1
|
Central Interaction Between L-Ornithine and Neuropeptide Y in the Regulation of Feeding Behavior of Neonatal Chicks. J Poult Sci 2023; 60:2023004. [PMID: 36756047 PMCID: PMC9884638 DOI: 10.2141/jpsa.2023004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 01/25/2023] Open
Abstract
Ornithine has been identified as a potential satiety signal in the brains of neonatal chicks. We hypothesized that brain nutrient signals such as amino acids and appetite-related neuropeptides synergistically regulate food intake. To test this hypothesis, we investigated the interaction between neuropeptide Y (NPY) and ornithine in the control of feeding behavior in chicks and the associated central and peripheral amino acid metabolic processes. Five-day-old chicks were intracerebroventricularly injected with saline, NPY (375 pmol), or NPY plus ornithine (2 or 4 μmol) at 10 μl per chick, and then subjected to ad libitum feeding conditions; food intake was monitored for 30 min after injection. Brain and plasma samples were collected after the experiment to determine free amino acid concentrations. Co-injection of NPY and ornithine significantly attenuated the orexigenic effect induced by NPY in a dose-dependent manner. Central NPY significantly decreased amino adipic acid, asparagine, γ-aminobutyric acid, leucine, phenylalanine, tyrosine, and isoleucine levels, but significantly increased lysine levels in the brain. Co-injection of NPY and ornithine significantly increased ornithine and proline levels in all examined brain regions, but decreased diencephalic tryptophan and glycine levels compared with those of the control and NPY-alone groups. Co-injection of NPY and high-dose ornithine significantly decreased methionine levels in all brain regions. Central NPY significantly suppressed the plasma concentrations of amino acids, including proline, asparagine, methionine, phenylalanine, tyrosine, leucine, isoleucine, glycine, glutamine, alanine, arginine, and valine, and this reduction was greater when NPY was co-injected with ornithine. These results suggest that brain ornithine interacts with NPY to regulate food intake in neonatal chicks. Furthermore, central NPY may induce an anabolic effect that is modified by co-injection with ornithine.
Collapse
|
2
|
Abstract
D-Amino acids occur in modest amounts in bacterial proteins and the bacterial cell wall, as well as in peptide antibiotics. Therefore, D-amino acids present in terrestrial vertebrates were believed to be derived from bacteria present in the gastrointestinal tract or fermented food. However, both exogenous and endogenous origins of D-amino acids have been confirmed. Terrestrial vertebrates possess an enzyme for converting certain L-isomers to D-isomers. D-Amino acids have nutritional aspects and functions, some are similar to, and others are different from those of L-isomers. Here, we describe the nutritional characteristics and functions of D-amino acids and also discuss the future perspectives of D-amino acid nutrition in the chicken.
Collapse
|
3
|
Li Y, Han H, Yin J, He X, Tang Z, Li T, Yao K, Yin Y. d- andl-Aspartate regulates growth performance, inflammation and intestinal microbial community in young pigs. Food Funct 2019; 10:1028-1037. [DOI: 10.1039/c8fo01410h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dietary 1%d-Asp andl-Asp affect the growth performance and inflammation in young pigs, which might be associated with gut microbiota.
Collapse
Affiliation(s)
- Yuying Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Changsha
| | - Hui Han
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Changsha
| | - Jie Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Changsha
| | - Xingguo He
- Changsha LvYe Bio-technology Co
- Ltd
- Changsha
- China
| | - Zhiyi Tang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Changsha
| | - Tiejun Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Changsha
| | - Kang Yao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Changsha
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Changsha
| |
Collapse
|
4
|
Li Y, Han H, Yin J, Li T, Yin Y. Role of D-aspartate on biosynthesis, racemization, and potential functions: A mini-review. ACTA ACUST UNITED AC 2018; 4:311-315. [PMID: 30175260 PMCID: PMC6116324 DOI: 10.1016/j.aninu.2018.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 12/28/2022]
Abstract
D-aspartate, a natural and endogenous amino acid, widely exists in animal tissues and can be synthesized through aspartate racemase and transformed by D-aspartate oxidase (DDO). D-aspartate mainly serves as a neurotransmitter and has been demonstrated to exhibit various physiological functions, including nutritional potential, regulation on reproduction and hormone biology, and neuron protection. This article mainly reviews the synthesis, racemization, and physiological functions of D-aspartate with emphasis on the potential in diseases.
Collapse
Affiliation(s)
- Yuying Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hui Han
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jie Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Tiejun Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
- Corresponding authors.
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
- Corresponding authors.
| |
Collapse
|
5
|
Orally Administered D-Aspartate Depresses Rectal Temperature and Alters Plasma Triacylglycerol and Glucose Concentrations in Broiler Chicks. J Poult Sci 2017; 54:205-211. [PMID: 32908427 PMCID: PMC7477212 DOI: 10.2141/jpsa.0160010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
L-Aspartate (L-Asp), D-aspartate (D-Asp) or their chemical conjugates plays important physiological roles in regulating food intake, plasma metabolites and thermoregulation in animals. However, there are very few studies available in layers and no reports have been found in broilers. Broilers are very important commercial birds for meat production, so effects of L- or D-Asp in broilers would provide new physiological insight of this strain. Therefore, the purpose of this study was to determine the effect of oral administration of L- or D-Asp on feed intake, rectal temperature and some plasma metabolites in broiler chicks. Broiler chicks (5 days old) were orally administered with different doses (0, 3.75, 7.5 and 15 mmol/kg body weight) of L- or D-Asp. At 120 min after administration of L- or D-Asp, the blood was immediately collected through the jugular vein. The rectal temperature of chicks was measured at 30, 60 and 120 min after administration using a digital thermometer with an accuracy of ±0.1°C, by inserting the thermistor probe in the rectum to a depth of 2 cm. A repeated-measures two-way ANOVA was applied for the analysis of feed intake and rectal temperature. Plasma metabolites were statistically analyzed by one-way ANOVA and regression equations. The study showed that oral administration of both L- and D-Asp did not alter feed intake. However, D-Asp, but not L-Asp, dose-dependently decreased the rectal temperature in chicks. It was also found that D-Asp increased plasma glucose and decreased triacylglycerol concentrations. The changes in plasma metabolites further indicate that D-Asp treatment modulates the energy metabolism in broiler chicks. In conclusion, D-Asp may be a beneficial nutrient not only for layers but also for broilers, since orally administered D-Asp lowered rectal temperature without reducing feed intake.
Collapse
|
6
|
Abstract
Recently, it has been found that the gut microbiota influences functions of the host brain by affecting monoamine metabolism. The present study focused on the relationship between the gut microbiota and the brain amino acids. Specific pathogen-free (SPF) and germ-free (GF) mice were used as experimental models. Plasma and brain regions were sampled from mice at 7 and 16 weeks of age, and analysed for free d- and l-amino acids, which are believed to affect many physiological functions. At 7 weeks of age, plasma concentrations of d-aspartic acid (d-Asp), l-alanine (l-Ala), l-glutamine (l-Gln) and taurine were higher in SPF mice than in GF mice, but no differences were found at 16 weeks of age. Similar patterns were observed for the concentrations of l-Asp in striatum, cerebral cortex and hippocampus, and l-arginine (l-Arg), l-Ala and l-valine (l-Val) in striatum. In addition, the concentrations of l-Asp, d-Ala, l-histidine, l-isoleucine (l-Ile), l-leucine (l-Leu), l-phenylalanine and l-Val were significantly higher in plasma of SPF mice when compared with those of GF mice. The concentrations of l-Arg, l-Gln, l-Ile and l-Leu were significantly higher in SPF than in GF mice, but those of d-Asp, d-serine and l-serine were higher in some brain regions of GF mice than in those of SPF mice. In conclusion, the concentration of amino acids in the host brain seems to be dependent on presence of the gut microbiota. Amino acid metabolism in the host brain may be modified by manipulating microbiota communities.
Collapse
|
7
|
Erwan E, Chowdhury VS, Nagasawa M, Goda R, Otsuka T, Yasuo S, Furuse M. Central injection of L- and D-aspartate attenuates isolation-induced stress behavior in chicks possibly through different mechanisms. Eur J Pharmacol 2014; 736:138-42. [DOI: 10.1016/j.ejphar.2014.04.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/02/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
|
8
|
Oral administration of D-aspartate, but not L-aspartate, depresses rectal temperature and alters plasma metabolites in chicks. Life Sci 2014; 109:65-71. [PMID: 24881518 DOI: 10.1016/j.lfs.2014.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 05/14/2014] [Accepted: 05/19/2014] [Indexed: 11/22/2022]
Abstract
AIMS L-Aspartate (L-Asp) and D-aspartate (D-Asp) are physiologically important amino acids in mammals and birds. However, the functions of these amino acids have not yet been fully understood. In this study, we therefore examined the effects of L-Asp and D-Asp in terms of regulating body temperature, plasma metabolites and catecholamines in chicks. MAIN METHODS Chicks were first orally administered with different doses (0, 3.75, 7.5 and 15 mmol/kg body weight) of L- or D-Asp to monitor the effects of these amino acids on rectal temperature during 120 min of the experimental period. KEY FINDINGS Oral administration of D-Asp, but not of L-Asp, linearly decreased the rectal temperature in chicks. Importantly, orally administered D-Asp led to a significant reduction in body temperature in chicks even under high ambient temperature (HT) conditions. However, centrally administered D-Asp did not significantly influence the body temperature in chicks. As for plasma metabolites and catecholamines, orally administered D-Asp led to decreased triacylglycerol and uric acid concentrations and increased glucose and chlorine concentrations but did not alter plasma catecholamines. SIGNIFICANCE These results suggest that oral administration of D-Asp may play a potent role in reducing body temperature under both normal and HT conditions. The alteration of plasma metabolites further indicates that D-Asp may contribute to the regulation of metabolic activity in chicks.
Collapse
|
9
|
Erwan E, Chowdhury V, Ito K, Furuse M. Lauroyl-l-aspartate decreased food intake and body temperature in neonatal chicks. Pharmacol Biochem Behav 2013; 113:7-11. [DOI: 10.1016/j.pbb.2013.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/30/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
|