1
|
Dendooven T, Yatskevich S, Burt A, Chen ZA, Bellini D, Rappsilber J, Kilmartin JV, Barford D. Structure of the native γ-tubulin ring complex capping spindle microtubules. Nat Struct Mol Biol 2024; 31:1134-1144. [PMID: 38609662 PMCID: PMC11257966 DOI: 10.1038/s41594-024-01281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Microtubule (MT) filaments, composed of α/β-tubulin dimers, are fundamental to cellular architecture, function and organismal development. They are nucleated from MT organizing centers by the evolutionarily conserved γ-tubulin ring complex (γTuRC). However, the molecular mechanism of nucleation remains elusive. Here we used cryo-electron tomography to determine the structure of the native γTuRC capping the minus end of a MT in the context of enriched budding yeast spindles. In our structure, γTuRC presents a ring of γ-tubulin subunits to seed nucleation of exclusively 13-protofilament MTs, adopting an active closed conformation to function as a perfect geometric template for MT nucleation. Our cryo-electron tomography reconstruction revealed that a coiled-coil protein staples the first row of α/β-tubulin of the MT to alternating positions along the γ-tubulin ring of γTuRC. This positioning of α/β-tubulin onto γTuRC suggests a role for the coiled-coil protein in augmenting γTuRC-mediated MT nucleation. Based on our results, we describe a molecular model for budding yeast γTuRC activation and MT nucleation.
Collapse
Affiliation(s)
| | - Stanislau Yatskevich
- MRC Laboratory of Molecular Biology, Cambridge, UK.
- Genentech, South San Francisco, CA, USA.
| | - Alister Burt
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Genentech, South San Francisco, CA, USA
| | - Zhuo A Chen
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
| | - Dom Bellini
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Juri Rappsilber
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité, Universitätsmedizin Berlin, Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
2
|
Nieto-Panqueva F, Vázquez-Acevedo M, Hamel PP, González-Halphen D. Identification of factors limiting the allotopic production of the Cox2 subunit of yeast cytochrome c oxidase. Genetics 2024; 227:iyae058. [PMID: 38626319 PMCID: PMC11492495 DOI: 10.1093/genetics/iyae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/18/2024] Open
Abstract
Mitochondrial genes can be artificially relocalized in the nuclear genome in a process known as allotopic expression, such is the case of the mitochondrial cox2 gene, encoding subunit II of cytochrome c oxidase (CcO). In yeast, cox2 can be allotopically expressed and is able to restore respiratory growth of a cox2-null mutant if the Cox2 subunit carries the W56R substitution within the first transmembrane stretch. However, the COX2W56R strain exhibits reduced growth rates and lower steady-state CcO levels when compared to wild-type yeast. Here, we investigated the impact of overexpressing selected candidate genes predicted to enhance internalization of the allotopic Cox2W56R precursor into mitochondria. The overproduction of Cox20, Oxa1, and Pse1 facilitated Cox2W56R precursor internalization, improving the respiratory growth of the COX2W56R strain. Overproducing TIM22 components had a limited effect on Cox2W56R import, while overproducing TIM23-related components showed a negative effect. We further explored the role of the Mgr2 subunit within the TIM23 translocator in the import process by deleting and overexpressing the MGR2 gene. Our findings indicate that Mgr2 is instrumental in modulating the TIM23 translocon to correctly sort Cox2W56R. We propose a biogenesis pathway followed by the allotopically produced Cox2 subunit based on the participation of the 2 different structural/functional forms of the TIM23 translocon, TIM23MOTOR and TIM23SORT, that must follow a concerted and sequential mode of action to insert Cox2W56R into the inner mitochondrial membrane in the correct Nout-Cout topology.
Collapse
Affiliation(s)
- Felipe Nieto-Panqueva
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, 04510 D.F. (Mexico), México
| | - Miriam Vázquez-Acevedo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, 04510 D.F. (Mexico), México
| | - Patrice P Hamel
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, 582 Aronoff laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA
- School of BioScience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632 014, India
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, 04510 D.F. (Mexico), México
| |
Collapse
|
3
|
Grubb J, Bishop DK. Chk2 homologue Mek1 limits Exo1-dependent DNA end resection during meiotic recombination in S. cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589255. [PMID: 38645032 PMCID: PMC11030327 DOI: 10.1101/2024.04.12.589255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The conserved Rad2/XPG family 5'-3' exonuclease, Exonuclease 1 (Exo1), plays many roles in DNA metabolism including during resolution of DNA double strand breaks (DSBs) via homologous recombination. Prior studies provided evidence that the end-resection activity of Exo1 is downregulated in yeast and mammals by Cdk1/2 family cyclin-dependent and checkpoint kinases, including budding yeast kinase Rad53 which functions in mitotic cells. Here we provide evidence that the master meiotic kinase Mek1, a paralogue of Rad53, limits 5'-3' single strand resection at the sites of programmed meiotic DNA breaks. Mutational analysis suggests that the mechanism of Exo1 suppression by Mek1 differs from that of Rad53. Article Summary Meiotic recombination involves formation of programmed DNA double strand breaks followed by 5' to 3' single strand specific resection by nucleases including Exo1. We find that the activity of budding yeast Exo1 is downregulated during meiotic recombination by the master meiotic kinase Mek1. The mechanism of downregulation of Exo1 by Mek1 in meiosis does not depend on the same phospho-sites as those used by the mitotic kinase Rad53, a relative of Mek1 that downregulates Exo1 in mitosis.
Collapse
|
4
|
Branco P, Carvalho L, Prista C, Albergaria H. Effect of overexpression of partial TDH1 and TDH2/3 gene sequences in a starter strain of industrial bioethanol fermentation on the Brettanomyces bruxellensis contaminant growth. Lett Appl Microbiol 2023; 76:ovad141. [PMID: 38115640 DOI: 10.1093/lambio/ovad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Selected Saccharomyces cerevisiae strains, such as the commercial Ethanol-Red (ER) strain, are used as starters in the bioethanol industry. Yet, bioethanol fermentations are prone to microbial contaminations, mainly by Brettanomyces bruxellensis and lactic acid bacteria. Chemicals, such as sulphuric acid and antibiotics, are commonly used to combat those contaminations, but they have negative environmental impacts. Recently, ER strain was found to secrete antimicrobial peptides (AMPs) active against B. bruxellensis. Therefore, the partial TDH1 and TDH2/3 genes sequences that codify those AMPs were inserted into the pSR41k plasmid and cloned in ER strains. The relative expression levels (plasmidic/genomic) of those sequences in the respective modified ER strains were quantified by real-time quantitative polimerase chain reaction (RT-qPCR), confirming their overexpression. The effect of the modified strains on B. bruxellensis (Bb) growth was then evaluated during synthetic must (SM) and carob syrup (CS) fermentations, co-inoculated with 105 cells ml-1 of ER and Bb in SM and with 106 of ER and 5 × 103 cells ml-1 of Bb in CS. Results showed that modified ER strains exerted a much higher inhibitory effect against B. bruxellensis (72-fold in SM and 10-fold in CS) than the non-modified ER strain. In those fermentations, 90-100 g l-1 of ethanol was produced in 3-6 days.
Collapse
Affiliation(s)
- Patrícia Branco
- Unit of Bioenergy and Biorefinery, LNEG, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Biomedical Research Group (BioRG), School of Engineering, Lusófona University, 1749-024 Lisboa, Portugal
| | - Luísa Carvalho
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Catarina Prista
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Helena Albergaria
- Unit of Bioenergy and Biorefinery, LNEG, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
| |
Collapse
|
5
|
Kritsiligkou P, Bosch K, Shen TK, Meurer M, Knop M, Dick TP. Proteome-wide tagging with an H 2O 2 biosensor reveals highly localized and dynamic redox microenvironments. Proc Natl Acad Sci U S A 2023; 120:e2314043120. [PMID: 37991942 PMCID: PMC10691247 DOI: 10.1073/pnas.2314043120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/20/2023] [Indexed: 11/24/2023] Open
Abstract
Hydrogen peroxide (H2O2) sensing and signaling involves the reversible oxidation of particular thiols on particular proteins to modulate protein function in a dynamic manner. H2O2 can be generated from various intracellular sources, but their identities and relative contributions are often unknown. To identify endogenous "hotspots" of H2O2 generation on the scale of individual proteins and protein complexes, we generated a yeast library in which the H2O2 sensor HyPer7 was fused to the C-terminus of all protein-coding open reading frames (ORFs). We also generated a control library in which a redox-insensitive mutant of HyPer7 (SypHer7) was fused to all ORFs. Both libraries were screened side-by-side to identify proteins located within H2O2-generating environments. Screening under a variety of different metabolic conditions revealed dynamic changes in H2O2 availability highly specific to individual proteins and protein complexes. These findings suggest that intracellular H2O2 generation is much more localized and functionally differentiated than previously recognized.
Collapse
Affiliation(s)
- Paraskevi Kritsiligkou
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance69120Heidelberg, Germany
| | - Katharina Bosch
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance69120Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120Heidelberg, Germany
| | - Tzu Keng Shen
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance69120Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120Heidelberg, Germany
| | - Matthias Meurer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120Heidelberg, Germany
- Research Group Cell Morphogenesis and Signal Transduction, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120Heidelberg, Germany
| | - Michael Knop
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120Heidelberg, Germany
- Research Group Cell Morphogenesis and Signal Transduction, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120Heidelberg, Germany
| | - Tobias P. Dick
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance69120Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120Heidelberg, Germany
| |
Collapse
|
6
|
Persson VC, Perruca Foncillas R, Anderes TR, Ginestet C, Gorwa-Grauslund M. Impact of xylose epimerase on sugar assimilation and sensing in recombinant Saccharomyces cerevisiae carrying different xylose-utilization pathways. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:168. [PMID: 37932829 PMCID: PMC10629123 DOI: 10.1186/s13068-023-02422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/28/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Over the last decades, many strategies to procure and improve xylose consumption in Saccharomyces cerevisiae have been reported. This includes the introduction of efficient xylose-assimilating enzymes, the improvement of xylose transport, or the alteration of the sugar signaling response. However, different strain backgrounds are often used, making it difficult to determine if the findings are transferrable both to other xylose-consuming strains and to other xylose-assimilation pathways. For example, the influence of anomerization rates between α- and β-xylopyranose in pathway optimization and sugar sensing is relatively unexplored. RESULTS In this study, we tested the effect of expressing a xylose epimerase in S. cerevisiae strains carrying different xylose-consuming routes. First, XIs originating from three different species in isogenic S. cerevisiae strains were tested and the XI from Lachnoclostridium phytofermentans was found to give the best performance. The benefit of increasing the anomerization rate of xylose by adding a xylose epimerase to the XI strains was confirmed, as higher biomass formation and faster xylose consumption were obtained. However, the impact of xylose epimerase was XI-dependent, indicating that anomer preference may differ from enzyme to enzyme. The addition of the xylose epimerase in xylose reductase/xylitol dehydrogenase (XR/XDH)-carrying strains gave no improvement in xylose assimilation, suggesting that the XR from Spathaspora passalidarum had no anomer preference, in contrast to other reported XRs. The reduction in accumulated xylitol that was observed when the xylose epimerase was added may be associated with the upregulation of genes encoding endogenous aldose reductases which could be affected by the anomerization rate. Finally, xylose epimerase addition did not affect the sugar signaling, whereas the type of xylose pathway (XI vs. XR/XDH) did. CONCLUSIONS Although xylose anomer specificity is often overlooked, the addition of xylose epimerase should be considered as a key engineering step, especially when using the best-performing XI enzyme from L. phytofermentans. Additional research into the binding mechanism of xylose is needed to elucidate the enzyme-specific effect and decrease in xylitol accumulation. Finally, the differences in sugar signaling responses between XI and XR/XDH strains indicate that either the redox balance or the growth rate impacts the SNF1/Mig1p sensing pathway.
Collapse
Affiliation(s)
- Viktor C Persson
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | | | - Tegan R Anderes
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Clément Ginestet
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Marie Gorwa-Grauslund
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden.
| |
Collapse
|
7
|
Gu L, Zhang R, Fan X, Wang Y, Ma K, Jiang J, Li G, Wang H, Fan F, Zhang X. Development of CRISPR/Cas9-Based Genome Editing Tools for Polyploid Yeast Cyberlindnera jadinii and Its Application in Engineering Heterologous Steroid-Producing Strains. ACS Synth Biol 2023; 12:2947-2960. [PMID: 37816156 DOI: 10.1021/acssynbio.3c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
In this study, a suite of efficient CRISPR/Cas9 tools was developed to overcome the genetic manipulation challenges posed by the polyploid genome of industrial yeast Cyberlindnera jadinii. The developed CRISPR/Cas9 system can achieve a 100% single-gene knockdown efficiency in strain NBRC0988. Moreover, the integration of a single exogenous gene into the target locus using a 50 bp homology arm achieved near-100% efficiency. The efficiency of simultaneous integration of three genes into the chromosome is strongly influenced by the length of the homology arm, with the highest integration efficiency of 62.5% obtained when selecting a homology arm of about 500 bp. By utilizing the CRISPR/Cas system, this study demonstrated the potential of C. jadinii in producing heterologous sterols. Through shake-flask fermentation, the engineered strains produced 92.1 and 81.8 mg/L of campesterol and cholesterol, respectively. Furthermore, the production levels of these two sterols were further enhanced through high-cell-density fed-batch fermentation in a 5 L bioreactor. The highest titer of campesterol reached 807 mg/L [biomass OD600 = 294, productivity of 6.73 mg/(L·h)]. The titer of cholesterol reached 1.52 g/L [biomass OD600 = 380, productivity of 9.06 mg/(L·h)], marking the first gram-scale production of steroidal compounds in C. jadinii.
Collapse
Affiliation(s)
- Lishan Gu
- College of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Rongxin Zhang
- College of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Xuqian Fan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China
| | - Yu Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, 409 Glorious Road, Beichen District, Tianjin 300134, P. R. China
| | - Kaiyu Ma
- College of Biotechnology, Tianjin University of Science and Technology, No. 29 of 13th Avenue, TEDA, Tianjin 300457, P. R. China
| | - Jingjing Jiang
- College of Biotechnology and Food Science, Tianjin University of Commerce, 409 Glorious Road, Beichen District, Tianjin 300134, P. R. China
| | - Gen Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China
| | - Honglei Wang
- College of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Feiyu Fan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China
| |
Collapse
|
8
|
Radmall KS, Shukla PK, Leng AM, Chandrasekharan MB. Structure-function analysis of histone H2B and PCNA ubiquitination dynamics using deubiquitinase-deficient strains. Sci Rep 2023; 13:16731. [PMID: 37794081 PMCID: PMC10550974 DOI: 10.1038/s41598-023-43969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023] Open
Abstract
Post-translational covalent conjugation of ubiquitin onto proteins or ubiquitination is important in nearly all cellular processes. Steady-state ubiquitination of individual proteins in vivo is maintained by two countering enzymatic activities: conjugation of ubiquitin by E1, E2 and E3 enzymes and removal by deubiquitinases. Here, we deleted one or more genes encoding deubiquitinases in yeast and evaluated the requirements for ubiquitin conjugation onto a target protein. Our proof-of-principle studies demonstrate that absence of relevant deubiquitinase(s) provides a facile and versatile method that can be used to study the nuances of ubiquitin conjugation and deubiquitination of target proteins in vivo. We verified our method using mutants lacking the deubiquitinases Ubp8 and/or Ubp10 that remove ubiquitin from histone H2B or PCNA. Our studies reveal that the C-terminal coiled-domain of the adapter protein Lge1 and the C-terminal acidic tail of Rad6 E2 contribute to monoubiquitination of histone H2BK123, whereas the distal acidic residues of helix-4 of Rad6, but not the acidic tail, is required for monoubiquitination of PCNA. Further, charged substitution at alanine-120 in the H2B C-terminal helix adversely affected histone H2BK123 monoubiquitination by inhibiting Rad6-Bre1-mediated ubiquitin conjugation and by promoting Ubp8/Ubp10-mediated deubiquitination. In summary, absence of yeast deubiquitinases UBP8 and/or UBP10 allows uncovering the regulation of and requirements for ubiquitin addition and removal from their physiological substrates such as histone H2B or PCNA in vivo.
Collapse
Affiliation(s)
- Kaitlin S Radmall
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Prakash K Shukla
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Andrew M Leng
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
- Huntsman Cancer Institute, University of Utah School of Medicine, 2000, Circle of Hope, Room 3715, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
9
|
Radmall KS, Shukla PK, Leng AM, Chandrasekharan MB. Structure-function analysis of histone H2B and PCNA ubiquitination dynamics using deubiquitinase-deficient strains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.18.545485. [PMID: 37873190 PMCID: PMC10592830 DOI: 10.1101/2023.06.18.545485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Post-translational covalent conjugation of ubiquitin onto proteins or ubiquitination is important in nearly all cellular processes. Steady-state ubiquitination of individual proteins in vivo is maintained by two countering enzymatic activities: conjugation of ubiquitin by E1, E2 and E3 enzymes and removal by deubiquitinases. Here, we deleted one or more genes encoding deubiquitinases in yeast and evaluated the requirements for ubiquitin conjugation onto a target protein. Our proof-of-principle studies demonstrate that absence of relevant deubiquitinase(s) provides a facile and versatile method that can be used to study the nuances of ubiquitin conjugation and deubiquitination of target proteins in vivo . We verified our method using mutants lacking the deubiquitinases Ubp8 and/or Ubp10 that remove ubiquitin from histone H2B or PCNA. Our studies reveal that the C-terminal coiled-domain of the adapter protein Lge1 and the C-terminal acidic tail of Rad6 E2 contribute to monoubiquitination of histone H2BK123, whereas the distal acidic residues of helix-4 of Rad6, but not the acidic tail, is required for monoubiquitination of PCNA. Further, charged substitution at alanine-120 in the H2B C-terminal helix adversely affected histone H2BK123 monoubiquitination by inhibiting Rad6-Bre1-mediated ubiquitin conjugation and by promoting Ubp8/Ubp10-mediated deubiquitination. In summary, absence of yeast deubiquitinases UBP8 and/or UBP10 allows uncovering the regulation of and requirements for ubiquitin addition and removal from their physiological substrates such as histone H2B or PCNA in vivo .
Collapse
|
10
|
Antoniuk-Majchrzak J, Enkhbaatar T, Długajczyk A, Kaminska J, Skoneczny M, Klionsky DJ, Skoneczna A. Stability of Rad51 recombinase and persistence of Rad51 DNA repair foci depends on post-translational modifiers, ubiquitin and SUMO. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119526. [PMID: 37364618 DOI: 10.1016/j.bbamcr.2023.119526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
The DNA double-strand breaks are particularly deleterious, especially when an error-free repair pathway is unavailable, enforcing the error-prone recombination pathways to repair the lesion. Cells can resume the cell cycle but at the expense of decreased viability due to genome rearrangements. One of the major players involved in recombinational repair of DNA damage is Rad51 recombinase, a protein responsible for presynaptic complex formation. We previously showed that an increased level of this protein promotes the usage of illegitimate recombination. Here we show that the level of Rad51 is regulated via the ubiquitin-dependent proteolytic pathway. The ubiquitination of Rad51 depends on multiple E3 enzymes, including SUMO-targeted ubiquitin ligases. We also demonstrate that Rad51 can be modified by both ubiquitin and SUMO. Moreover, its modification with ubiquitin may lead to opposite effects: degradation dependent on Rad6, Rad18, Slx8, Dia2, and the anaphase-promoting complex, or stabilization dependent on Rsp5. We also show that post-translational modifications with SUMO and ubiquitin affect Rad51's ability to form and disassemble DNA repair foci, respectively, influencing cell cycle progression and cell viability in genotoxic stress conditions. Our data suggest the existence of a complex E3 ligases network that regulates Rad51 recombinase's turnover, its molecular activity, and access to DNA, limiting it to the proportions optimal for the actual cell cycle stage and growth conditions, e.g., stress. Dysregulation of this network would result in a drop in cell viability due to uncontrolled genome rearrangement in the yeast cells. In mammals would promote the development of genetic diseases and cancer.
Collapse
Affiliation(s)
| | - Tuguldur Enkhbaatar
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Anna Długajczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Marek Skoneczny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Daniel J Klionsky
- Life Sciences Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland.
| |
Collapse
|
11
|
Hung PH, Liao CW, Ko FH, Tsai HK, Leu JY. Differential Hsp90-dependent gene expression is strain-specific and common among yeast strains. iScience 2023; 26:106635. [PMID: 37138775 PMCID: PMC10149407 DOI: 10.1016/j.isci.2023.106635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/21/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023] Open
Abstract
Enhanced phenotypic diversity increases a population's likelihood of surviving catastrophic conditions. Hsp90, an essential molecular chaperone and a central network hub in eukaryotes, has been observed to suppress or enhance the effects of genetic variation on phenotypic diversity in response to environmental cues. Because many Hsp90-interacting genes are involved in signaling transduction pathways and transcriptional regulation, we tested how common Hsp90-dependent differential gene expression is in natural populations. Many genes exhibited Hsp90-dependent strain-specific differential expression in five diverse yeast strains. We further identified transcription factors (TFs) potentially contributing to variable expression. We found that on Hsp90 inhibition or environmental stress, activities or abundances of Hsp90-dependent TFs varied among strains, resulting in differential strain-specific expression of their target genes, which consequently led to phenotypic diversity. We provide evidence that individual strains can readily display specific Hsp90-dependent gene expression, suggesting that the evolutionary impacts of Hsp90 are widespread in nature.
Collapse
Affiliation(s)
- Po-Hsiang Hung
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Wei Liao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Fu-Hsuan Ko
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Huai-Kuang Tsai
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
- Corresponding author
| | - Jun-Yi Leu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
- Corresponding author
| |
Collapse
|
12
|
Kong KYE, Reinbold C, Knop M, Khmelinskii A. Building yeast libraries to dissect terminal degrons with fluorescent timers. Methods Enzymol 2023. [PMID: 37532405 DOI: 10.1016/bs.mie.2023.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Selective degradation of unnecessary or abnormal proteins by the ubiquitin-proteasome system is an essential part of proteostasis. Ubiquitin ligases recognize substrates of selective protein degradation and modify them with polyubiquitin chains, which mark them for proteasomal degradation. Substrate recognition by ubiquitin ligases often involves degradation signals or degrons, which are typically short linear motifs found in intrinsically disordered regions, e.g., at protein termini. However, specificity in selective protein degradation is generally not well understood, as for most ubiquitin ligases no degrons have been identified thus far. To address this limitation, high-throughput mutagenesis approaches, such as multiplexed protein stability (MPS) profiling, have been developed, enabling systematic surveys of degrons in vivo or allowing to define degron motifs recognized by different ubiquitin ligases. In MPS profiling, thousands of short peptides can be assessed in parallel for their ability to trigger degradation of a fluorescent timer reporter. Here, we describe common types of libraries used to identify and dissect degrons located at protein termini using MPS profiling in budding yeast, and provide protocols for their construction.
Collapse
|
13
|
Coimbra L, Malan K, Fagúndez A, Guigou M, Lareo C, Fernández B, Pratto M, Batista S. Fermentation of D-xylose to Ethanol by Saccharomyces cerevisiae CAT-1 Recombinant Strains. BIOENERGY RESEARCH 2023; 16:1001-1012. [PMID: 36248719 PMCID: PMC9540035 DOI: 10.1007/s12155-022-10514-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/27/2022] [Indexed: 05/09/2023]
Abstract
Ethanol production by the D-xylose fermentation of lignocellulosic biomass would augment environmental sustainability by increasing the yield of biofuel obtained per cultivated area. A set of recombinant strains derived from the industrial strain Saccharomyces cerevisiae CAT-1 was developed for this purpose. First, two recombinant strains were obtained by the chromosomal insertion of genes involved in the assimilation and transport of D-xylose (Gal2-N376F). Strain CAT-1-XRT was developed with heterologous genes for D-xylose metabolism from the oxo-reductive pathway of Scheffersomyces stipitis (XYL1-K270R, XYL2); and strain CAT-1-XIT, with D-xylose isomerase (xylA gene, XI) from Streptomyces coelicolor. Moreover, both recombinant strains contained extra copies of homologous genes for xylulose kinase (XK) and transaldolase (TAL1). Furthermore, plasmid (pRS42K::XI) was constructed with xylA from Piromyces sp. transferred to CAT-1, CAT-1-XRT, and CAT-1-XIT, followed by an evolution protocol. After 10 subcultures, CAT-1-XIT (pRS42K::XI) consumed 74% of D-xylose, producing 12.6 g/L ethanol (0.31 g ethanol/g D-xylose). The results of this study show that CAT-1-XIT (pRS42K::XI) is a promising recombinant strain for the efficient utilization of D-xylose to produce ethanol from lignocellulosic materials.
Collapse
Affiliation(s)
- Lucía Coimbra
- Laboratorio de Microbiología Molecular, Departamento BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, CP Uruguay
| | - Karen Malan
- Laboratorio de Microbiología Molecular, Departamento BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, CP Uruguay
| | - Alejandra Fagúndez
- Laboratorio de Microbiología Molecular, Departamento BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, CP Uruguay
| | - Mairan Guigou
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de La República. Julio Herrera Y Reissig 565, 11300 Montevideo, CP Uruguay
| | - Claudia Lareo
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de La República. Julio Herrera Y Reissig 565, 11300 Montevideo, CP Uruguay
| | - Belén Fernández
- Laboratorio de Microbiología Molecular, Departamento BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, CP Uruguay
| | - Martín Pratto
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de La República. Julio Herrera Y Reissig 565, 11300 Montevideo, CP Uruguay
| | - Silvia Batista
- Laboratorio de Microbiología Molecular, Departamento BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, CP Uruguay
| |
Collapse
|
14
|
Production of colanic acid hydrolysate and its use in the production of fucosylated oligosaccharides by engineered Saccharomyces cerevisiae. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Tan T, Tan Y, Wang Y, Yang X, Zhai B, Zhang S, Yang X, Nie H, Gao J, Zhou J, Zhang L, Wang S. Negative supercoils regulate meiotic crossover patterns in budding yeast. Nucleic Acids Res 2022; 50:10418-10435. [PMID: 36107772 PMCID: PMC9561271 DOI: 10.1093/nar/gkac786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/21/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Interference exists ubiquitously in many biological processes. Crossover interference patterns meiotic crossovers, which are required for faithful chromosome segregation and evolutionary adaption. However, what the interference signal is and how it is generated and regulated is unknown. We show that yeast top2 alleles which cannot bind or cleave DNA accumulate a higher level of negative supercoils and show weaker interference. However, top2 alleles which cannot religate the cleaved DNA or release the religated DNA accumulate less negative supercoils and show stronger interference. Moreover, the level of negative supercoils is negatively correlated with crossover interference strength. Furthermore, negative supercoils preferentially enrich at crossover-associated Zip3 regions before the formation of meiotic DNA double-strand breaks, and regions with more negative supercoils tend to have more Zip3. Additionally, the strength of crossover interference and homeostasis change coordinately in mutants. These findings suggest that the accumulation and relief of negative supercoils pattern meiotic crossovers.
Collapse
Affiliation(s)
- Taicong Tan
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
| | - Yingjin Tan
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
| | - Ying Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
| | - Xiao Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University , Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education , Jinan, Shandong 250001, China
- Shandong Provincial Clinical Research Center for Reproductive Health , Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine , Jinan, Shandong 250012, China
| | - Binyuan Zhai
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University , Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education , Jinan, Shandong 250001, China
- Shandong Provincial Clinical Research Center for Reproductive Health , Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine , Jinan, Shandong 250012, China
| | - Shuxian Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
- Advanced Medical Research Institute, Shandong University , Jinan, Shandong 250012, China
| | - Xuan Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
| | - Hui Nie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University , Jinan 250014, Shandong, China
| | - Jinmin Gao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University , Jinan 250014, Shandong, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University , Jinan 250014, Shandong, China
| | - Liangran Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
- Advanced Medical Research Institute, Shandong University , Jinan, Shandong 250012, China
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University , Jinan 250014, Shandong, China
| | - Shunxin Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University , Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education , Jinan, Shandong 250001, China
- Shandong Provincial Clinical Research Center for Reproductive Health , Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine , Jinan, Shandong 250012, China
| |
Collapse
|
16
|
den Haan R, Rose SH, Cripwell RA, Trollope KM, Myburgh MW, Viljoen-Bloom M, van Zyl WH. Heterologous production of cellulose- and starch-degrading hydrolases to expand Saccharomyces cerevisiae substrate utilization: Lessons learnt. Biotechnol Adv 2021; 53:107859. [PMID: 34678441 DOI: 10.1016/j.biotechadv.2021.107859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
Selected strains of Saccharomyces cerevisiae are used for commercial bioethanol production from cellulose and starch, but the high cost of exogenous enzymes for substrate hydrolysis remains a challenge. This can be addressed through consolidated bioprocessing (CBP) where S. cerevisiae strains are engineered to express recombinant glycoside hydrolases during fermentation. Looking back at numerous strategies undertaken over the past four decades to improve recombinant protein production in S. cerevisiae, it is evident that various steps in the protein production "pipeline" can be manipulated depending on the protein of interest and its anticipated application. In this review, we briefly introduce some of the strategies and highlight lessons learned with regards to improved transcription, translation, post-translational modification and protein secretion of heterologous hydrolases. We examine how host strain selection and modification, as well as enzyme compatibility, are crucial determinants for overall success. Finally, we discuss how lessons from heterologous hydrolase expression can inform modern synthetic biology and genome editing tools to provide process-ready yeast strains in future. However, it is clear that the successful expression of any particular enzyme is still unpredictable and requires a trial-and-error approach.
Collapse
Affiliation(s)
- Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Shaunita H Rose
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Rosemary A Cripwell
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Kim M Trollope
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Marthinus W Myburgh
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | | | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
17
|
Jin Y, Yu S, Liu JJ, Yun EJ, Lee JW, Jin YS, Kim KH. Production of neoagarooligosaccharides by probiotic yeast Saccharomyces cerevisiae var. boulardii engineered as a microbial cell factory. Microb Cell Fact 2021; 20:160. [PMID: 34407819 PMCID: PMC8371797 DOI: 10.1186/s12934-021-01644-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/23/2021] [Indexed: 01/01/2023] Open
Abstract
Background Saccharomyces cerevisiae var. boulardii is a representative probiotic yeast that has been widely used in the food and pharmaceutical industries. However, S. boulardii has not been studied as a microbial cell factory for producing useful substances. Agarose, a major component of red macroalgae, can be depolymerized into neoagarooligosaccharides (NAOSs) by an endo-type β-agarase. NAOSs, including neoagarotetraose (NeoDP4), are known to be health-benefiting substances owing to their prebiotic effect. Thus, NAOS production in the gut is required. In this study, the probiotic yeast S. boulardii was engineered to produce NAOSs by expressing an endo-type β-agarase, BpGH16A, derived from a human gut bacterium Bacteroides plebeius. Results In total, four different signal peptides were compared in S. boulardii for protein (BpGH16A) secretion for the first time. The SED1 signal peptide derived from Saccharomyces cerevisiae was selected as optimal for extracellular production of NeoDP4 from agarose. Expression of BpGH16A was performed in two ways using the plasmid vector system and the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system. The production of NeoDP4 by engineered S. boulardii was verified and quantified. NeoDP4 was produced by S. boulardii engineered using the plasmid vector system and CRISPR-Cas9 at 1.86 and 0.80 g/L in a 72-h fermentation, respectively. Conclusions This is the first report on NAOS production using the probiotic yeast S. boulardii. Our results suggest that S. boulardii can be considered a microbial cell factory to produce health-beneficial substances in the human gut. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01644-w.
Collapse
Affiliation(s)
- Yerin Jin
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Sora Yu
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Jing-Jing Liu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eun Ju Yun
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Jae Won Lee
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
18
|
Eyring J, Lin CW, Ngwa EM, Boilevin J, Pesciullesi G, Locher KP, Darbre T, Reymond JL, Aebi M. Substrate specificities and reaction kinetics of the yeast oligosaccharyltransferase isoforms. J Biol Chem 2021; 296:100809. [PMID: 34023382 PMCID: PMC8191290 DOI: 10.1016/j.jbc.2021.100809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/02/2022] Open
Abstract
Oligosaccharyltransferase (OST) catalyzes the central step in N-linked protein glycosylation, the transfer of a preassembled oligosaccharide from its lipid carrier onto asparagine residues of secretory proteins. The prototypic hetero-octameric OST complex from the yeast Saccharomyces cerevisiae exists as two isoforms that contain either Ost3p or Ost6p, both noncatalytic subunits. These two OST complexes have different protein substrate specificities in vivo. However, their detailed biochemical mechanisms and the basis for their different specificities are not clear. The two OST complexes were purified from genetically engineered strains expressing only one isoform. The kinetic properties and substrate specificities were characterized using a quantitative in vitro glycosylation assay with short peptides and different synthetic lipid-linked oligosaccharide (LLO) substrates. We found that the peptide sequence close to the glycosylation sequon affected peptide affinity and turnover rate. The length of the lipid moiety affected LLO affinity, while the lipid double-bond stereochemistry had a greater influence on LLO turnover rates. The two OST complexes had similar affinities for both the peptide and LLO substrates but showed significantly different turnover rates. These data provide the basis for a functional analysis of the Ost3p and Ost6p subunits.
Collapse
Affiliation(s)
- Jillianne Eyring
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Chia-Wei Lin
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland; Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Elsy Mankah Ngwa
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Jérémy Boilevin
- Department of Chemistry and Biochemistry, University of Berne, Bern, Switzerland
| | - Giorgio Pesciullesi
- Department of Chemistry and Biochemistry, University of Berne, Bern, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Tamis Darbre
- Department of Chemistry and Biochemistry, University of Berne, Bern, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, Bern, Switzerland
| | - Markus Aebi
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
19
|
Perrino G, Napolitano S, Galdi F, La Regina A, Fiore D, Giuliano T, di Bernardo M, di Bernardo D. Automatic synchronisation of the cell cycle in budding yeast through closed-loop feedback control. Nat Commun 2021; 12:2452. [PMID: 33907191 PMCID: PMC8079375 DOI: 10.1038/s41467-021-22689-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
The cell cycle is the process by which eukaryotic cells replicate. Yeast cells cycle asynchronously with each cell in the population budding at a different time. Although there are several experimental approaches to synchronise cells, these usually work only in the short-term. Here, we build a cyber-genetic system to achieve long-term synchronisation of the cell population, by interfacing genetically modified yeast cells with a computer by means of microfluidics to dynamically change medium, and a microscope to estimate cell cycle phases of individual cells. The computer implements a controller algorithm to decide when, and for how long, to change the growth medium to synchronise the cell-cycle across the population. Our work builds upon solid theoretical foundations provided by Control Engineering. In addition to providing an avenue for yeast cell cycle synchronisation, our work shows that control engineering can be used to automatically steer complex biological processes towards desired behaviours similarly to what is currently done with robots and autonomous vehicles.
Collapse
Affiliation(s)
| | - Sara Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | - Francesca Galdi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Davide Fiore
- Department of Mathematics and Applications "R. Caccioppoli", University of Naples Federico II, Naples, Italy
| | - Teresa Giuliano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Mario di Bernardo
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
- SSM - School for Advanced Studies, Naples, Italy
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
20
|
Clark-Cotton MR, Henderson NT, Pablo M, Ghose D, Elston TC, Lew DJ. Exploratory polarization facilitates mating partner selection in Saccharomyces cerevisiae. Mol Biol Cell 2021; 32:1048-1063. [PMID: 33689470 PMCID: PMC8101489 DOI: 10.1091/mbc.e21-02-0068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Yeast decode pheromone gradients to locate mating partners, providing a model for chemotropism. How yeast polarize toward a single partner in crowded environments is unclear. Initially, cells often polarize in unproductive directions, but then they relocate the polarity site until two partners’ polarity sites align, whereupon the cells “commit” to each other by stabilizing polarity to promote fusion. Here we address the role of the early mobile polarity sites. We found that commitment by either partner failed if just one partner was defective in generating, orienting, or stabilizing its mobile polarity sites. Mobile polarity sites were enriched for pheromone receptors and G proteins, and we suggest that such sites engage in an exploratory search of the local pheromone landscape, stabilizing only when they detect elevated pheromone levels. Mobile polarity sites were also enriched for pheromone secretion factors, and simulations suggest that only focal secretion at polarity sites would produce high pheromone concentrations at the partner’s polarity site, triggering commitment.
Collapse
Affiliation(s)
| | - Nicholas T Henderson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708
| | - Michael Pablo
- Department of Chemistry, Chapel Hill, NC 27599.,Program in Molecular and Cellular Biophysics, Chapel Hill, NC 27599
| | - Debraj Ghose
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708
| | - Timothy C Elston
- Department of Pharmacology and Computational Medicine Program, UNC Chapel Hill, Chapel Hill, NC 27599
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708
| |
Collapse
|
21
|
Rüthnick D, Vitale J, Neuner A, Schiebel E. The N-terminus of Sfi1 and yeast centrin Cdc31 provide the assembly site for a new spindle pole body. J Cell Biol 2021; 220:211743. [PMID: 33523111 PMCID: PMC7852455 DOI: 10.1083/jcb.202004196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/20/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
The spindle pole body (SPB) provides microtubule-organizing functions in yeast and duplicates exactly once per cell cycle. The first step in SPB duplication is the half-bridge to bridge conversion via the antiparallel dimerization of the centrin (Cdc31)-binding protein Sfi1 in anaphase. The bridge, which is anchored to the old SPB on the proximal end, exposes free Sfi1 N-termini (N-Sfi1) at its distal end. These free N-Sfi1 promote in G1 the assembly of the daughter SPB (dSPB) in a yet unclear manner. This study shows that N-Sfi1 including the first three Cdc31 binding sites interacts with the SPB components Spc29 and Spc42, triggering the assembly of the dSPB. Cdc31 binding to N-Sfi1 promotes Spc29 recruitment and is essential for satellite formation. Furthermore, phosphorylation of N-Sfi1 has an inhibitory effect and delays dSPB biogenesis until G1. Taking these data together, we provide an understanding of the initial steps in SPB assembly and describe a new function of Cdc31 in the recruitment of dSPB components.
Collapse
Affiliation(s)
- Diana Rüthnick
- Center for Molecular Biology, University of Heidelberg, German Cancer Research Center-Center for Molecular Biology Alliance, Heidelberg, Germany
| | - Jlenia Vitale
- Center for Molecular Biology, University of Heidelberg, German Cancer Research Center-Center for Molecular Biology Alliance, Heidelberg, Germany
| | - Annett Neuner
- Center for Molecular Biology, University of Heidelberg, German Cancer Research Center-Center for Molecular Biology Alliance, Heidelberg, Germany
| | - Elmar Schiebel
- Center for Molecular Biology, University of Heidelberg, German Cancer Research Center-Center for Molecular Biology Alliance, Heidelberg, Germany
| |
Collapse
|
22
|
Precise Replacement of Saccharomyces cerevisiae Proteasome Genes with Human Orthologs by an Integrative Targeting Method. G3-GENES GENOMES GENETICS 2020; 10:3189-3200. [PMID: 32680853 PMCID: PMC7466971 DOI: 10.1534/g3.120.401526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Artificial induction of a chromosomal double-strand break in Saccharomyces cerevisiae enhances the frequency of integration of homologous DNA fragments into the broken region by up to several orders of magnitude. The process of homologous repair can be exploited to integrate, in principle, any foreign DNA into a target site, provided the introduced DNA is flanked at both the 5′ and 3′ ends by sequences homologous to the region surrounding the double-strand break. I have developed tools to precisely direct double-strand breaks to chromosomal target sites with the meganuclease I-SceI and select integration events at those sites. The method is validated in two different applications. First, the introduction of site-specific single-nucleotide phosphorylation site mutations into the S. cerevisiae gene SPO12. Second, the precise chromosomal replacement of eleven S. cerevisiae proteasome genes with their human orthologs. Placing the human genes under S. cerevisiae transcriptional control allowed us to update our understanding of cross-species functional gene replacement. This experience suggests that using native promoters may be a useful general strategy for the coordinated expression of foreign genes in S. cerevisiae. I provide an integrative targeting tool set that will facilitate a variety of precision genome engineering applications.
Collapse
|
23
|
Yu YH, Pan HY, Guo LQ, Lin JF, Liao HL, Li HY. Successful biosynthesis of natural antioxidant ergothioneine in Saccharomyces cerevisiae required only two genes from Grifola frondosa. Microb Cell Fact 2020; 19:164. [PMID: 32811496 PMCID: PMC7437059 DOI: 10.1186/s12934-020-01421-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background Ergothioneine (EGT) has a unique antioxidant ability and diverse beneficial effects on human health. But the content of EGT is very low in its natural producing organisms such as Mycobacterium smegmatis and mushrooms. Therefore, it is necessary to highly efficient heterologous production of EGT in food-grade yeasts such as Saccharomyces cerevisiae. Results Two EGT biosynthetic genes were cloned from the mushroom Grifola frondosa and successfully heterologously expressed in Saccharomyces cerevisiae EC1118 strain in this study. By optimization of the fermentation conditions of the engineered strain S. cerevisiae EC1118, the 11.80 mg/L of EGT production was obtained. With daily addition of 1% glycerol to the culture medium in the fermentation process, the EGT production of the engineered strain S. cerevisiae EC1118 can reach up to 20.61 mg/L. Conclusion A successful EGT de novo biosynthetic system of S. cerevisiae containing only two genes from mushroom Grifola frondosa was developed in this study. This system provides promising prospects for the large scales production of EGT for human health.
Collapse
Affiliation(s)
- Ying-Hao Yu
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Hong-Yu Pan
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Li-Qiong Guo
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China.
| | - Jun-Fang Lin
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China.
| | - Han-Lu Liao
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China
| | - Hao-Ying Li
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China
| |
Collapse
|
24
|
Substrate promiscuity of polyketide synthase enables production of tsetse fly attractants 3-ethylphenol and 3-propylphenol by engineering precursor supply in yeast. Sci Rep 2020; 10:9962. [PMID: 32561880 PMCID: PMC7305150 DOI: 10.1038/s41598-020-66997-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/01/2020] [Indexed: 11/09/2022] Open
Abstract
Tsetse flies are the transmitting vector of trypanosomes causing human sleeping sickness and animal trypanosomiasis in sub-saharan Africa. 3-alkylphenols are used as attractants in tsetse fly traps to reduce the spread of the disease. Here we present an inexpensive production method for 3-ethylphenol (3-EP) and 3-propylphenol (3-PP) by microbial fermentation of sugars. Heterologous expression in the yeast Saccharomyces cerevisiae of phosphopantetheinyltransferase-activated 6-methylsalicylic acid (6-MSA) synthase (MSAS) and 6-MSA decarboxylase converted acetyl-CoA as a priming unit via 6-MSA into 3-methylphenol (3-MP). We exploited the substrate promiscuity of MSAS to utilize propionyl-CoA and butyryl-CoA as alternative priming units and the substrate promiscuity of 6-MSA decarboxylase to produce 3-EP and 3-PP in yeast fermentations. Increasing the formation of propionyl-CoA by expression of a bacterial propionyl-CoA synthetase, feeding of propionate and blocking propionyl-CoA degradation led to the production of up to 12.5 mg/L 3-EP. Introduction of a heterologous 'reverse ß-oxidation' pathway provided enough butyryl-CoA for the production of 3-PP, reaching titers of up to 2.6 mg/L. As the concentrations of 3-alkylphenols are close to the range of the concentrations deployed in tsetse fly traps, the yeast broths might become promising and inexpensive sources for attractants, producible on site by rural communities in Africa.
Collapse
|
25
|
Perrino G, Wilson C, Santorelli M, di Bernardo D. Quantitative Characterization of α-Synuclein Aggregation in Living Cells through Automated Microfluidics Feedback Control. Cell Rep 2020; 27:916-927.e5. [PMID: 30995486 PMCID: PMC6484782 DOI: 10.1016/j.celrep.2019.03.081] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 02/20/2019] [Accepted: 03/22/2019] [Indexed: 12/21/2022] Open
Abstract
Aggregation of α-synuclein and formation of inclusions are hallmarks of Parkinson’s disease (PD). Aggregate formation is affected by cellular environment, but it has been studied almost exclusively in cell-free systems. We quantitatively analyzed α-synuclein inclusion formation and clearance in a yeast cell model of PD expressing either wild-type (WT) α-synuclein or the disease-associated A53T mutant from the galactose (Gal)-inducible promoter. A computer-controlled microfluidics device regulated α-synuclein in cells by means of closed-loop feedback control. We demonstrated that inclusion formation is strictly concentration dependent and that the aggregation threshold of the A53T mutant is about half of the WT α-synuclein (56%). We chemically modulated the proteasomal and autophagic pathways and demonstrated that autophagy is the main determinant of A53T α-synuclein inclusions’ clearance. In addition to proposing a technology to overcome current limitations in dynamically regulating protein expression levels, our results contribute to the biology of PD and have relevance for therapeutic applications. In silico feedback control enables regulation of α-synuclein expression in yeast α-Synuclein inclusion formation is strictly concentration, but not time, dependent The aggregation threshold of the α-synuclein A53T mutant is 56% of the wild-type Autophagy induction speeds up inclusion clearance in the A53T α-synuclein strain
Collapse
Affiliation(s)
- Giansimone Perrino
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Cathal Wilson
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Marco Santorelli
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy.
| |
Collapse
|
26
|
Dzanaeva L, Kruk B, Ruchala J, Nielsen J, Sibirny A, Dmytruk K. The role of peroxisomes in xylose alcoholic fermentation in the engineered
Saccharomyces cerevisiae. Cell Biol Int 2020; 44:1606-1615. [DOI: 10.1002/cbin.11353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/02/2020] [Accepted: 03/19/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Ljubov Dzanaeva
- Department of Molecular Genetics and Biotechnology, Institute of Cell BiologyNAS of UkraineLviv Ukraine
| | - Barbara Kruk
- Department of Biotechnology and MicrobiologyUniversity of RzeszowRzeszow Poland
| | - Justyna Ruchala
- Department of Biotechnology and MicrobiologyUniversity of RzeszowRzeszow Poland
| | - Jens Nielsen
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg Sweden
| | - Andriy Sibirny
- Department of Molecular Genetics and Biotechnology, Institute of Cell BiologyNAS of UkraineLviv Ukraine
- Department of Biotechnology and MicrobiologyUniversity of RzeszowRzeszow Poland
| | - Kostyantyn Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell BiologyNAS of UkraineLviv Ukraine
| |
Collapse
|
27
|
Koskela EV, Gonzalez Salcedo A, Piirainen MA, Iivonen HA, Salminen H, Frey AD. Mining Data From Plasma Cell Differentiation Identified Novel Genes for Engineering of a Yeast Antibody Factory. Front Bioeng Biotechnol 2020; 8:255. [PMID: 32296695 PMCID: PMC7136540 DOI: 10.3389/fbioe.2020.00255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Saccharomyces cerevisiae is a common platform for production of therapeutic proteins, but it is not intrinsically suited for the manufacturing of antibodies. Antibodies are naturally produced by plasma cells (PCs) and studies conducted on PC differentiation provide a comprehensive blueprint for the cellular transformations needed to create an antibody factory. In this study we mined transcriptomics data from PC differentiation to improve antibody secretion by S. cerevisiae. Through data exploration, we identified several new target genes. We tested the effects of 14 genetic modifications belonging to different cellular processes on protein production. Four of the tested genes resulted in improved antibody expression. The ER stress sensor IRE1 increased the final titer by 1.8-fold and smaller effects were observed with PSA1, GOT1, and HUT1 increasing antibody titers by 1. 6-, 1. 4-, and 1.4-fold. When testing combinations of these genes, the highest increases were observed when co-expressing IRE1 with PSA1, or IRE1 with PSA1 and HUT1, resulting in 3.8- and 3.1-fold higher antibody titers. In contrast, strains expressing IRE1 alone or in combination with the other genes produced similar or lower levels of recombinantly expressed endogenous yeast acid phosphatase compared to the controls. Using a genetic UPR responsive GFP reporter construct, we show that IRE1 acts through constitutive activation of the unfolded protein response. Moreover, the positive effect of IRE1 expression was transferable to other antibody molecules. We demonstrate how data exploration from an evolutionary distant, but highly specialized cell type can pinpoint new genetic targets and provide a novel concept for rationalized cell engineering.
Collapse
Affiliation(s)
- Essi V Koskela
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | | | - Mari A Piirainen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Heidi A Iivonen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Heidi Salminen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Alexander D Frey
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| |
Collapse
|
28
|
Morard M, Benavent-Gil Y, Ortiz-Tovar G, Pérez-Través L, Querol A, Toft C, Barrio E. Genome structure reveals the diversity of mating mechanisms in Saccharomyces cerevisiae x Saccharomyces kudriavzevii hybrids, and the genomic instability that promotes phenotypic diversity. Microb Genom 2020; 6:e000333. [PMID: 32065577 PMCID: PMC7200066 DOI: 10.1099/mgen.0.000333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/15/2020] [Indexed: 01/03/2023] Open
Abstract
Interspecific hybridization has played an important role in the evolution of eukaryotic organisms by favouring genetic interchange between divergent lineages to generate new phenotypic diversity involved in the adaptation to new environments. This way, hybridization between Saccharomyces species, involving the fusion between their metabolic capabilities, is a recurrent adaptive strategy in industrial environments. In the present study, whole-genome sequences of natural hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii were obtained to unveil the mechanisms involved in the origin and evolution of hybrids, as well as the ecological and geographic contexts in which spontaneous hybridization and hybrid persistence take place. Although Saccharomyces species can mate using different mechanisms, we concluded that rare-mating is the most commonly used, but other mechanisms were also observed in specific hybrids. The preponderance of rare-mating was confirmed by performing artificial hybridization experiments. The mechanism used to mate determines the genomic structure of the hybrid and its final evolutionary outcome. The evolution and adaptability of the hybrids are triggered by genomic instability, resulting in a wide diversity of genomic rearrangements. Some of these rearrangements could be adaptive under the stressful conditions of the industrial environment.
Collapse
Affiliation(s)
- Miguel Morard
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Yaiza Benavent-Gil
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Guadalupe Ortiz-Tovar
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
- Present address: Centro de Estudios Vitivinícolas de Baja California, México, CETYS Universidad, Ensenada, Baja California, Mexico
| | - Laura Pérez-Través
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Christina Toft
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
- Present address: Institute for Integrative and Systems Biology, Universitat de València and CSIC, Paterna, Valencia, Spain
| | - Eladio Barrio
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| |
Collapse
|
29
|
Dmytruk O, Bulbotka N, Zazulya A, Semkiv M, Dmytruk K, Sibirny A. Fructose-1,6-bisphosphatase degradation in the methylotrophic yeast Komagataella phaffii occurs in autophagy pathway. Cell Biol Int 2020; 45:528-535. [PMID: 31903651 DOI: 10.1002/cbin.11304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/04/2020] [Indexed: 11/11/2022]
Abstract
Many enzymes of methanol metabolism of methylotrophic yeasts are located in peroxisomes whereas some of them have the cytosolic localization. After shift of methanol-grown cells of methylotrophic yeasts to glucose medium, a decrease in the activity of cytosolic (formaldehyde dehydrogenase, formate dehydrogenase, and fructose-1,6-bisphosphatase [FBP]) along with peroxisomal enzymes of methanol metabolism is observed. Mechanisms of inactivation of cytosolic enzymes remain unknown. To study the mechanism of FBP inactivation, the changes in its specific activity of the wild type strain GS200, the strain with the deletion of the GSS1 hexose sensor gene and strain defected in autophagy pathway SMD1163 of Komagataella phaffii with or without the addition of the MG132 (proteasome degradation inhibitor) were investigated after shift of methanol-grown cells in glucose medium. Western blot analysis showed that inactivation of FBP in GS200 occurred due to protein degradation whereas inactivation in the strains SMD1163 and gss1Δ was negligible in such conditions. The effect of the proteasome inhibitor MG132 on FBP inactivation was insignificant. To confirm FBP degradation pathway, the recombinant strains with GFP-labeled Fbp1 of K. phaffii and red fluorescent protein-labeled peroxisomes were constructed on the background of GS200 and SMD1163. The fluorescent microscopy analysis of the constructed strains was performed using the vacuolar membrane dye FM4-64. Microscopic data confirmed that Fbp1 degrades by autophagy pathway in K. phaffii. K. phaffii transformants, which express heterologous β-galactosidase under FLD promoter, have been constructed.
Collapse
Affiliation(s)
- Olena Dmytruk
- Institute of Cell Biology, National Academy of Science of Ukraine, Drahomanov Street 14/16, 79005, Lviv, Ukraine
| | - Nina Bulbotka
- Institute of Cell Biology, National Academy of Science of Ukraine, Drahomanov Street 14/16, 79005, Lviv, Ukraine
| | - Anastasya Zazulya
- Institute of Cell Biology, National Academy of Science of Ukraine, Drahomanov Street 14/16, 79005, Lviv, Ukraine
| | - Marta Semkiv
- Institute of Cell Biology, National Academy of Science of Ukraine, Drahomanov Street 14/16, 79005, Lviv, Ukraine
| | - Kostyantyn Dmytruk
- Institute of Cell Biology, National Academy of Science of Ukraine, Drahomanov Street 14/16, 79005, Lviv, Ukraine
| | - Andriy Sibirny
- Institute of Cell Biology, National Academy of Science of Ukraine, Drahomanov Street 14/16, 79005, Lviv, Ukraine.,Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| |
Collapse
|
30
|
Cataldo VF, Salgado V, Saa PA, Agosin E. Genomic integration of unclonable gene expression cassettes in Saccharomyces cerevisiae using rapid cloning-free workflows. Microbiologyopen 2020; 9:e978. [PMID: 31944620 PMCID: PMC7066455 DOI: 10.1002/mbo3.978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 11/11/2022] Open
Abstract
Most DNA assembly methods require bacterial amplification steps, which restrict its application to genes that can be cloned in the bacterial host without significant toxic effects. However, genes that cannot be cloned in bacteria do not necessarily exert toxic effects on the final host. In order to tackle this issue, we adapted two DNA assembly workflows for rapid, cloning-free construction and genomic integration of expression cassettes in Saccharomyces cerevisiae. One method is based on a modified Gibson assembly, while the other relies on a direct assembly and integration of linear PCR products by yeast homologous recombination. The methods require few simple experimental steps, and their performance was evaluated for the assembly and integration of unclonable zeaxanthin epoxidase expression cassettes in yeast. Results showed that up to 95% integration efficiency can be reached with minimal experimental effort. The presented workflows can be employed as rapid gene integration tools for yeast, especially tailored for integrating unclonable genes.
Collapse
Affiliation(s)
- Vicente F Cataldo
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valeria Salgado
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro A Saa
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo Agosin
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
31
|
Castells-Ballester J, Rinis N, Kotan I, Gal L, Bausewein D, Kats I, Zatorska E, Kramer G, Bukau B, Schuldiner M, Strahl S. Translational Regulation of Pmt1 and Pmt2 by Bfr1 Affects Unfolded Protein O-Mannosylation. Int J Mol Sci 2019; 20:ijms20246220. [PMID: 31835530 PMCID: PMC6940804 DOI: 10.3390/ijms20246220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
O-mannosylation is implicated in protein quality control in Saccharomyces cerevisiae due to the attachment of mannose to serine and threonine residues of un- or misfolded proteins in the endoplasmic reticulum (ER). This process also designated as unfolded protein O-mannosylation (UPOM) that ends futile folding cycles and saves cellular resources is mainly mediated by protein O-mannosyltransferases Pmt1 and Pmt2. Here we describe a genetic screen for factors that influence O-mannosylation in yeast, using slow-folding green fluorescent protein (GFP) as a reporter. Our screening identifies the RNA binding protein brefeldin A resistance factor 1 (Bfr1) that has not been linked to O-mannosylation and ER protein quality control before. We find that Bfr1 affects O-mannosylation through changes in Pmt1 and Pmt2 protein abundance but has no effect on PMT1 and PMT2 transcript levels, mRNA localization to the ER membrane or protein stability. Ribosome profiling reveals that Bfr1 is a crucial factor for Pmt1 and Pmt2 translation thereby affecting unfolded protein O-mannosylation. Our results uncover a new level of regulation of protein quality control in the secretory pathway.
Collapse
Affiliation(s)
- Joan Castells-Ballester
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, D-69120 Heidelberg, Germany; (J.C.-B.); (N.R.); (D.B.); (E.Z.)
| | - Natalie Rinis
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, D-69120 Heidelberg, Germany; (J.C.-B.); (N.R.); (D.B.); (E.Z.)
| | - Ilgin Kotan
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ), ZMBH-DKFZ Alliance, D-69120 Heidelberg, Germany; (I.K.); (I.K.); (G.K.); (B.B.)
| | - Lihi Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (L.G.); (M.S.)
| | - Daniela Bausewein
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, D-69120 Heidelberg, Germany; (J.C.-B.); (N.R.); (D.B.); (E.Z.)
- spm—Safety Projects & More GmbH, D-69493 Hirschberg a. d. Bergstraße, Germany
| | - Ilia Kats
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ), ZMBH-DKFZ Alliance, D-69120 Heidelberg, Germany; (I.K.); (I.K.); (G.K.); (B.B.)
| | - Ewa Zatorska
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, D-69120 Heidelberg, Germany; (J.C.-B.); (N.R.); (D.B.); (E.Z.)
| | - Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ), ZMBH-DKFZ Alliance, D-69120 Heidelberg, Germany; (I.K.); (I.K.); (G.K.); (B.B.)
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ), ZMBH-DKFZ Alliance, D-69120 Heidelberg, Germany; (I.K.); (I.K.); (G.K.); (B.B.)
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (L.G.); (M.S.)
| | - Sabine Strahl
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, D-69120 Heidelberg, Germany; (J.C.-B.); (N.R.); (D.B.); (E.Z.)
- Correspondence: ; Tel.: +49-6221-54-6286
| |
Collapse
|
32
|
Bruder S, Melcher FA, Zoll T, Hackenschmidt S, Kabisch J. Evaluation of a
Yarrowia lipolytica
Strain Collection for Its Lipid and Carotenoid Production Capabilities. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stefan Bruder
- Computer‐Aided Synthetic Biology TU Darmstadt Schnittspahnstr. 12 64287 Darmstadt Germany
| | - Felix Arthur Melcher
- Computer‐Aided Synthetic Biology TU Darmstadt Schnittspahnstr. 12 64287 Darmstadt Germany
| | - Thomas Zoll
- Computer‐Aided Synthetic Biology TU Darmstadt Schnittspahnstr. 12 64287 Darmstadt Germany
| | - Silke Hackenschmidt
- Computer‐Aided Synthetic Biology TU Darmstadt Schnittspahnstr. 12 64287 Darmstadt Germany
| | - Johannes Kabisch
- Computer‐Aided Synthetic Biology TU Darmstadt Schnittspahnstr. 12 64287 Darmstadt Germany
| |
Collapse
|
33
|
Lan X, Yuan W, Wang M, Xiao H. Efficient biosynthesis of antitumor ganoderic acid HLDOA using a dual tunable system for optimizing the expression of CYP5150L8 and aGanodermaP450 reductase. Biotechnol Bioeng 2019; 116:3301-3311. [DOI: 10.1002/bit.27154] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/22/2019] [Accepted: 08/22/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Xiaoting Lan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and Laboratory of Molecular Biochemical Engineering, School of Life Sciences and BiotechnologyShanghai Jiao Tong University Shanghai China
| | - Wei Yuan
- College of Life SciencesUniversity of Chinese Academy of Sciences Beijing China
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of Sciences Tianjin China
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin China
| | - Meng Wang
- College of Life SciencesUniversity of Chinese Academy of Sciences Beijing China
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of Sciences Tianjin China
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin China
| | - Han Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and Laboratory of Molecular Biochemical Engineering, School of Life Sciences and BiotechnologyShanghai Jiao Tong University Shanghai China
| |
Collapse
|
34
|
Rubalcava-Gracia D, García-Rincón J, Pérez-Montfort R, Hamel PP, González-Halphen D. Key within-membrane residues and precursor dosage impact the allotopic expression of yeast subunit II of cytochrome c oxidase. Mol Biol Cell 2019; 30:2358-2366. [PMID: 31318312 PMCID: PMC6741066 DOI: 10.1091/mbc.e18-12-0788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Experimentally relocating mitochondrial genes to the nucleus for functional expression (allotopic expression) is a challenging process. The high hydrophobicity of mitochondria-encoded proteins seems to be one of the main factors preventing this allotopic expression. We focused on subunit II of cytochrome c oxidase (Cox2) to study which modifications may enable or improve its allotopic expression in yeast. Cox2 can be imported from the cytosol into mitochondria in the presence of the W56R substitution, which decreases the protein hydrophobicity and allows partial respiratory rescue of a cox2-null strain. We show that the inclusion of a positive charge is more favorable than substitutions that only decrease the hydrophobicity. We also searched for other determinants enabling allotopic expression in yeast by examining the COX2 gene in organisms where it was transferred to the nucleus during evolution. We found that naturally occurring variations at within-membrane residues in the legume Glycine max Cox2 could enable yeast COX2 allotopic expression. We also evidence that directing high doses of allotopically synthesized Cox2 to mitochondria seems to be counterproductive because the subunit aggregates at the mitochondrial surface. Our findings are relevant to the design of allotopic expression strategies and contribute to the understanding of gene retention in organellar genomes.
Collapse
Affiliation(s)
- Diana Rubalcava-Gracia
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan García-Rincón
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Ruy Pérez-Montfort
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Patrice Paul Hamel
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Diego González-Halphen
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
35
|
Vakirlis N, Monerawela C, McManus G, Ribeiro O, McLysaght A, James T, Bond U. Evolutionary journey and characterisation of a novel pan-gene associated with beer strains of Saccharomyces cerevisiae. Yeast 2019; 36:425-437. [PMID: 30963617 DOI: 10.1002/yea.3391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/19/2022] Open
Abstract
The sequencing of over a thousand Saccharomyces cerevisiae genomes revealed a complex pangenome. Over one third of the discovered genes are not present in the S. cerevisiae core genome but instead are often restricted to a subset of yeast isolates and thus may be important for adaptation to specific environmental niches. We refer to these genes as "pan-genes," being part of the pangenome but not the core genome. Here, we describe the evolutionary journey and characterisation of a novel pan-gene, originally named hypothetical (HYPO) open-reading frame. Phylogenetic analysis reveals that HYPO has been predominantly retained in S. cerevisiae strains associated with brewing but has been repeatedly lost in most other fungal species during evolution. There is also evidence that HYPO was horizontally transferred at least once, from S. cerevisiae to Saccharomyces paradoxus. The phylogenetic analysis of HYPO exemplifies the complexity and intricacy of evolutionary trajectories of genes within the S. cerevisiae pangenome. To examine possible functions for Hypo, we overexpressed a HYPO-GFP fusion protein in both S. cerevisiae and Saccharomyces pastorianus. The protein localised to the plasma membrane where it accumulated initially in distinct foci. Time-lapse fluorescent imaging revealed that when cells are grown in wort, Hypo-gfp fluorescence spreads throughout the membrane during cell growth. The overexpression of Hypo-gfp in S. cerevisiae or S. pastorianus strains did not significantly alter cell growth in medium-containing glucose, maltose, maltotriose, or wort at different concentrations.
Collapse
Affiliation(s)
- Nikolaos Vakirlis
- School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Chandre Monerawela
- School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Gavin McManus
- School of Biochemistry and Immunology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Orquidea Ribeiro
- School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Aoife McLysaght
- School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Tharappel James
- School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Ursula Bond
- School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
36
|
Tailoring N-Glycan Biosynthesis for Production of Therapeutic Proteins in Saccharomyces cerevisiae. Methods Mol Biol 2019; 1923:227-241. [PMID: 30737743 DOI: 10.1007/978-1-4939-9024-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The ability to control and adjust the N-glycosylation pathway of Saccharomyces cerevisiae is a key step toward production of therapeutic glycoproteins such as antibodies or erythropoietin. The focus of this chapter is to describe the road from yeast-type N-glycosylation to human-type complex N-glycosylation. The chapter describes the cell engineering and provides the detailed analytical procedures required to perform glycan analysis using MALDI-TOF mass spectrometry.
Collapse
|
37
|
Semkiv M, Kata I, Ternavska O, Sibirny W, Dmytruk K, Sibirny A. Overexpression of the genes of glycerol catabolism and glycerol facilitator improves glycerol conversion to ethanol in the methylotrophic thermotolerant yeastOgataea polymorpha. Yeast 2019; 36:329-339. [DOI: 10.1002/yea.3387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/12/2019] [Accepted: 03/02/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Marta Semkiv
- Institute of Cell BiologyNational Academy of Science of Ukraine Lviv Ukraine
| | - Iwona Kata
- Department of Microbiology and BiotechnologyUniversity of Rzeszow Rzeszow Poland
| | - Orysya Ternavska
- Institute of Cell BiologyNational Academy of Science of Ukraine Lviv Ukraine
| | - Wladimir Sibirny
- Department of Microbiology and BiotechnologyUniversity of Rzeszow Rzeszow Poland
| | - Kostyantyn Dmytruk
- Institute of Cell BiologyNational Academy of Science of Ukraine Lviv Ukraine
| | - Andriy Sibirny
- Institute of Cell BiologyNational Academy of Science of Ukraine Lviv Ukraine
- Department of Microbiology and BiotechnologyUniversity of Rzeszow Rzeszow Poland
| |
Collapse
|
38
|
Borgström C, Wasserstrom L, Almqvist H, Broberg K, Klein B, Noack S, Lidén G, Gorwa-Grauslund MF. Identification of modifications procuring growth on xylose in recombinant Saccharomyces cerevisiae strains carrying the Weimberg pathway. Metab Eng 2019; 55:1-11. [PMID: 31150803 DOI: 10.1016/j.ymben.2019.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 11/29/2022]
Abstract
The most prevalent xylose-assimilating pathways in recombinant Saccharomyces cerevisiae, i.e. the xylose isomerase (XI) and the xylose reductase/xylitol dehydrogenase (XR/XDH) pathways, channel the carbon flux through the pentose phosphate pathway and further into glycolysis. In contrast, the oxidative and non-phosphorylative bacterial Weimberg pathway channels the xylose carbon through five steps into the metabolic node α-ketoglutarate (αKG) that can be utilized for growth or diverted into production of various metabolites. In the present study, steps preventing the establishment of a functional Weimberg pathway in S. cerevisiae were identified. Using an original design where a S. cerevisiae strain was expressing the essential four genes of the Caulobacter crescentus pathway (xylB, xylD, xylX, xylA) together with a deletion of FRA2 gene to upregulate the iron-sulfur metabolism, it was shown that the C. crescentus αKG semialdehyde dehydrogenase, XylA was not functional in S. cerevisiae. When replaced by the recently described analog from Corynebacterium glutamicum, KsaD, significantly higher in vitro activity was observed but the strain did not grow on xylose. Adaptive laboratory evolution (ALE) on a xylose/glucose medium on this strain led to a loss of XylB, the first step of the Weimberg pathway, suggesting that ALE favored minimizing the inhibiting xylonate accumulation by restricting the upper part of the pathway. Therefore three additional gene copies of the lower Weimberg pathway (XylD, XylX and KsaD) were introduced. The resulting S. cerevisiae strain (ΔΔfra2, xylB, 4x (xylD-xylX-ksaD)) was able to generate biomass from xylose and Weimberg pathway intermediates were detected. To our knowledge this is the first report of a functional complete Weimberg pathway expressed in fungi. When optimized this pathway has the potential to channel xylose towards value-added specialty chemicals such as dicarboxylic acids and diols.
Collapse
Affiliation(s)
- Celina Borgström
- Division of Applied Microbiology, Department of Chemistry, Lund University, PO Box 124, 221 00, Lund, Sweden
| | - Lisa Wasserstrom
- Division of Applied Microbiology, Department of Chemistry, Lund University, PO Box 124, 221 00, Lund, Sweden
| | - Henrik Almqvist
- Department of Chemical Engineering, Lund University, PO Box 124, 221 00, Lund, Sweden
| | - Kristina Broberg
- Department of Chemical Engineering, Lund University, PO Box 124, 221 00, Lund, Sweden
| | - Bianca Klein
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, D-52425, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, D-52425, Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, D-52425, Germany
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, PO Box 124, 221 00, Lund, Sweden
| | - Marie F Gorwa-Grauslund
- Division of Applied Microbiology, Department of Chemistry, Lund University, PO Box 124, 221 00, Lund, Sweden.
| |
Collapse
|
39
|
Hitschler J, Boles E. De novo production of aromatic m-cresol in Saccharomyces cerevisiae mediated by heterologous polyketide synthases combined with a 6-methylsalicylic acid decarboxylase. Metab Eng Commun 2019; 9:e00093. [PMID: 31193192 PMCID: PMC6520567 DOI: 10.1016/j.mec.2019.e00093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 11/16/2022] Open
Abstract
As a flavor and platform chemical, m-cresol (3-methylphenol) is a valuable industrial compound that currently is mainly synthesized by chemical methods from fossil resources. In this study, we present the first biotechnological de novo production of m-cresol from sugar in complex yeast extract-peptone medium with the yeast Saccharomyces cerevisiae. A heterologous pathway based on the decarboxylation of the polyketide 6-methylsalicylic acid (6-MSA) was introduced into a CEN.PK yeast strain. For synthesis of 6-MSA, expression of different variants of 6-MSA synthases (MSASs) were compared. Overexpression of codon-optimized MSAS from Penicillium patulum together with activating phosphopantetheinyl transferase npgA from Aspergillus nidulans resulted in up to 367 mg/L 6-MSA production. Additional genomic integration of the genes had a strongly promoting effect and 6-MSA titers reached more than 2 g/L. Simultaneous expression of 6-MSA decarboxylase patG from A. clavatus led to the complete conversion of 6-MSA and production of up to 589 mg/L m-cresol. As addition of 450–750 mg/L m-cresol to yeast cultures nearly completely inhibited growth our data suggest that the toxicity of m-cresol might be the limiting factor for higher production titers. Expression of 6-methylsalicylic acid synthase (MSAS) and decarboxylase enables m-cresol production from sugars in complex medium in S. cerevisiae 6-methylsalicylic acid synthase is limiting 6-MSA and m-cresol production rates Genomic integration of heterologous genes improves product titers Toxicity of m-cresol to yeast cells limits increased production titers
Collapse
Key Words
- 6-Methylsalicylic acid decarboxylase
- 6-Methylsalicylic acid synthase
- 6-methylsalicylic acid decarboxylase, PatG
- 6-methylsalicylic acid synthase, MSAS
- 6-methylsalicylic acid, 6-MSA
- Acyl carrier protein, ACP
- Acyltransferase, AT
- Codon-optimization
- Polyketide synthase
- Saccharomyces cerevisiae
- ketoreductase, KR
- ketosynthase, KS
- m-Cresol
- optical density, OD
- phosphopantetheinyl transferase, PPT
- polyketide synthase, PKS
- thioester hydrolase, TH
Collapse
Affiliation(s)
- Julia Hitschler
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438, Frankfurt am Main, Germany
| | - Eckhard Boles
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438, Frankfurt am Main, Germany
| |
Collapse
|
40
|
Lactic Acid Production from a Whole Slurry of Acid-Pretreated Spent Coffee Grounds by Engineered Saccharomyces cerevisiae. Appl Biochem Biotechnol 2019; 189:206-216. [DOI: 10.1007/s12010-019-03000-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
|
41
|
Overcoming the thermodynamic equilibrium of an isomerization reaction through oxidoreductive reactions for biotransformation. Nat Commun 2019; 10:1356. [PMID: 30902987 PMCID: PMC6430769 DOI: 10.1038/s41467-019-09288-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/21/2019] [Indexed: 01/22/2023] Open
Abstract
Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic equilibria. We demonstrate the feasibility of using an engineered yeast strain harboring oxidoreductase reactions to overcome the thermodynamic limit of an isomerization reaction. Specifically, a yeast strain capable of consuming lactose intracellularly is engineered to produce tagatose from lactose through three layers of manipulations. First, GAL1 coding for galactose kinase is deleted to eliminate galactose utilization. Second, heterologous xylose reductase (XR) and galactitol dehydrogenase (GDH) are introduced into the ∆gal1 strain. Third, the expression levels of XR and GDH are adjusted to maximize tagatose production. The resulting engineered yeast produces 37.69 g/L of tagatose from lactose with a tagatose and galactose ratio of 9:1 in the reaction broth. These results suggest that in vivo oxidoreaductase reactions can be employed to replace isomerases in vitro for biotransformation. A desired product cannot be obtained at higher concentration than its equilibrium concentration when isomerases are used for biotransformation. Here, the authors engineer in vivo oxidoreductive reactions in yeast to overcome the equilibrium limitation of in vitro isomerases-based tagatose production.
Collapse
|
42
|
Mercier R, Wolmarans A, Schubert J, Neuweiler H, Johnson JL, LaPointe P. The conserved NxNNWHW motif in Aha-type co-chaperones modulates the kinetics of Hsp90 ATPase stimulation. Nat Commun 2019; 10:1273. [PMID: 30894538 PMCID: PMC6426937 DOI: 10.1038/s41467-019-09299-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 03/01/2019] [Indexed: 01/19/2023] Open
Abstract
Hsp90 is a dimeric molecular chaperone that is essential for the folding and activation of hundreds of client proteins. Co-chaperone proteins regulate the ATP-driven Hsp90 client activation cycle. Aha-type co-chaperones are the most potent stimulators of the Hsp90 ATPase activity but the relationship between ATPase regulation and in vivo activity is poorly understood. We report here that the most strongly conserved region of Aha-type co-chaperones, the N terminal NxNNWHW motif, modulates the apparent affinity of Hsp90 for nucleotide substrates. The ability of yeast Aha-type co-chaperones to act in vivo is ablated when the N terminal NxNNWHW motif is removed. This work suggests that nucleotide exchange during the Hsp90 functional cycle may be more important than rate of catalysis.
Collapse
Affiliation(s)
- Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Annemarie Wolmarans
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Jonathan Schubert
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, 97074, Germany
| | - Hannes Neuweiler
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, 97074, Germany
| | - Jill L Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844, USA
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
43
|
Gottardi M, Grün P, Bode HB, Hoffmann T, Schwab W, Oreb M, Boles E. Optimisation of trans-cinnamic acid and hydrocinnamyl alcohol production with recombinant Saccharomyces cerevisiae and identification of cinnamyl methyl ketone as a by-product. FEMS Yeast Res 2019; 17:4654848. [PMID: 29186481 DOI: 10.1093/femsyr/fox091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/22/2017] [Indexed: 01/08/2023] Open
Abstract
Trans-cinnamic acid (tCA) and hydrocinnamyl alcohol (HcinOH) are valuable aromatic compounds with applications in the flavour, fragrance and cosmetic industry. They can be produced with recombinant yeasts from sugars via phenylalanine after expression of a phenylalanine ammonia lyase (PAL) and an aryl carboxylic acid reductase. Here, we show that in Saccharomyces cerevisiae a PAL enzyme from the bacterium Photorhabdus luminescens was superior to a previously used plant PAL enzyme for the production of tCA. Moreover, after expression of a UDP-glucose:cinnamate glucosyltransferase (FaGT2) from Fragaria x ananassa, tCA could be converted to cinnamoyl-D-glucose which is expected to be less toxic to the yeast cells. Production of tCA and HcinOH from glucose could be increased by eliminating feedback-regulated steps of aromatic amino acid biosynthesis and diminishing the decarboxylation step of the competing Ehrlich pathway. Finally, an unknown by-product resulting from further metabolisation of a carboligation product of cinnamaldehyde (cinALD) with activated acetaldehyde, mediated by pyruvate decarboxylases, could be identified as cinnamyl methyl ketone providing a new route for the biosynthesis of precursors, such as (2S,3R) 5-phenylpent-4-ene-2,3-diol, necessary for the chemical synthesis of specific biologically active drugs such as daunomycin.
Collapse
Affiliation(s)
- Manuela Gottardi
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Peter Grün
- Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Helge B Bode
- Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany
| | - Mislav Oreb
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Eckhard Boles
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
44
|
Genetic Basis of Variation in Heat and Ethanol Tolerance in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:179-188. [PMID: 30459179 PMCID: PMC6325899 DOI: 10.1534/g3.118.200566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Saccharomyces cerevisiae has the capability of fermenting sugar to produce concentrations of ethanol that are toxic to most organisms. Other Saccharomyces species also have a strong fermentative capacity, but some are specialized to low temperatures, whereas S. cerevisiae is the most thermotolerant. Although S. cerevisiae has been extensively used to study the genetic basis of ethanol tolerance, much less is known about temperature dependent ethanol tolerance. In this study, we examined the genetic basis of ethanol tolerance at high temperature among strains of S. cerevisiae. We identified two amino acid polymorphisms in SEC24 that cause strong sensitivity to ethanol at high temperature and more limited sensitivity to temperature in the absence of ethanol. We also identified a single amino acid polymorphism in PSD1 that causes sensitivity to high temperature in a strain dependent fashion. The genes we identified provide further insight into genetic variation in ethanol and temperature tolerance and the interdependent nature of these two traits in S. cerevisiae.
Collapse
|
45
|
Albakri MB, Jiang Y, Genereaux J, Lajoie P. Polyglutamine toxicity assays highlight the advantages of mScarlet for imaging in Saccharomyces cerevisiae. F1000Res 2018; 7:1242. [PMID: 30631438 PMCID: PMC6290977 DOI: 10.12688/f1000research.15829.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2018] [Indexed: 11/20/2022] Open
Abstract
Development of fluorescent proteins (FPs) enabled researchers to visualize protein localization and trafficking in living cells and organisms. The extended palette of available FPs allows simultaneous detection of multiple fluorescent fusion proteins. Importantly, FPs are originally derived from different organisms from jelly fish to corals and each FP displays its own biophysical properties. Among these properties, the tendency of FPs to oligomerize inherently affects the behavior of its fusion partner. Here we employed the budding yeast Saccharomyces cerevisiae to determine the impact of the latest generation of red FPs on their binding partner. We used a yeast assay based on the aggregation and toxicity of misfolded polyQ expansion proteins linked to Huntington's disease. Since polyQ aggregation and toxicity are highly dependent on the sequences flanking the polyQ region, polyQ expansions provide an ideal tool to assess the impact of FPs on their fusion partners. We found that unlike what is observed for green FP variants, yemRFP and yFusionRed-tagged polyQ expansions show reduced toxicity. However, polyQ expansions tagged with the bright synthetically engineered ymScarlet displayed severe polyQ toxicity. Our data indicate that ymScarlet might have significant advantages over the previous generation of red FPs for use in fluorescent fusions in yeast.
Collapse
Affiliation(s)
- Maram B. Albakri
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, N6A5C1, Canada
| | - Yuwei Jiang
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, N6A5C1, Canada
| | - Julie Genereaux
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, N6A5C1, Canada
- Department of Biochemistry, The University of Western Ontario, London, Ontario, N6A5C1, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, N6A5C1, Canada
| |
Collapse
|
46
|
Kurylenko OO, Ruchala J, Vasylyshyn RV, Stasyk OV, Dmytruk OV, Dmytruk KV, Sibirny AA. Peroxisomes and peroxisomal transketolase and transaldolase enzymes are essential for xylose alcoholic fermentation by the methylotrophic thermotolerant yeast, Ogataea (Hansenula) polymorpha. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:197. [PMID: 30034524 PMCID: PMC6052537 DOI: 10.1186/s13068-018-1203-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Ogataea (Hansenula) polymorpha is one of the most thermotolerant xylose-fermenting yeast species reported to date. Several metabolic engineering approaches have been successfully demonstrated to improve high-temperature alcoholic fermentation by O. polymorpha. Further improvement of ethanol production from xylose in O. polymorpha depends on the identification of bottlenecks in the xylose conversion pathway to ethanol. RESULTS Involvement of peroxisomal enzymes in xylose metabolism has not been described to date. Here, we found that peroxisomal transketolase (known also as dihydroxyacetone synthase) and peroxisomal transaldolase (enzyme with unknown function) in the thermotolerant methylotrophic yeast, Ogataea (Hansenula) polymorpha, are required for xylose alcoholic fermentation, but not for growth on this pentose sugar. Mutants with knockout of DAS1 and TAL2 coding for peroxisomal transketolase and peroxisomal transaldolase, respectively, normally grow on xylose. However, these mutants were found to be unable to support ethanol production. The O. polymorpha mutant with the TAL1 knockout (coding for cytosolic transaldolase) normally grew on glucose and did not grow on xylose; this defect was rescued by overexpression of TAL2. The conditional mutant, pYNR1-TKL1, that expresses the cytosolic transketolase gene under control of the ammonium repressible nitrate reductase promoter did not grow on xylose and grew poorly on glucose media supplemented with ammonium. Overexpression of DAS1 only partially restored the defects displayed by the pYNR1-TKL1 mutant. The mutants defective in peroxisome biogenesis, pex3Δ and pex6Δ, showed normal growth on xylose, but were unable to ferment this sugar. Moreover, the pex3Δ mutant of the non-methylotrophic yeast, Scheffersomyces (Pichia) stipitis, normally grows on and ferments xylose. Separate overexpression or co-overexpression of DAS1 and TAL2 in the wild-type strain increased ethanol synthesis from xylose 2 to 4 times with no effect on the alcoholic fermentation of glucose. Overexpression of TKL1 and TAL1 also elevated ethanol production from xylose. Finally, co-overexpression of DAS1 and TAL2 in the best previously isolated O. polymorpha xylose to ethanol producer led to increase in ethanol accumulation up to 16.5 g/L at 45 °C; or 30-40 times more ethanol than is produced by the wild-type strain. CONCLUSIONS Our results indicate the importance of the peroxisomal enzymes, transketolase (dihydroxyacetone synthase, Das1), and transaldolase (Tal2), in the xylose alcoholic fermentation of O. polymorpha.
Collapse
Affiliation(s)
- Olena O. Kurylenko
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005 Ukraine
| | - Justyna Ruchala
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Roksolana V. Vasylyshyn
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005 Ukraine
| | - Oleh V. Stasyk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005 Ukraine
| | - Olena V. Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005 Ukraine
| | - Kostyantyn V. Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005 Ukraine
| | - Andriy A. Sibirny
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005 Ukraine
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| |
Collapse
|
47
|
Genome-wide C-SWAT library for high-throughput yeast genome tagging. Nat Methods 2018; 15:598-600. [DOI: 10.1038/s41592-018-0045-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/04/2018] [Indexed: 11/08/2022]
|
48
|
Daniels PW, Mukherjee A, Goldman ASH, Hu B. A set of novel CRISPR-based integrative vectors for Saccharomyces cerevisiae. Wellcome Open Res 2018; 3:72. [PMID: 30057946 PMCID: PMC6051238 DOI: 10.12688/wellcomeopenres.14642.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2018] [Indexed: 11/20/2022] Open
Abstract
Integrating a desired DNA sequence into yeast genomes is a widely-used genetic manipulation in the budding yeast Saccharomyces cerevisiae. The conventional integration method is to use an integrative plasmid such as pRS or YIplac series as the target DNA carrier. The nature of this method risks multiple integrations of the target DNA and the potential loss of integrated DNA during cell proliferation. In this study, we developed a novel yeast integration strategy based on the widely used CRISPR-Cas9 system and created a set of plasmids for this purpose. In this system, a plasmid bearing Cas9 and gRNA expression cassettes will induce a double-strand break (DSB) inside a biosynthesis gene such as Met15 or Lys2. Repair of the DSB will be mediated by another plasmid bearing upstream and downstream sequences of the DSB and an integration sequence in between. As a result of this repair the sequence is integrated into genome by replacing the biosynthesis gene, the disruption of which leads to a new auxotrophic genotype. The newly-generated auxotroph can serve as a traceable marker for the integration. In this study, we demonstrated that a DNA fragment up to 6.3 kb can be efficiently integrated into the Met15 or Lys2 locus using this system. This novel integration strategy can be applied to various yeasts, including natural yeast isolated from wild environments or different yeast species such as Candida albicans.
Collapse
Affiliation(s)
- Peter W Daniels
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | - Anuradha Mukherjee
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | | | - Bin Hu
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
- Sheffield Institute for Nucleic Acids, The University of Sheffield, Sheffield, UK
| |
Collapse
|
49
|
Daniels PW, Mukherjee A, Goldman ASH, Hu B. A set of novel CRISPR-based integrative vectors for Saccharomyces cerevisiae. Wellcome Open Res 2018. [DOI: 10.12688/wellcomeopenres.14642.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrating a desired DNA sequence into yeast genomes is a widely-used genetic manipulation in the budding yeastSaccharomyces cerevisiae. The conventional integration method is to use an integrative plasmid such as pRS or YIplac series as the target DNA carrier. The nature of this method risks multiple integrations of the target DNA and the potential loss of integrated DNA during cell proliferation. In this study, we developed a novel yeast integration strategy based on the widely used CRISPR-Cas9 system and created a set of plasmids for this purpose. In this system, a plasmid bearing Cas9 and gRNA expression cassettes will induce a double-strand break (DSB) inside a biosynthesis gene such as Met15 or Lys2. Repair of the DSB will be mediated by another plasmid bearing upstream and downstream sequences of the DSB and an integration sequence in between. As a result of this repair the sequence is integrated into genome by replacing the biosynthesis gene, the disruption of which leads to a new auxotrophic genotype. The newly-generated auxotroph can serve as a traceable marker for the integration. In this study, we demonstrated that a DNA fragment up to 6.3 kb can be efficiently integrated into the Met15 or Lys2 locus using this system. This novel integration strategy can be applied to various yeasts, including natural yeast isolated from wild environments or different yeast species such asCandida albicans.
Collapse
|
50
|
Mutumwinka D, Zhao SB, Liu YS, Mensah EO, Gao XD, Fujita M. PiggyBac-based screening identified BEM4 as a suppressor to rescue growth defects in och1-disrupted yeast cells. Biosci Biotechnol Biochem 2018; 82:1497-1507. [PMID: 29882469 DOI: 10.1080/09168451.2018.1482193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glycoengineered yeast cells, which express human-compatible glycan structures, are particularly attractive host cells to produce therapeutic glycoproteins. Disruption of OCH1 gene, which encodes an α-1,6-mannosyltransferase required for mannan-type N-glycan formation, is essential for the elimination of yeast-specific N-glycan structures. However, the gene disruption causes cell wall defects leading to growth defects. Here, we tried to identify factors to rescue the growth defects of och1Δ cells by in vivo mutagenesis using piggyBac (PB)-based transposon. We isolated a mutant strain, named 121, which could grow faster than parental och1Δ cells. The PB element was introduced into the promoter region of BEM4 gene and upregulated the BEM4 expression. Overexpression of BEM4 suppressed growth defects in och1Δ cells. The slow grow phenotypes were partially rescued by expression of Rho1p, whose function is regulated by Bem4p. Our results indicate that BEM4 would be useful to produce therapeutic proteins in glycoengineered yeast without the growth defects.
Collapse
Affiliation(s)
- Diane Mutumwinka
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu , China
| | - Shen-Bao Zhao
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu , China
| | - Yi-Shi Liu
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu , China
| | - Emmanuel Osei Mensah
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu , China
| | - Xiao-Dong Gao
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu , China
| | - Morihisa Fujita
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu , China
| |
Collapse
|