1
|
Aslam S, Nowak KM. Nitrogen-fertilizer addition to an agricultural soil enhances biogenic non-extractable residue formation from 2- 13C, 15N-glyphosate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170643. [PMID: 38320697 DOI: 10.1016/j.scitotenv.2024.170643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Glyphosate and nitrogen (N) or (P) phosphorus fertilizers are often applied in combination to agricultural fields. The additional P or N supply to microorganisms might drive glyphosate degradation towards sarcosine/glycine or aminomethylphosphonic acid (AMPA), and consequently determine the speciation of non-extractable residues (NERs): harmless biogenic NERs (bioNERs) or potentially hazardous xenobiotic NERs (xenoNERs). We therefore investigated the effect of P or N-fertilizers on microbial degradation of glyphosate and bioNER formation in an agricultural soil. Four different treatments were incubated at 20 °C for 75 days as follows; I: no fertilizer (2-13C,15N-glyphosate only, control), II: P-fertilizer (superphosphate + 2-13C,15N-glyphosate, effect of P-supply), III: N-fertilizer (ammonium nitrate + 2-13C,15N-glyphosate, effect of N-supply) and IV: 15N-fertilizer (15N-ammonium nitrate + 2-13C-glyphosate, differentiation between microbial assimilations of 15N: 15N-fertilizer versus 15N-glyphosate). We quantified 13C or 15N in mineralization, extractable residues, NERs and in amino acids (AAs). At the end, mineralization (36-41 % of the 13C), extractable 2-13C,15N-glyphosate/2-13C-glyphosate (0.42-0.49 %) & 15N-AMPA (1.2 %), and 13C/15N-NERs (40-43 % of the 13C, 40-50 % of the 15N) were comparable among treatments. Contrastingly, the 15N-NERs from 15N-fertlizer amounted to only 6.6 % of the 15N. Notably, N-fertilizer promoted an incorporation of 13C/15N from 2-13C,15N-glyphosate into AAs and thus the formation of 13C/15N-bioNERs. The 13C/15N-AAs were as follows: 16-21 % (N-fertilizer) > 11-13 % (control) > 7.2-7.3 % (P-fertilizer) of the initially added isotope. 2-13C,15N-glyphosate was degraded via the sarcosine/glycine and AMPA simultaneously in all treatments, regardless of the treatment type. The percentage share of bioNERs within the NERs in the N-fertilized soil was highest (13C: 80-82 %, 15N: 100 %) compared to 53 % (13C & 15N, control) and to only 30 % (13C & 15N, P-fertilizer). We thus concluded simultaneous N & glyphosate addition to soils could be beneficial for the environment due to the enhanced bioNER formation, while P & glyphosate application disadvantageous since it promoted xenoNER formation.
Collapse
Affiliation(s)
- Sohaib Aslam
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Department of Environmental Sciences, Forman Christian College (A Chartered University), Ferozepur Road, 54600 Lahore, Pakistan
| | - Karolina M Nowak
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
| |
Collapse
|
2
|
Mathew SA, Fuchs B, Nissinen R, Helander M, Puigbò P, Saikkonen K, Muola A. Glyphosate-based herbicide use affects individual microbial taxa in strawberry endosphere but not the microbial community composition. J Appl Microbiol 2023; 134:6987274. [PMID: 36639128 DOI: 10.1093/jambio/lxad006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/30/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
AIMS In a field study, the effects of treatments of glyphosate-based herbicides (GBHs) in soil, alone and in combination with phosphate fertilizer, were examined on the performance and endophytic microbiota of garden strawberry. METHODS AND RESULTS The root and leaf endophytic microbiota of garden strawberries grown in GBH-treated and untreated soil, with and without phosphate fertilizer, were analyzed. Next, bioinformatics analysis on the type of 5-enolpyruvylshikimate-3-phosphate synthase enzyme was conducted to assess the potential sensitivity of strawberry-associated bacteria and fungi to glyphosate, and to compare the results with field observations. GBH treatments altered the abundance and/or frequency of several operational taxonomic units (OTUs), especially those of root-associated fungi and bacteria. These changes were partly related to their sensitivity to glyphosate. Still, GBH treatments did not shape the overall community structure of strawberry microbiota or affect plant performance. Phosphate fertilizer increased the abundance of both glyphosate-resistant and glyphosate-sensitive bacterial OTUs, regardless of the GBH treatments. CONCLUSIONS These findings demonstrate that although the overall community structure of strawberry endophytic microbes is not affected by GBH use, some individual taxa are.
Collapse
Affiliation(s)
- Suni Anie Mathew
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Benjamin Fuchs
- Biodiversity Unit, University of Turku, 20014 Turku, Finland
| | - Riitta Nissinen
- Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Marjo Helander
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Pere Puigbò
- Department of Biology, University of Turku, 20014 Turku, Finland.,Nutrition and Health Unit, Eurecat Technology Centre of Catalonia, 43204 Reus, Catalonia.,Department of Biochemistry and Biotechnology, Rovira i Virgili University, 43007 Tarragona, Catalonia
| | - Kari Saikkonen
- Biodiversity Unit, University of Turku, 20014 Turku, Finland
| | - Anne Muola
- Biodiversity Unit, University of Turku, 20014 Turku, Finland.,Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, 9016 Tromsø, Norway
| |
Collapse
|
3
|
Borella L, Novello G, Gasparotto M, Renella G, Roverso M, Bogialli S, Filippini F, Sforza E. Design and experimental validation of an optimized microalgae-bacteria consortium for the bioremediation of glyphosate in continuous photobioreactors. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129921. [PMID: 36103767 DOI: 10.1016/j.jhazmat.2022.129921] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate will be banned from Europe by the end of 2022, but its widespread use in the last decades and its persistence in the environment require the development of novel remediation processes. In this work, a bacterial consortium was designed de novo with the aim to remove glyphosate from polluted water, supported by the oxygen produced by a microalgal species. To this goal, bioinformatics tools were employed to identify the bacterial strains from contaminated sources (Pseudomonas stutzeri; Comamonas odontotermitis; Sinomonas atrocyanea) able to express enzymes for glyphosate degradation, while the microalga Chlorella protothecoides was chosen for its known performances in wastewater treatment. To follow a bioaugmentation approach, the designed consortium was cultivated in continuous photobioreactors at increasing glyphosate concentrations, from 5 to 50 mg L-1, to boost its acclimation to the presence of the herbicide and its capacity to remove it from water. C. protothecoides tolerance to glyphosate was verified through batch experiments. Remarkably, steady state conditions were reached and the consortium was able to live as a community in the reactor. The consortium activity was validated in both synthetic and real wastewater, where glyphosate concentration was reduced by about 53% and 79%, respectively, without the detection of aminomethylphosphonic acid formation.
Collapse
Affiliation(s)
- Lisa Borella
- Department of Industrial Engineering DII, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Giulia Novello
- Department of Industrial Engineering DII, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | | | - Giancarlo Renella
- Department of Agronomy, Food, Natural resources, Animals and Environment, DAFNAE, Legnaro, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | | | - Eleonora Sforza
- Department of Industrial Engineering DII, University of Padova, Via Marzolo 9, 35131 Padova, Italy; Department of Biology, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
4
|
Mac Loughlin TM, Peluso ML, Marino DJG. Evaluation of pesticide pollution in the Gualeguay Basin: An extensive agriculture area in Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158142. [PMID: 35988611 DOI: 10.1016/j.scitotenv.2022.158142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The current agricultural production model was established in the 1990s based on the use of genetically modified organisms and agrochemicals, mainly pesticides. Despite pesticide spread and prevalence, data on the associated concentrations in surface watercourses are comparatively scarce. The aim of this work was to evaluate to what extent the >20 years of agricultural activity with the use of pesticides has impacted on the Gualeguay-River basin, with respect to the different stream orders: the tributary streams and main channel. Thirteen sites within the lower Gualeguay basin were sampled once every season (autumn, winter, spring, and summer) in 2017-2018. The samples were analyzed by gas chromatography time-of-flight mass-spectrometry (GC-TOF-MS) and ultraperformance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS). The most frequently detected pesticide was glyphosate along with its metabolite (aminomethyl)phosphonic acid (AMPA), at 82 % and 71 % of surface water samples and 97 % and 92 % of bottom sediments, respectively; followed by atrazine in 73 % of the water samples. The concentrations of these compounds, each in their respective matrices, did not present sufficient statistically significant differences for differentiating a tributary stream from the main channel. Regardless of glyphosate's affinity for the suspended particulate and bottom sediments, over the entire basin the soluble fraction contributed on average to >80 % of the total concentration in surface water. Despite not being so frequently detected, certain insecticides, mostly deltamethrin, were likewise detected at concentrations above their water-quality guidelines for the protection of aquatic life, even in samples from the main channel. Upon comparison of the pesticide profiles of extensive- and horticultural-production systems in the country, atrazine emerged as a prime candidate to be used as a tracer of extensive agriculture contamination in the environment. Further research is required to establish to what degree pesticides used in agriculture and mobilized by watercourses have an impact on their associated wetland ecosystems.
Collapse
Affiliation(s)
- Tomás M Mac Loughlin
- Centro de Investigaciones del Medio Ambiente (CIM), FCEx-UNLP-CONICET, La Plata, Buenos Aires, Argentina
| | - María Leticia Peluso
- Centro de Investigaciones del Medio Ambiente (CIM), FCEx-UNLP-CONICET, La Plata, Buenos Aires, Argentina
| | - Damián J G Marino
- Centro de Investigaciones del Medio Ambiente (CIM), FCEx-UNLP-CONICET, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Overview of Environmental and Health Effects Related to Glyphosate Usage. SUSTAINABILITY 2022. [DOI: 10.3390/su14116868] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Since the introduction of glyphosate (N-(phosphomethyl) glycine) in 1974, it has been the most used nonselective and broad-spectrum herbicide around the world. The widespread use of glyphosate and glyphosate-based herbicides is due to their low-cost efficiency in killing weeds, their rapid absorption by plants, and the general mistaken perception of their low toxicity to the environment and living organisms. As a consequence of the intensive use and accumulation of glyphosate and its derivatives on environmental sources, major concerns about the harmful side effects of glyphosate and its metabolites on human, plant, and animal health, and for water and soil quality, are emerging. Glyphosate can reach water bodies by soil leaching, runoff, and sometimes by the direct application of some approved formulations. Moreover, glyphosate can reach nontarget plants by different mechanisms, such as spray application, release through the tissue of treated plants, and dead tissue from weeds. As a consequence of this nontarget exposure, glyphosate residues are being detected in the food chains of diverse products, such as bread, cereal products, wheat, vegetable oil, fruit juice, beer, wine, honey, eggs, and others. The World Health Organization reclassified glyphosate as probably carcinogenic to humans in 2015 by the IARC. Thus, many review articles concerning different glyphosate-related aspects have been published recently. The risks, disagreements, and concerns regarding glyphosate usage have led to a general controversy about whether glyphosate should be banned, restricted, or promoted. Thus, this review article makes an overview of the basis for scientists, regulatory agencies, and the public in general, with consideration to the facts on and recommendations for the future of glyphosate usage.
Collapse
|
6
|
Gonzalo Mayoral ES, Aparicio VC, De Gerónimo E, Fernandes G, Rheinheimer Dos Santos D, Costa JL. Glyphosate, AMPA, and metsulfuron-methyl retention in the main horizons of a Typic Argiudoll. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:526-540. [PMID: 35502688 DOI: 10.1080/03601234.2022.2069982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Retention is one of the processes controlling the behavior and fate of pesticides in soil. The objective of this work was to evaluate the adsorption and desorption of glyphosate, AMPA, and metsulfuron-methyl in the main horizons of a Typic Argiudoll destined for agricultural use. For this purpose, the batch equilibrium method was used at a range of concentrations for each compound. Desorption was performed in three consecutive steps after the adsorption experiment. The results obtained showed strong adsorption of glyphosate and AMPA in the three horizons, following the trend B > A > C, with weak desorption. Metsulfuron-methyl, on the other hand, showed weak adsorption in the three horizons, following the trend A > B > C, with relevant desorption. Our results allow us to identify metsulfuron-methyl as the compound that poses the greatest environmental risk in terms of the potential contamination of other areas and groundwater. However, despite their strong adsorption and weak desorption, glyphosate and AMPA also represent potential contaminants of other environmental matrices.
Collapse
Affiliation(s)
- Eliana S Gonzalo Mayoral
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Estación Experimental Agropecuaria Balcarce - Instituto Nacional de Tecnología Agropecuaria (INTA) Balcarce, Balcarce, Buenos Aires, Argentina
| | - Virginia C Aparicio
- Estación Experimental Agropecuaria Balcarce - Instituto Nacional de Tecnología Agropecuaria (INTA) Balcarce, Balcarce, Buenos Aires, Argentina
| | - Eduardo De Gerónimo
- Estación Experimental Agropecuaria Balcarce - Instituto Nacional de Tecnología Agropecuaria (INTA) Balcarce, Balcarce, Buenos Aires, Argentina
| | - Gracieli Fernandes
- Centro de Ciências Rurais, Departamento de Solos, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Danilo Rheinheimer Dos Santos
- Centro de Ciências Rurais, Departamento de Solos, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - José L Costa
- Estación Experimental Agropecuaria Balcarce - Instituto Nacional de Tecnología Agropecuaria (INTA) Balcarce, Balcarce, Buenos Aires, Argentina
| |
Collapse
|
7
|
Fuchs B, Laihonen M, Muola A, Saikkonen K, Dobrev PI, Vankova R, Helander M. A Glyphosate-Based Herbicide in Soil Differentially Affects Hormonal Homeostasis and Performance of Non-target Crop Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:787958. [PMID: 35154181 PMCID: PMC8829137 DOI: 10.3389/fpls.2021.787958] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/29/2021] [Indexed: 05/28/2023]
Abstract
Glyphosate is the most widely used herbicide with a yearly increase in global application. Recent studies report glyphosate residues from diverse habitats globally where the effect on non-target plants are still to be explored. Glyphosate disrupts the shikimate pathway which is the basis for several plant metabolites. The central role of phytohormones in regulating plant growth and responses to abiotic and biotic environment has been ignored in studies examining the effects of glyphosate residues on plant performance and trophic interactions. We studied interactive effects of glyphosate-based herbicide (GBH) residues and phosphate fertilizer in soil on the content of main phytohormones, their precursors and metabolites, as well as on plant performance and herbivore damage, in three plant species, oat (Avena sativa), potato (Solanum tuberosum), and strawberry (Fragaria x ananassa). Plant hormonal responses to GBH residues were highly species-specific. Potato responded to GBH soil treatment with an increase in stress-related phytohormones abscisic acid (ABA), indole-3-acetic acid (IAA), and jasmonic acid (JA) but a decrease in cytokinin (CK) ribosides and cytokinin-O-glycosides. GBH residues in combination with phosphate in soil increased aboveground biomass of potato plants and the concentration of the auxin phenylacetic acid (PAA) but decreased phaseic acid and cytokinin ribosides (CKR) and O-glycosides. Chorismate-derived compounds [IAA, PAA and benzoic acid (BzA)] as well as herbivore damage decreased in oat, when growing in GBH-treated soil but concentrations of the cytokinin dihydrozeatin (DZ) and CKR increased. In strawberry plants, phosphate treatment was associated with an elevation of auxin (IAA) and the CK trans-zeatin (tZ), while decreasing concentrations of the auxin PAA and CK DZ was observed in the case of GBH treatment. Our results demonstrate that ubiquitous herbicide residues have multifaceted consequences by modulating the hormonal equilibrium of plants, which can have cascading effects on trophic interactions.
Collapse
Affiliation(s)
| | | | - Anne Muola
- Biodiversity Unit, University of Turku, Turku, Finland
| | | | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Marjo Helander
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
8
|
Meftaul IM, Venkateswarlu K, Dharmarajan R, Annamalai P, Asaduzzaman M, Parven A, Megharaj M. Controversies over human health and ecological impacts of glyphosate: Is it to be banned in modern agriculture? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114372. [PMID: 32203845 DOI: 10.1016/j.envpol.2020.114372] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/09/2020] [Accepted: 03/12/2020] [Indexed: 05/27/2023]
Abstract
Glyphosate, introduced by Monsanto Company under the commercial name Roundup in 1974, became the extensively used herbicide worldwide in the last few decades. Glyphosate has excellent properties of fast sorption in soil, biodegradation and less toxicity to nontarget organisms. However, glyphosate has been reported to increase the risk of cancer, endocrine-disruption, celiac disease, autism, effect on erythrocytes, leaky-gut syndrome, etc. The reclassification of glyphosate in 2015 as 'probably carcinogenic' under Group 2A by the International Agency for Research on Cancer has been broadly circulated by anti-chemical and environmental advocacy groups claiming for restricted use or ban of glyphosate. In contrast, some comprehensive epidemiological studies involving farmers with long-time exposure to glyphosate in USA and elsewhere coupled with available toxicological data showed no correlation with any kind of carcinogenic or genotoxic threat to humans. Moreover, several investigations confirmed that the surfactant, polyethoxylated tallow amine (POEA), contained in the formulations of glyphosate like Roundup, is responsible for the established adverse impacts on human and ecological health. Subsequent to the evolution of genetically modified glyphosate-resistant crops and the extensive use of glyphosate over the last 45 years, about 38 weed species developed resistance to this herbicide. Consequently, its use in the recent years has been either restricted or banned in 20 countries. This critical review on glyphosate provides an overview of its behaviour, fate, detrimental impacts on ecological and human health, and the development of resistance in weeds and pathogens. Thus, the ultimate objective is to help the authorities and agencies concerned in resolving the existing controversies and in providing the necessary regulations for safer use of the herbicide. In our opinion, glyphosate can be judiciously used in agriculture with the inclusion of safer surfactants in commercial formulations sine POEA, which is toxic by itself is likely to increase the toxicity of glyphosate.
Collapse
Affiliation(s)
- Islam Md Meftaul
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515003, India
| | - Rajarathnam Dharmarajan
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Prasath Annamalai
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Md Asaduzzaman
- NSW Department of Primary Industries, Pine Gully Road, Wagga Wagga, NSW 2650, Australia
| | - Aney Parven
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
9
|
Peña A, Delgado-Moreno L, Rodríguez-Liébana JA. A review of the impact of wastewater on the fate of pesticides in soils: Effect of some soil and solution properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:134468. [PMID: 31839299 DOI: 10.1016/j.scitotenv.2019.134468] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Reuse of wastewater (WW) as an agricultural irrigation source is being considered with increasing interest, mainly in arid and semiarid zones. However, due to the complex nature of WW its reuse can have an impact on the fate of the pesticides added to the soils and crops for pest control. This review provides a detailed insight about the main processes involved in pesticide-soil-WW interactions (adsorption/desorption, degradation, transport, plant uptake and field assays) focusing on the role of dissolved organic matter and salt content in the mentioned processes. The influence of pesticide and soil properties in these processes is also discussed. The review explores current research gaps in the pesticide-soil-WW interactions and identifies areas that merit further research, providing a perspective for further scientific exploration.
Collapse
Affiliation(s)
- Aránzazu Peña
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Avda. de las Palmeras 1, 18100-Armilla, Granada, Spain.
| | - Laura Delgado-Moreno
- Estación Experimental del Zaidín, CSIC, c/ Profesor Albareda 1, 18008 Granada, Spain
| | | |
Collapse
|