1
|
de Azevedo DQ, Campioni BM, Pedroz Lima FA, Medina-Franco JL, Castilho RO, Maltarollo VG. A critical assessment of bioactive compounds databases. Future Med Chem 2024; 16:1029-1051. [PMID: 38910575 PMCID: PMC11221550 DOI: 10.1080/17568919.2024.2342203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/03/2024] [Indexed: 06/25/2024] Open
Abstract
Compound databases (DBs) are essential tools for drug discovery. The number of DBs in public domain is increasing, so it is important to analyze these DBs. In this article, the main characteristics of 64 DBs will be presented. The methodological strategy used was a literature search. To analyze the characteristics obtained in the review, the DBs were categorized into two subsections: Open Access and Commercial DBs. Open access includes generalist DBs (containing compounds of diverse origins), DBs with specific applicability, DBs exclusive to natural products and those containing compounds with specific pharmacological action. The literature review showed that there are challenges to making these repositories available, such as standardizing information curation practices and funding to maintain and sustain them.
Collapse
Affiliation(s)
- Daniela Quadros de Azevedo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| | - Beatriz Mattos Campioni
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| | - Felipe Augusto Pedroz Lima
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, 04510, Mexico
| | - Rachel Oliveira Castilho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| |
Collapse
|
2
|
Talevi A, Morales JF, Hather G, Podichetty JT, Kim S, Bloomingdale PC, Kim S, Burton J, Brown JD, Winterstein AG, Schmidt S, White JK, Conrado DJ. Machine Learning in Drug Discovery and Development Part 1: A Primer. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2020; 9:129-142. [PMID: 31905263 PMCID: PMC7080529 DOI: 10.1002/psp4.12491] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/10/2019] [Indexed: 01/13/2023]
Abstract
Artificial intelligence, in particular machine learning (ML), has emerged as a key promising pillar to overcome the high failure rate in drug development. Here, we present a primer on the ML algorithms most commonly used in drug discovery and development. We also list possible data sources, describe good practices for ML model development and validation, and share a reproducible example. A companion article will summarize applications of ML in drug discovery, drug development, and postapproval phase.
Collapse
Affiliation(s)
- Alan Talevi
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Faculty of Exact Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina
| | - Juan Francisco Morales
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Faculty of Exact Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina
| | - Gregory Hather
- Statistical & Quantitative Sciences, Takeda Pharmaceuticals, Cambridge, Massachusetts, USA
| | | | - Sarah Kim
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Peter C Bloomingdale
- Quantitative Pharmacology and Pharmacometrics, Merck & Co. Inc, Kenilworth, New Jersey, USA
| | | | - Jackson Burton
- Quantitative Medicine, Critical Path Institute, Tucson, Arizona, USA
| | - Joshua D Brown
- Center for Drug Evaluation and Safety, Department of Pharmaceutical Outcomes and Policy, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Almut G Winterstein
- Center for Drug Evaluation and Safety, Department of Pharmaceutical Outcomes and Policy, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Stephan Schmidt
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Jensen Kael White
- Quantitative Medicine, Critical Path Institute, Tucson, Arizona, USA
| | | |
Collapse
|
3
|
Yura K. Preface of Special Issue "Databases". Biophys Physicobiol 2018; 15:86. [PMID: 29904620 PMCID: PMC5992870 DOI: 10.2142/biophysico.15.0_86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Kei Yura
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
- Center for Informational Biology, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
- School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|