%-84.88% and increased ARGs by 15.96%-33.82%. Intercropping was more beneficial to soil remediation and plant accumulation of L. multiflorum, and further increased the remediation of antibiotics by 2.38%-54.40%. Members of phyla (Actinobacteria, Bacteroidetes, and Proteobacteria) were mainly responsible for most antibiotics removal. Compared with sole cropping, intercropping reduced more ARGs abundance in rhizosphere soil for L. multiflorum (20.43%) and in bulk soil for B. juncea (23.22%). Mobile genetic elements (MGEs) played a significant role in the variation of ARGs. Further, sample type showed a higher indirect negative impact on ARGs by mainly affecting soil properties and bacterial community, and the co-occurrence between the bacterial community and ARGs in bulk soil was more complex than that in rhizosphere soil. Together these results suggest that phytoremediation of combined soil pollution was positive but limited, and intercropping resulted in enhanced removal efficiency when compared with sole cropping.
Collapse
Affiliation(s)
- Erping Cui
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Bingjian Cui
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Xiangyang Fan
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Songjing Li
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Feng Gao
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China.
| |
Collapse
|
11
|
Sun Y, Snow D, Walia H, Li X. Transmission Routes of the Microbiome and Resistome from Manure to Soil and Lettuce. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11102-11112. [PMID: 34323079 DOI: 10.1021/acs.est.1c02985] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The land application of animal manure can introduce manure microbiome and resistome to croplands where food crops are grown. The objective of this study was to characterize the microbiome and resistome on and in the leaves of lettuce grown in manured soil and identify the main transmission routes of microbes and antibiotic resistance genes (ARGs) from soil to the episphere and endosphere of lettuce. Shotgun metagenomic results show that manure application significantly altered the composition of the microbiome and resistome of surface soil. SourceTracker analyses indicate that manure and original soil were the main source of the microbiome and resistome of the surface soil and rhizosphere soil, respectively. Manure application altered the microbiome and resistome in the episphere of lettuce (ADONIS p < 0.05), and surface soil accounted for ∼81% of the microbes and ∼62% of the ARGs in episphere. Manure application had limited impacts on the microbiome and resistome in the endosphere (ADONIS p > 0.05). Our results show that manure-borne microbes and ARGs reached the episphere primarily through surface soil and some epiphytic microbes and ARGs further entered the endosphere. Our findings can inform the development of pre- and postharvest practices to minimize the transmission of manure-borne resistome from food crops to consumers.
Collapse
Affiliation(s)
- Yuepeng Sun
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Daniel Snow
- Nebraska Water Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, United States
| | - Xu Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
12
|
Manure-Based Amendments Influence Surface-Associated Bacteria and Markers of Antibiotic Resistance on Radishes Grown in Soils with Different Textures. Appl Environ Microbiol 2021; 87:AEM.02753-20. [PMID: 33712421 DOI: 10.1128/aem.02753-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/24/2021] [Indexed: 01/21/2023] Open
Abstract
A controlled greenhouse study was performed to determine the effect of manure or compost amendments, derived during or in the absence of antibiotic treatment of beef and dairy cattle, on radish taproot-associated microbiota and indicators of antibiotic resistance when grown in different soil textures. Bacterial beta diversity, determined by 16S rRNA gene amplicon sequencing, bifurcated according to soil texture (P < 0.001, R = 0.501). There was a striking cross-effect in which raw manure from antibiotic-treated and antibiotic-free beef and dairy cattle added to loamy sand (LS) elevated relative (16S rRNA gene-normalized) (by 0.9 to 1.9 log10) and absolute (per-radish) (by 1.1 to 3.0 log10) abundances of intI1 (an integrase gene and indicator of mobile multiantibiotic resistance) on radishes at harvest compared to chemical fertilizer-only control conditions (P < 0.001). Radishes tended to carry fewer copies of intI1 and sul1 when grown in silty clay loam than LS. Composting reduced relative abundance of intI1 on LS-grown radishes (0.6 to 2.4 log10 decrease versus corresponding raw manure; P < 0.001). Effects of antibiotic use were rarely discernible. Heterotrophic plate count bacteria capable of growth on media containing tetracycline, vancomycin, sulfamethazine, or erythromycin tended to increase on radishes grown in turned composted antibiotic-treated dairy or beef control (no antibiotics) manures relative to the corresponding raw manure in LS (0.8- to 2.3-log10 increase; P < 0.001), suggesting that composting sometimes enriches cultivable bacteria with phenotypic resistance. This study demonstrates that combined effects of soil texture and manure-based amendments influence the microbiota of radish surfaces and markers of antibiotic resistance, illuminating future research directions for reducing agricultural sources of antibiotic resistance.IMPORTANCE In working toward a comprehensive strategy to combat the spread of antibiotic resistance, potential farm-to-fork routes of dissemination are gaining attention. The effects of preharvest factors on the microbiota and corresponding antibiotic resistance indicators on the surfaces of produce commonly eaten raw is of special interest. Here, we conducted a controlled greenhouse study, using radishes as a root vegetable grown in direct contact with soil, and compared the effects of manure-based soil amendments, antibiotic use in the cattle from which the manure was sourced, composting of the manure, and soil texture, with chemical fertilizer only as a control. We noted significant effects of amendment type and soil texture on the composition of the microbiota and genes used as indicators of antibiotic resistance on radish surfaces. The findings take a step toward identifying agricultural practices that aid in reducing carriage of antibiotic resistance and corresponding risks to consumers.
Collapse
|
13
|
Tang X, Shen M, Zhang Y, Zhu D, Wang H, Zhao Y, Kang Y. The changes in antibiotic resistance genes during 86 years of the soil ripening process without anthropogenic activities. CHEMOSPHERE 2021; 266:128985. [PMID: 33228990 DOI: 10.1016/j.chemosphere.2020.128985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to reveal the baseline of natural variations in antibiotic resistance genes (ARGs) in soil without anthropogenic activities over the decades. Nine soil samples with different time of soil formation were taken from the Yancheng Wetland National Nature Reserve, China. ARGs and mobile genetic elements (MGEs) were characterized using metagenomic analysis. A total of 196 and 192 subtypes of ARGs were detected in bulk soil and rhizosphere, respectively. The diversity and abundance of ARGs were stable during 69 years probably due to the alkaline pH soil environment but not due to antibiotics. Increases in ARGs after 86 years were probably attributed to more migrant birds inhabited compared with other sampling sites. Multidrug was the most abundant type, and largely shared by soil samples. It was further shown that soil samples could not be clearly distinguished, suggesting a slow process of succession of ARGs in the mudflat. The variation partitioning analysis revealed that the ARG profile was driven by the comprehensive effects exhibited by the bacterial community, MGEs, and environmental factors. Besides, pathogenic bacteria containing ARGs mediated by migrant birds in the area with 86 years of soil formation history nearing human settlements needed special attention. This study revealed the slow variations in ARGs in the soil ripening process without anthropogenic activities over decades, and it provided information for assessing the effect of human activities on the occurrence and dissemination of ARGs.
Collapse
Affiliation(s)
- Xingyao Tang
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China
| | - Min Shen
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China
| | - Yanzhou Zhang
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China
| | - Dewei Zhu
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China
| | - Huanli Wang
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China
| | - Yongqiang Zhao
- Yancheng National Nature Reserve for Rare Birds, Yancheng, Jiangsu, PR China
| | - Yijun Kang
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China.
| |
Collapse
|
14
|
Overcoming bacterial resistance to antibiotics: the urgent need – a review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The discovery of antibiotics is considered one of the most crucial breakthroughs in medicine and veterinary science in the 20th century. From the very beginning, this type of drug was used as a ‘miraculous cure’ for every type of infection. In addition to their therapeutic uses, antibiotics were also used for disease prevention and growth promotion in livestock. Though this application was banned in the European Union in 2006, antibiotics are still used in this way in countries all over the world. The unlimited and unregulated use of antibiotics has increased the speed of antibiotic resistance’s spread in different types of organisms. This phenomenon requires searching for new strategies to deal with hard-to-treat infections. The antimicrobial activity of some plant derivatives and animal products has been known since ancient times. At the beginning of this century, even more substances, such as antimicrobial peptides, were considered very promising candidates for becoming new alternatives to commonly used antimicrobials. However, many preclinical and clinical trials ended without positive results. A variety of strategies to fight microbes exist, but we are a long way from approving them as therapies. This review begins with the discovery of antibiotics, covers the modes of action of select antimicrobials, and ends with a literature review of the newest potential alternative approaches to overcoming the drug resistance phenomenon.
Collapse
|
15
|
Song M, Peng K, Jiang L, Zhang D, Song D, Chen G, Xu H, Li Y, Luo C. Alleviated Antibiotic-Resistant Genes in the Rhizosphere of Agricultural Soils with Low Antibiotic Concentration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2457-2466. [PMID: 31995379 DOI: 10.1021/acs.jafc.9b06634] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The influence of the rhizosphere on the abundance and diversity of antibiotic resistance genes (ARGs) has been recognized but there is a lack of consensus because of broad ranges of plant species and antibiotic concentrations across different habitats and the elusive underlying mechanisms. Here, we profiled antibiotic concentrations and resistomes in the rhizosphere and bulk soils by cultivating 10 types of crops in manure-amended agricultural soils. Rhizosphere effects altered the antibiotic resistome structure, significantly increased the absolute abundance of the antibiotic resistome, and decreased their relative abundance, contrasting previous studies. Such plantation-driven variation in ARGs resulted from the boost of bacterial lineages with negative relationships with ARGs and the constraint of the potential ARG-hosts in the rhizosphere of plants cultivated in soils with low antibiotic concentrations as the selective pressure. This mechanism is not reported previously and deepens our understanding about the rhizosphere effects on ARGs.
Collapse
Affiliation(s)
- Mengke Song
- The College of Natural Resources and Environment , South China Agricultural University , Guangzhou 510642 , China
| | - Ke Peng
- The College of Natural Resources and Environment , South China Agricultural University , Guangzhou 510642 , China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Dayi Zhang
- School of Environment , Tsinghua University , Beijing 100084 , China
| | - Dandan Song
- The College of Natural Resources and Environment , South China Agricultural University , Guangzhou 510642 , China
| | - Guoen Chen
- The College of Natural Resources and Environment , South China Agricultural University , Guangzhou 510642 , China
| | - Huijuan Xu
- The College of Natural Resources and Environment , South China Agricultural University , Guangzhou 510642 , China
| | - Yongtao Li
- Joint Institute for Environmental Research and Education , South China Agricultural University , Guangzhou 510642 , China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
- Joint Institute for Environmental Research and Education , South China Agricultural University , Guangzhou 510642 , China
| |
Collapse
|
16
|
Ye M, Sun M, Huang D, Zhang Z, Zhang H, Zhang S, Hu F, Jiang X, Jiao W. A review of bacteriophage therapy for pathogenic bacteria inactivation in the soil environment. ENVIRONMENT INTERNATIONAL 2019; 129:488-496. [PMID: 31158595 DOI: 10.1016/j.envint.2019.05.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
The emerging contamination of pathogenic bacteria in the soil has caused a serious threat to public health and environmental security. Therefore, effective methods to inactivate pathogenic bacteria and decrease the environmental risks are urgently required. As a century-old technique, bacteriophage (phage) therapy has a high efficiency in targeting and inactivating pathogenic bacteria in different environmental systems. This review provides an update on the status of bacteriophage therapy for the inactivation of pathogenic bacteria in the soil environment. Specifically, the applications of phage therapy in soil-plant and soil-groundwater systems are summarized. In addition, the impact of phage therapy on soil functioning is described, including soil function gene transmission, soil microbial community stability, and soil nutrient cycling. Soil factors, such as soil temperature, pH, clay mineral, water content, and nutrient components, influence the survival and activity of phages in the soil. Finally, the future research prospects of phage therapy in soil environments are described.
Collapse
Affiliation(s)
- Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhongyun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hui Zhang
- Jiangsu Key Laboratory of Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shengtian Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing 210042, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Wentao Jiao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
17
|
Blau K, Jacquiod S, Sørensen SJ, Su JQ, Zhu YG, Smalla K, Jechalke S. Manure and Doxycycline Affect the Bacterial Community and Its Resistome in Lettuce Rhizosphere and Bulk Soil. Front Microbiol 2019; 10:725. [PMID: 31057496 PMCID: PMC6477490 DOI: 10.3389/fmicb.2019.00725] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/22/2019] [Indexed: 12/23/2022] Open
Abstract
Manure application to agricultural soil introduces antibiotic residues and increases the abundance of antibiotic-resistant bacteria (ARB) carrying antibiotic resistance genes (ARGs), often located on mobile genetic elements (MGEs). The rhizosphere is regarded as a hotspot of microbial activity and gene transfer, which can alter and prolong the effects of organic fertilizers containing antibiotics. However, not much is known about the influence of plants on the effects of doxycycline applied to soil via manure. In this study, the effects of manure spiked with or without doxycycline on the prokaryotic community composition as well as on the relative abundance of ARGs and MGEs in lettuce rhizosphere and bulk soil were investigated by means of a polyphasic cultivation-independent approach. Samples were taken 42 days after manure application, and total community DNA was extracted. Besides a pronounced manure effect, doxycycline spiking caused an additional enrichment of ARGs and MGEs. High-throughput quantitative PCR revealed an increase in tetracycline, aminoglycoside, and macrolide-lincosamide-streptogramin B (MLSB) resistance genes associated with the application of manure spiked with doxycycline. This effect was unexpectedly lower in the rhizosphere than in bulk soil, suggesting a faster dissipation of the antibiotic and a more resilient prokaryotic community in the rhizosphere. Interestingly, the tetracycline resistance gene tetA(P) was highly enriched in manure-treated bulk soil and rhizosphere, with highest values observed in doxycycline-treated bulk soil, concurring with an enrichment of Clostridia. Thus, the gene tetA(P) might be a suitable marker of soil contamination by ARB, ARGs, and antibiotics of manure origin. These findings illustrate that the effects of manure and doxycycline on ARGs and MGEs differ between rhizosphere and bulk soil, which needs to be considered when assessing risks for human health connected to the spread of ARGs in the environment.
Collapse
Affiliation(s)
- Khald Blau
- Julius Kühn-Institut—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Samuel Jacquiod
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Søren J. Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Kornelia Smalla
- Julius Kühn-Institut—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Sven Jechalke
- Julius Kühn-Institut—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| |
Collapse
|
18
|
Zhao F, Yang L, Chen L, Li S, Sun L. Bioaccumulation of antibiotics in crops under long-term manure application: Occurrence, biomass response and human exposure. CHEMOSPHERE 2019; 219:882-895. [PMID: 30572238 DOI: 10.1016/j.chemosphere.2018.12.076] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/05/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
Long-term manure application gives rise to the uptake of antibiotics by plants and antibiotics subsequent entry into the food chain, representing an important alternative pathway for human exposure to antibiotics. The antibiotics can cause negative effects on crop growth and productivity. The bioaccumulation and translocation of 14 target antibiotics in peanuts (Arachis hypogaea L.) and their effects on peanut relative biomass in fields with long-term (≥15 years) manure application were studied. The results showed that all the target antibiotics were found in manures and rhizosphere soils, and most of them were found in all peanut tissues (roots, shells, kernels, stem, and leaves). The antibiotic concentrations in peanut tissues were varied with the characteristics of antibiotics in soils. Tetracyclines were the dominating antibiotic compounds in all peanut tissues, accounting for 61%-80% of total antibiotics due to their relatively high concentration in rhizosphere soil. Most tetracyclines and quinolones preferentially accumulated in the roots and translocated to other peanut tissues than sulfonamides and macrolides. Furthermore, the influence of antibiotics in soil and crops on relative biomass of crop tissues varied with tissues and antibiotic types. Antibiotics significantly inhibited the tissue relative biomass in most cases, although stimulation of some antibiotics to crop biomass was also observed. We found that 18.3% of the variance of the peanut relative biomass was explained by antibiotics in soils and tissues. The estimated threshold of daily intake values suggests that the consumption of peanut kernels grown in field conditions with long-term manure application presents a moderate risk to human health.
Collapse
Affiliation(s)
- Fangkai Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Liding Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shoujuan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
19
|
Ohno T, Hettiarachchi GM. Soil Chemistry and the One Health Initiative: Introduction to the Special Section. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:1305-1309. [PMID: 30512058 DOI: 10.2134/jeq2018.08.0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Population growth and technical and social changes have always exerted pressure on environmental quality. However, we are experiencing unprecedented change in the rate and scale of human impacts on the environment. The One Health Initiative recognizes that improving the quality of life for humans and other animal species requires a holistic and integrated framework to seek multidisciplinary solutions to global environmental quality challenges. This special section is designed to elucidate the connections among soil health, environmental quality, food safety and security, and human health. Soil chemistry is defined as the field of soil science that deals with the chemical constituents, properties, and reactions of soils. Soil chemistry plays a central role in food production and the protection of human health. Chemical reactions between nutrients or contaminants and soil solids, and the composition of the soil solution and the atmosphere, influence crop growth as well as the quality of our food, air, and water. This collection of nine papers brings together studies that highlight how soil chemical constituents, properties, and reactions can be examined or managed using a multidisciplinary approach to move toward a more efficient, sustainable, nutrient-rich, and low-contaminant food production system that affords protection of soil, water, and human and animal health. We believe that studies such as these are needed to maintain and enhance environmental quality through interdisciplinary scientific approaches for human, animal, and environmental health outcomes.
Collapse
|