1
|
Elbaz AM, Zaki EF, Salama AA, Badri FB, Thabet HA. Assessing different oil sources efficacy in reducing environmental heat-stress effects via improving performance, digestive enzymes, antioxidant status, and meat quality. Sci Rep 2023; 13:20179. [PMID: 37978201 PMCID: PMC10656531 DOI: 10.1038/s41598-023-47356-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023] Open
Abstract
Adding oil to the feed of genetically improved broilers is necessary to provide energy requirements, in addition to enhancing metabolism, growth performance, immune response. This study aims to reveal the effect of adding different oil sources in the diets of broilers exposed to environmental heat stress on performance, digestibility, oxidative status, plasma lipids, fatty acids content, and meat quality. Six hundred twenty-five one-day-old broiler chicks were randomly distributed to five groups as follows: the first group fed a diet without oil (CON) as a control, while the second to the fifth group fed a diet containing soy oil (SO), corn oil (CO), olive oil (OO), and fish oil (FO), respectively. Results indicated a significant deterioration in growth performance, carcass traits, and oxidative state with a significant decrease in carcass quality in heat-stressed chickens fed the CON diet. Results showed increased growth, enhanced feed conversion ratio, and carcass dressing in broilers fed the oil-supplemented diet compared to the control diet, however, the digestive enzymes activity was not affected by receiving an oil-supplemented diet. The best performance was in chickens fed OO and SO, compared with FO and CO. Plasma aspartate aminotransferase (AST), and alanine aminotransferase (ALT) increased in broilers fed an oil-supplemented diet. Plasma high-density lipoprotein (HDL), and superoxide dismutase (SOD) remarkably increased in broilers fed OO, whereas the malondialdehyde (MDA) decreased compared to the other groups. Adding different dietary oil sources enhanced the breast muscle's fatty acid composition. Broiler diets supplemented with oils positively affected meat quality by enhancing color measurements, and TBA values, while the best were in chicken fed OO. It was concluded that adding dietary oil at 3% in the diets of broiler chicken exposed to environmental heat stress positively affected growth performance, enhanced oxidative status, and meat quality, best results were in broilers fed a diet that included olive oil.
Collapse
Affiliation(s)
- Ahmed M Elbaz
- Animal and Poultry Production Department, Desert Research Center, Cairo, Egypt.
| | - Engy F Zaki
- Animal and Poultry Production Department, Desert Research Center, Cairo, Egypt
| | - Atif A Salama
- Animal and Poultry Production Department, Desert Research Center, Cairo, Egypt
| | - Faisal B Badri
- Poultry Production Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Hany A Thabet
- Poultry Production Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Xu P, Lin H, Jiao H, Zhao J, Wang X. Chicken embryo thermal manipulation alleviates postnatal heat stress-induced jejunal inflammation by inhibiting Transient Receptor Potential V4. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114851. [PMID: 37004430 DOI: 10.1016/j.ecoenv.2023.114851] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/16/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Intestinal inflammation induced by heat stress is an important factor restricting the healthy growth of broilers. The aim of this study was to evaluate the effect of chicken embryo thermal manipulation (39.5 ℃ and 65 % RH for 3 h daily during 16-18 th embryonic age) on intestinal inflammation in broilers under postnatal heat stress and to investigate whether transient receptor potential V4 (TRPV4) plays a role in this process. Our results suggest that broilers with embryo thermal manipulation experience could delay the rising of rectal temperature during postnatal heat stress (P < 0.05), and had better production performance (P < 0.05), intestinal morphological parameters (P < 0.05) and higher expression of tight junction related genes (P < 0.05). The increased serum lipopolysaccharide (LPS) content, activation of nuclear factor-kappa B (NF-κB) signaling pathway and the increased expression of pro-inflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor alpha (TNF-α) in jejunum during postnatal heat stress were alleviated by embryo thermal manipulation (P < 0.05). Postnatal heat stress induced an increase in mRNA and protein expression of TRPV4 in jejunum (P < 0.05), but had no effect on broilers which experienced embryo thermal manipulation (P > 0.05). Inhibition of TRPV4 reduced LPS-induced Ca2+ influx and restrained the activation of NF-κB signaling pathway and the expression of downstream pro-inflammatory cytokines (P < 0.05). The expression of DNA methyltransferase (DNMT) in the jejunum of broilers exposed to postnatal heat stress was increased by embryo thermal manipulation (P < 0.05). The DNA methylation level of TRPV4 promoter region was detected, and the results showed that embryo thermal manipulation increased the DNA methylation level of TRPV4 promoter region (P < 0.05). In conclusion, Chicken embryo thermal manipulation can alleviate jejunal inflammation in broilers under postnatal heat stress. This may be due to the decreased circulating LPS or the increased DNA methylation level in the promoter region of TRPV4, which inhibits TRPV4 expression, thereby reducing Ca2+ influx, and finally alleviating inflammation by affecting NF-κB signaling pathway. The work is an attempt to understand the mechanism involved in alleviation of adverse effects of heat stress during postnatal life through prenatal thermal manipulation and to reveal the important role of epigenetics.
Collapse
Affiliation(s)
- Peng Xu
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Hai Lin
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Hongchao Jiao
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Jingpeng Zhao
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Xiaojuan Wang
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
3
|
Saminathan M, Mohamed WNW, Noh 'AM, Ibrahim NA, Fuat MA, Ramiah SK. Effects of dietary palm oil on broiler chicken productive performance and carcass characteristics: a comprehensive review. Trop Anim Health Prod 2022; 54:64. [PMID: 35038035 DOI: 10.1007/s11250-022-03046-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/04/2022] [Indexed: 11/27/2022]
Abstract
Palm oil is a natural energy source ingredient in poultry diets that offers a broad range of beneficial effects on the performance of broiler chickens. This review was conducted to highlight the impact of palm oil as a feed ingredient on growth performance and carcass quality, as well as the biochemical, antioxidant activity and tissue fatty acids (FA) composition of broiler chickens. Palm oil inclusion in broiler chickens' rations contributes significantly to the high metabolisable energy (ME) of feed formulation, increases feed palatability and decreases digesta passage rate in the intestine. The reviewed literature indicated that dietary palm oil has a beneficial effect on broiler chickens' overall growth performance traits. The addition of palm oil can also improve the heat tolerance of chickens reared in high ambient temperature conditions. Regardless of breed and breeding conditions, palm oil exhibits good oxidative stability in broiler chickens due to the presence of prevalent phytonutrient elements in this oil. The inclusion of palm oil increased palmitic (C16:0) and oleic (C18:1) acids in tissue deposits, which improves meat stability and quality. Moreover, molecular studies have revealed that higher mRNA expression of several lipid-related hepatic genes in broiler chickens fed palm oil. Nonetheless, dietary palm oil can influence FA deposition in tissues, modulate lipoprotein and triglycerides (TG) levels, and cytokine contents in the blood serum of broiler chickens.
Collapse
Affiliation(s)
- Mookiah Saminathan
- Food and Feed Technology Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, No. 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Wan Nooraida Wan Mohamed
- Food and Feed Technology Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, No. 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - 'Abidah Md Noh
- Food and Feed Technology Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, No. 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Nur Atikah Ibrahim
- Food and Feed Technology Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, No. 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Muhammad Amirul Fuat
- Food and Feed Technology Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, No. 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Suriya Kumari Ramiah
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Niu Y, Zhang JF, Wan XL, Huang Q, He JT, Zhang XH, Zhao LG, Zhang LL, Wang T. Effect of fermented Ginkgo biloba leaves on nutrient utilisation, intestinal digestive function and antioxidant capacity in broilers. Br Poult Sci 2018; 60:47-55. [DOI: 10.1080/00071668.2018.1535166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Y. Niu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - J. F. Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - X. L. Wan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Q. Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - J. T. He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - X. H. Zhang
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - L. G. Zhao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - L. L. Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - T. Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Sifa D, Bai X, Zhang D, Hu H, Wu X, Wen A, He S, Zhao L. Dietary glutamine improves meat quality, skeletal muscle antioxidant capacity and glutamine metabolism in broilers under acute heat stress. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1520113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Dai Sifa
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| | - Xi Bai
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| | - Dan Zhang
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| | - Hong Hu
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| | - Xuezhuang Wu
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| | - Aiyou Wen
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| | - Shaojun He
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| | - Lei Zhao
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| |
Collapse
|
6
|
Long S, Xu Y, Wang C, Li C, Liu D, Piao X. Effects of dietary supplementation with a combination of plant oils on performance, meat quality and fatty acid deposition of broilers. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:1773-1780. [PMID: 29642679 PMCID: PMC6212761 DOI: 10.5713/ajas.18.0056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/13/2018] [Indexed: 02/06/2023]
Abstract
Objective This study was to evaluate effects of mixed plant oils (identified as mixed oil 1 [MO1] and mixed oil 2 [MO2]) on performance, serum composition, viscera percentages, meat quality, and fatty acid deposition of broilers. Methods A total of 126 one-day-old Arbor Acres male broiler chicks (weighing 44.91± 0.92 g) were randomly allocated to 1 of 3 treatments with 7 replicate pens per treatment (6 broilers per pen). Dietary treatments included a corn-soybean basal diet supplemented with 3% soybean oil (CTR), basal diet with 3% MO1 (a mixture of 15% corn oil, 10% coconut oil, 15% linseed oil, 20% palm oil, 15% peanut oil and 25% soybean oil; MO1), or basal diet with 3% MO2 (a combination of 50% MO1 and 50% extruded corn; MO2). The trial consisted of phase 1 (d 1 to 21) and phase 2 (d 22 to 42). Results Compared to CTR, broilers fed MO (MO1 or MO2) had greater (p<0.05) average daily gain in phase 1, 2, and overall (d 1 to 42), redness in thigh muscle, concentrations of serum glucose, serum albumin, saturated fatty acids (SFA) and n-6/n-3 polyunsaturated fatty acids (PUFA) ratio in breast muscle, while these broilers also showed lower (p≤0.05) drip loss and concentrations of C18:3n-3 and PUFA/SFA ratio in breast muscle. Broilers fed MO2 had higher (p<0.05) liver percentage, while broilers fed MO1 had lower (p≤0.05) feed conversion ratio in phase 1 and increased (p<0.05) contents of C18:2n-6, C20:5n-3, C22:6n-3, and n-3 PUFA in breast muscle compared to CTR. Conclusion Mixed plant oils had positive effects on performance, serum parameters, meat quality, liver percentage and fatty acid deposition in broilers, which indicates they can be used as better dietary energy feedstocks than soybean oil alone.
Collapse
Affiliation(s)
- Shenfei Long
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Yetong Xu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Chunlin Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Changlian Li
- Shandong Zhongda Agriculture Science and Technology Co. Ltd., Binzhou 256600, China
| | - Dewen Liu
- Shandong Zhongda Agriculture Science and Technology Co. Ltd., Binzhou 256600, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Lu Z, He X, Ma B, Zhang L, Li J, Jiang Y, Zhou G, Gao F. Chronic Heat Stress Impairs the Quality of Breast-Muscle Meat in Broilers by Affecting Redox Status and Energy-Substance Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11251-11258. [PMID: 29212325 DOI: 10.1021/acs.jafc.7b04428] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We investigated the molecular mechanisms by which chronic heat stress impairs the breast-meat quality of broilers. Broilers were assigned to three groups: the normal control (NC) group, heat-stress (HS) group, and pair-fed (PF) group. After 7 days of heat exposure (32 °C), the high temperature had caused oxidative stress; elevated the activity of citrate synthase (CS), the mRNA expression of M-CPT1, and the phosphorylation level of AMPKα; and reduced the mRNA expression of avUCP. After 14 days of heat exposure, the heat stress had increased the lightness and drip loss and decreased the pH and shear force of the breast meat. Additionally, the heat exposure had increased the mRNA expressions of FAS, ACC, and PDK4; the content of lipids; and the activities of lactic dehydrogenase and pyruvate kinase, and it had decreased the mRNA expression of M-CPT1 and the activity of CS. In conclusion, chronic heat stress impairs meat quality by causing mitochondria to malfunction and affecting energy-substance aerobic metabolism, resulting in increased glycolysis and intramuscular fat deposition.
Collapse
Affiliation(s)
- Zhuang Lu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University , Nanjing 210095, P.R. China
| | - Xiaofang He
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University , Nanjing 210095, P.R. China
| | - Bingbing Ma
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University , Nanjing 210095, P.R. China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University , Nanjing 210095, P.R. China
| | - Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University , Nanjing 210095, P.R. China
| | - Yun Jiang
- Ginling College, Nanjing Normal University , Nanjing 210097, P.R. China
| | - Guanghong Zhou
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University , Nanjing 210095, P.R. China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University , Nanjing 210095, P.R. China
| |
Collapse
|
8
|
Dietary supplementation of enzymatically treated Artemisia annua could alleviate the intestinal inflammatory response in heat-stressed broilers. J Therm Biol 2017; 69:184-190. [DOI: 10.1016/j.jtherbio.2017.07.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/24/2017] [Indexed: 12/19/2022]
|
9
|
Wan X, Zhang J, He J, Bai K, Zhang L, Wang T. Dietary enzymatically treated Artemisia annua L. supplementation alleviates liver oxidative injury of broilers reared under high ambient temperature. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2017; 61:1629-1636. [PMID: 28352954 DOI: 10.1007/s00484-017-1341-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 06/06/2023]
Abstract
Heat stress induced by high ambient temperature is a major concern in commercial broiler production. To evaluate the effects of dietary enzymatically treated Artemisia annua L. (EA) supplementation on growth performance and liver oxidative injury of broilers reared under heat stress, a total of 320 22-day-old male broilers were randomly allotted into five groups with eight replicates of eight birds each. Broilers in the control group were housed at 22 ± 1 °C and fed the basal diet. Broilers in the HS, HS-EA1, HS-EA2, and HS-EA3 groups were fed basal diet supplemented with 0, 0.75, 1.00, and 1.25 g/kg EA, respectively, and reared under cyclic high temperature (34 ± 1 °C for 8 h/day and 22 ± 1 °C for 16 h/day). Broilers fed EA diets had higher final body weight, average daily body weight gain, and average daily feed intake, as well as liver concentration of reduced glutathione, activities of antioxidant enzymes, abilities to inhibit hydroxyl radical and superoxide radical (HS-EA2 and HS-EA3), and lower liver concentrations of reactive oxygen metabolites, malondialdehyde, and protein carbonyl (HS-EA1, HS-EA2, and HS-EA3) than HS group (P < 0.05). EA treatment downregulated the mRNA levels of heat shock proteins 70 and 90, upregulated the mRNA levels of nuclear factor erythroid 2-related factor 2 (HS-EA1, HS-EA2, and HS-EA3) and heme oxygenase 1 (HS-EA2 and HS-EA3) in liver of heat-treated broilers (P < 0.05). In conclusion, EA alleviated heat stress-induced growth depression and liver oxidative injury in broilers, possibly through improving the antioxidant capacity and regulating the pertinent mRNA expression. The appropriate inclusion level of EA in broiler diet is 1.00-1.25 g/kg.
Collapse
Affiliation(s)
- Xiaoli Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jingfei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jintian He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Kaiwen Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
10
|
Effects of Olive Leaf and Marigold Extracts on the Utilization of Nutrients and on Bone Mineralization using Two Different Oil Sources in Broilers. J Poult Sci 2017; 55:17-27. [PMID: 32055152 PMCID: PMC6756375 DOI: 10.2141/jpsa.0170059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/17/2017] [Indexed: 01/29/2023] Open
Abstract
The aim of this study was to investigate the effects of olive leaf and marigold extracts on the apparent total tract digestibility (ATTD) of the principal nutrients and energy, as well as on mineral utilization (Ca, P, Mg, Mn, Fe, Cu and Zn) in relation to bone characteristics in broilers fed walnut- or linseed oil-supplemented diets. Thirty-six 12-day-old commercial broilers Ross 308 were reared in metabolic cages, assigned to one of the six dietary treatments (3 × 2 factorial design): three supplements (not supplemented, olive leaf extract, or marigold extract), and two oils (walnut or linseed oil). The results showed that the marigold extract reduced Zn and P balances and tended to lower the balance of ash and Mg, and the ATTD of Zn and Mg. Diets with linseed oil increased the ATTD of acid detergent fiber and reduced the ATTD of the organic residue and Cu. No differences in the bone characteristics of tibia were observed between treatments. These results indicated that the inclusion of marigold extract had a negative effect on the Zn and P balance, and that neither extract had any major effect on the digestion and utilization of energy and other investigated nutrients, or on bone mineralization, irrespective of the oil source included in the diet.
Collapse
|
11
|
Sun X, Zhang L, Li P, Xu B, Ma F, Zhang Q, Zhang W. Fatty acid profiles based adulteration detection for flaxseed oil by gas chromatography mass spectrometry. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.02.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|