1
|
Pei J, Sun T, Wang L, Pan Z, Guo X, Li H. Fusion primer driven racket PCR: A novel tool for genome walking. Front Genet 2022; 13:969840. [PMID: 36330444 PMCID: PMC9623105 DOI: 10.3389/fgene.2022.969840] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
The limitations of the current genome-walking strategies include strong background and cumbersome experimental processes. Herein, we report a genome-walking method, fusion primer-driven racket PCR (FPR-PCR), for the reliable retrieval of unknown flanking DNA sequences. Four sequence-specific primers (SSP1, SSP2, SSP3, and SSP4) were sequentially selected from known DNA (5'→3′) to perform FPR-PCR. SSP3 is the fragment that mediates intra-strand annealing (FISA). The FISA fragment is attached to the 5′ end of SSP1, generating a fusion primer. FPR-PCR comprises two rounds of amplification reactions. The single-fusion primary FPR-PCR begins with the selective synthesis of the target first strand, then allows the primer to partially anneal to some place(s) on the unknown region of this strand, producing the target second strand. Afterward, a new first strand is synthesized using the second strand as the template. The 3′ end of this new first strand undergoes intra-strand annealing to the FISA site, followed by the formation of a racket-like DNA by a loop-back extension. This racket-like DNA is exponentially amplified in the secondary FPR-PCR performed using SSP2 and SSP4. We validated this FPR-PCR method by identifying the unknown flanks of Lactobacillus brevis CD0817 glutamic acid decarboxylase genes and the rice hygromycin gene.
Collapse
Affiliation(s)
- Jinfeng Pei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Tianyi Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Lingqin Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhenkang Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xinyue Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- *Correspondence: Haixing Li,
| |
Collapse
|
2
|
Wang L, Jia M, Li Z, Liu X, Sun T, Pei J, Wei C, Lin Z, Li H. Wristwatch PCR: A Versatile and Efficient Genome Walking Strategy. Front Bioeng Biotechnol 2022; 10:792848. [PMID: 35497369 PMCID: PMC9039356 DOI: 10.3389/fbioe.2022.792848] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Genome walking is a method used to retrieve unknown flanking DNA. Here, we reported wristwatch (WW) PCR, an efficient genome walking technique mediated by WW primers (WWPs). WWPs feature 5′- and 3′-overlap and a heterologous interval. Therefore, a wristwatch-like structure can be formed between WWPs under relatively low temperatures. Each WW-PCR set is composed of three nested (primary, secondary, and tertiary) PCRs individually performed by three WWPs. The WWP is arbitrarily annealed somewhere on the genome in the one low-stringency cycle of the primary PCR, or directionally to the previous WWP site in one reduced-stringency cycle of the secondary/tertiary PCR, producing a pool of single-stranded DNAs (ssDNAs). A target ssDNA incorporates a gene-specific primer (GSP) complementary at the 3′-end and the WWP at the 5′-end and thus can be exponentially amplified in the next high-stringency cycles. Nevertheless, a non-target ssDNA cannot be amplified as it lacks a perfect binding site for any primers. The practicability of the WW-PCR was validated by successfully accessing unknown regions flanking Lactobacillus brevis CD0817 glutamate decarboxylase gene and the hygromycin gene of rice. The WW-PCR is an attractive alternative to the existing genome walking techniques.
Collapse
Affiliation(s)
- Lingqin Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Mengya Jia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhaoqin Li
- Charles W. Davidson College of Engineering, San Jose State University, San Jose, CA, United States
| | - Xiaohua Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Tianyi Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Jinfeng Pei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Cheng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhiyu Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- *Correspondence: Haixing Li,
| |
Collapse
|
3
|
Kalendar R, Shustov AV, Schulman AH. Palindromic Sequence-Targeted (PST) PCR, Version 2: An Advanced Method for High-Throughput Targeted Gene Characterization and Transposon Display. FRONTIERS IN PLANT SCIENCE 2021; 12:691940. [PMID: 34239528 PMCID: PMC8258406 DOI: 10.3389/fpls.2021.691940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/20/2021] [Indexed: 05/28/2023]
Abstract
Genome walking (GW), a strategy for capturing previously unsequenced DNA fragments that are in proximity to a known sequence tag, is currently predominantly based on PCR. Recently developed PCR-based methods allow for combining of sequence-specific primers with designed capturing primers capable of annealing to unknown DNA targets, thereby offering the rapidity and effectiveness of PCR. This study presents a methodological improvement to the previously described GW technique known as palindromic sequence-targeted PCR (PST-PCR). Like PST-PCR, this new method (called PST-PCR v.2) relies on targeting of capturing primers to palindromic sequences arbitrarily present in natural DNA templates. PST-PCR v.2 consists of two rounds of PCR. The first round uses a combination of one sequence-specific primer with one capturing (PST) primer. The second round uses a combination of a single (preferred) or two universal primers; one anneals to a 5' tail attached to the sequence-specific primer and the other anneals to a different 5' tail attached to the PST primer. The key advantage of PST-PCR v.2 is the convenience of using a single universal primer with invariable sequences in GW processes involving various templates. The entire procedure takes approximately 2-3 h to produce the amplified PCR fragment, which contains a portion of a template flanked by the sequence-specific and capturing primers. PST-PCR v.2 is highly suitable for simultaneous work with multiple samples. For this reason, PST-PCR v.2 can be applied beyond the classical task of GW for studies in population genetics, in which PST-PCR v.2 is a preferred alternative to amplified fragment length polymorphism (AFLP) or next-generation sequencing. Furthermore, the conditions for PST-PCR v.2 are easier to optimize, as only one sequence-specific primer is used. This reduces non-specific random amplified polymorphic DNA (RAPD)-like amplification and formation of non-templated amplification. Importantly, akin to the previous version, PST-PCR v.2 is not sensitive to template DNA sequence complexity or quality. This study illustrates the utility of PST-PCR v.2 for transposon display (TD), which is a method to characterize inter- or intra-specific variability related to transposon integration sites. The Ac transposon sequence in the maize (Zea mays) genome was used as a sequence tag during the TD procedure to characterize the Ac integration sites.
Collapse
Affiliation(s)
- Ruslan Kalendar
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
- Viikki Plant Science Centre, HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Alan H. Schulman
- Viikki Plant Science Centre, HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
4
|
Palindromic sequence-targeted (PST) PCR: a rapid and efficient method for high-throughput gene characterization and genome walking. Sci Rep 2019; 9:17707. [PMID: 31776407 PMCID: PMC6881309 DOI: 10.1038/s41598-019-54168-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/07/2019] [Indexed: 11/23/2022] Open
Abstract
Genome walking (GW) refers to the capture and sequencing of unknown regions in a long DNA molecule that are adjacent to a region with a known sequence. A novel PCR-based method, palindromic sequence-targeted PCR (PST-PCR), was developed. PST-PCR is based on a distinctive design of walking primers and special thermal cycling conditions. The walking primers (PST primers) match palindromic sequences (PST sites) that are randomly distributed in natural DNA. The PST primers have palindromic sequences at their 3′-ends. Upstream of the palindromes there is a degenerate sequence (8–12 nucleotides long); defined adapters are present at the 5′-termini. The thermal cycling profile has a linear amplification phase and an exponential amplification phase differing in annealing temperature. Changing the annealing temperature to switch the amplification phases at a defined cycle controls the balance between sensitivity and specificity. In contrast to traditional genome walking methods, PST-PCR is rapid (two to three hours to produce GW fragments) as it uses only one or two PCR rounds. Using PST-PCR, previously unknown regions (the promoter and intron 1) of the VRN1 gene of Timothy-grass (Phleum pratense L.) were captured for sequencing. In our experience, PST-PCR had higher throughput and greater convenience in comparison to other GW methods.
Collapse
|
5
|
Cao R, Guo L, Ma M, Zhang W, Liu X, Zhao H. Identification and Functional Characterization of Squamosa Promoter Binding Protein-Like Gene TaSPL16 in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2019; 10:212. [PMID: 30873195 PMCID: PMC6401658 DOI: 10.3389/fpls.2019.00212] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 02/07/2019] [Indexed: 05/04/2023]
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops in the world. Squamosa promoter binding protein-like (SPL) proteins are plant-specific transcript factors and play critical roles in plant growth and development. The functions of many SPL gene family members were well characterized in Arabidopsis and rice, in contrast, research on wheat SPL genes is lagging behind. In this study, we cloned and characterized TaSPL16, an orthologous gene of rice OsSPL16, in wheat. Three TaSPL16 homoeologs are located on the short arms of chromosome 7A, 7B, and 7D, and share more than 96% sequence identity with each other. All the TaSPL16 homoeologs have three exons and two introns, with a miR156 binding site in their last exons. They encode putative proteins of 407, 409, and 414 amino acid residues, respectively. Subcellular localization showed TaSPL16 distribution in the cell nucleus, and transcription activity of TaSPL16 was validated in yeast. Analysis of the spatiotemporal expression profile showed that TaSPL16 is highly expressed in young developing panicles, lowly expressed in developing seeds and almost undetectable in vegetative tissues. Ectopic expression of TaSPL16 in Arabidopsis causes a delay in the emergence of vegetative leaves (3-4 days late), promotes early flowering (5-7 days early), increases organ size, and affects yield-related traits. These results demonstrated the regulatory roles of TaSPL16 in plant growth and development as well as seed yield. Our findings enrich the existing knowledge on SPL genes in wheat and provide valuable information for further investigating the effects of TaSPL16 on plant architecture and yield-related traits of wheat.
Collapse
Affiliation(s)
- Rufei Cao
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Lijian Guo
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Meng Ma
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Wenjing Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiangli Liu
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Huixian Zhao
- College of Life Sciences, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronmy, Northwest A&F University, Yangling, China
- *Correspondence: Huixian Zhao,
| |
Collapse
|
6
|
Chen J, Wu C, Zhang B, Cai Z, Wei L, Li Z, Li G, Guo T, Li Y, Guo W, Wang X. PiggyBac Transposon-Mediated Transgenesis in the Pacific Oyster ( Crassostrea gigas) - First Time in Mollusks. Front Physiol 2018; 9:811. [PMID: 30061837 PMCID: PMC6054966 DOI: 10.3389/fphys.2018.00811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/08/2018] [Indexed: 11/25/2022] Open
Abstract
As an effective method of transgenesis, the plasmid of PiggyBac transposon containing GFP (PiggyBac) transposon system has been widely used in various organisms but not yet in mollusks. In this work, piggyBac containing green fluorescent protein (GFP) was transferred into the Pacific oyster (Crassostrea gigas) by sperm-mediated gene transfer with or without electroporation. Fluorescent larvae were then observed and isolated under an inverted fluorescence microscope, and insertion of piggyBac was tested by polymerase chain reaction (PCR) using genomic DNA as template. Oyster larvae with green fluorescence were observed after transgenesis with or without electroporation, but electroporation increased the efficiency of sperm-mediated transgenesis. Subsequently, the recombinant piggyBac plasmid containing gGH (piggyBac-gGH) containing GFP and a growth hormone gene from orange-spotted grouper (gGH) was transferred into oysters using sperm mediation with electroporation, and fluorescent larvae were observed and isolated. The insertion of piggyBac-gGH was tested by PCR and genome walking analysis. PCR analysis indicated that piggyBac-gGH was transferred into oyster larvae; genome walking analysis further showed the detailed location where piggyBac-gGH was inserted in the oyster genome. This is the first time that piggyBac transposon-mediated transgenesis has been applied in mollusks.
Collapse
Affiliation(s)
- Jun Chen
- School of Agriculture, Ludong University, Yantai, China
| | - Changlu Wu
- School of Agriculture, Ludong University, Yantai, China
| | - Baolu Zhang
- Consultation Center, State Oceanic Administration, Beijing, China
| | - Zhongqiang Cai
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, China
| | - Zhuang Li
- School of Agriculture, Ludong University, Yantai, China
| | - Guangbin Li
- School of Agriculture, Ludong University, Yantai, China
| | - Ting Guo
- School of Agriculture, Ludong University, Yantai, China
| | - Yongchuan Li
- School of Agriculture, Ludong University, Yantai, China
| | - Wen Guo
- Center for Mollusc Study and Development, Marine Biology Institute of Shandong Province, Qingdao, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
7
|
Chang K, Wang Q, Shi X, Wang S, Wu H, Nie L, Li H. Stepwise partially overlapping primer-based PCR for genome walking. AMB Express 2018; 8:77. [PMID: 29744607 PMCID: PMC5943200 DOI: 10.1186/s13568-018-0610-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/04/2018] [Indexed: 11/10/2022] Open
Abstract
A stepwise partially overlapping primer-based PCR (SWPOP-PCR) method for isolating flanking unknown DNA regions was developed, which comprises three rounds of nested PCRs sequentially driven by SWPOP primer-nested specific primer pairs. SWPOP primer set is characterized by a partial overlap of 10 bp with 3′-part of the latter primer is identical to 5′-part of the former one, which makes the SWPOP primer in use anneal to SWPOP site of the prior PCR product only at relatively low temperature. For each PCR, target single-stranded DNA primed by the SWPOP primer in the exclusive one low-stringency cycle is converted into double-stranded form in the following high-stringency cycle due to the presence of a perfect annealing site for the specific primer. This double-stranded DNA bounded by the specific primer and the SWPOP primer is exponentially amplified in the remaining high-stringency cycles. Non-target single-stranded DNA, however, cannot be amplified given the lack of perfect complementary sequences for any primers. Therefore, the partial overlap of a SWPOP primer set preferentially synthesizes target products but inhibits nonspecific amplification. We successfully exploited SWPOP-PCR to obtain the DNA sequences flanking glutamate decarboxylase gene (gadA) locus in Lactobacillus brevis NCL912 and hygromycin gene (hyg) integrated in rice.
Collapse
|
8
|
Arulandhu AJ, van Dijk JP, Dobnik D, Holst-Jensen A, Shi J, Zel J, Kok EJ. DNA enrichment approaches to identify unauthorized genetically modified organisms (GMOs). Anal Bioanal Chem 2016; 408:4575-93. [PMID: 27086015 DOI: 10.1007/s00216-016-9513-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/11/2016] [Accepted: 03/22/2016] [Indexed: 01/04/2023]
Abstract
With the increased global production of different genetically modified (GM) plant varieties, chances increase that unauthorized GM organisms (UGMOs) may enter the food chain. At the same time, the detection of UGMOs is a challenging task because of the limited sequence information that will generally be available. PCR-based methods are available to detect and quantify known UGMOs in specific cases. If this approach is not feasible, DNA enrichment of the unknown adjacent sequences of known GMO elements is one way to detect the presence of UGMOs in a food or feed product. These enrichment approaches are also known as chromosome walking or gene walking (GW). In recent years, enrichment approaches have been coupled with next generation sequencing (NGS) analysis and implemented in, amongst others, the medical and microbiological fields. The present review will provide an overview of these approaches and an evaluation of their applicability in the identification of UGMOs in complex food or feed samples.
Collapse
Affiliation(s)
- Alfred J Arulandhu
- RIKILT Wageningen UR, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Jeroen P van Dijk
- RIKILT Wageningen UR, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - David Dobnik
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Arne Holst-Jensen
- Norwegian Veterinary Institute, Ullevaalsveien 68, P.O. Box 750 Sentrum, 0106, Oslo, Norway
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Center for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Life Sciences Building, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jana Zel
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Esther J Kok
- RIKILT Wageningen UR, P.O. Box 230, 6700 AE, Wageningen, The Netherlands.
| |
Collapse
|
9
|
CONTRAILS: A tool for rapid identification of transgene integration sites in complex, repetitive genomes using low-coverage paired-end sequencing. GENOMICS DATA 2015; 6:175-81. [PMID: 26697366 PMCID: PMC4664744 DOI: 10.1016/j.gdata.2015.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/02/2015] [Indexed: 11/22/2022]
Abstract
Transgenic crops have become a staple in modern agriculture, and are typically characterized using a variety of molecular techniques involving proteomics and metabolomics. Characterization of the transgene insertion site is of great interest, as disruptions, deletions, and genomic location can affect product selection and fitness, and identification of these regions and their integrity is required for regulatory agencies. Here, we present CONTRAILS (Characterization of Transgene Insertion Locations with Sequencing), a straightforward, rapid and reproducible method for the identification of transgene insertion sites in highly complex and repetitive genomes using low coverage paired-end Illumina sequencing and traditional PCR. This pipeline requires little to no troubleshooting and is not restricted to any genome type, allowing use for many molecular applications. Using whole genome sequencing of in-house transgenic Glycine max, a legume with a highly repetitive and complex genome, we used CONTRAILS to successfully identify the location of a single T-DNA insertion to single base resolution. We developed a pipeline for transgene identification using paired-end sequencing. This method requires little troubleshooting and is applicable to any genome. Identification of insertion sites is required for deregulation of modified food crops. This assists in identifying potential genomic disruptions in transgenic events.
Collapse
|
10
|
Partially overlapping primer-based PCR for genome walking. PLoS One 2015; 10:e0120139. [PMID: 25811779 PMCID: PMC4374871 DOI: 10.1371/journal.pone.0120139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 02/04/2015] [Indexed: 11/25/2022] Open
Abstract
Current genome walking methods are cumbersome to perform and can result in non-specific products. Here, we demonstrate the use of partially overlapping primer-based PCR (POP-PCR), a direct genome walking technique for the isolation of unknown flanking regions. This method exploits the partially overlapping characteristic at the 3’ ends of a set of POP primers (walking primers), which guarantees that the POP primer only anneals to the POP site of the preceding PCR product at relatively low temperatures. POP primer adaptation priming at the genomic DNA/POP site occurs only once due to one low-/reduced-stringency cycle in each nested PCR, resulting in the synthesis of a pool of single-stranded DNA molecules. Of this pool, the target single-stranded DNA is replicated to the double-stranded form bound by the specific primer and the POP primer in the subsequent high-stringency cycle due to the presence of the specific primer-binding site. The non-target single stranded DNA does not become double stranded due to the absence of a binding site for any of the primers. Therefore, the POP-PCR enriches target DNA while suppressing non-target products. We successfully used POP-PCR to retrieve flanking regions bordering the gadA locus in Lactobacillus brevis NCL912, malQ in Pichia pastoris GS115, the human aldolase A gene, and hyg in rice.
Collapse
|
11
|
Volpicella M, Costanza A, Palumbo O, Italiano F, Claudia L, Placido A, Picardi E, Carella M, Trotta M, Ceci LR. Rhodobacter sphaeroidesadaptation to high concentrations of cobalt ions requires energetic metabolism changes. FEMS Microbiol Ecol 2014; 88:345-57. [DOI: 10.1111/1574-6941.12303] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 12/01/2022] Open
Affiliation(s)
- Mariateresa Volpicella
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
| | - Alessandra Costanza
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
| | - Orazio Palumbo
- Medical Genetics Unit; IRCCS Casa Sollievo della Sofferenza; San Giovanni Rotondo Italy
| | - Francesca Italiano
- Institute for Chemical-Physical Processes; Italian National Research Council (CNR); Bari Italy
| | - Leoni Claudia
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
- Institute for Biomembranes and Bioenergetics; CNR; Bari Italy
| | - Antonio Placido
- Institute for Biomembranes and Bioenergetics; CNR; Bari Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
- Institute for Biomembranes and Bioenergetics; CNR; Bari Italy
- National Institute of Biostructures and Biosystems (INBB); Roma Italy
| | - Massimo Carella
- Medical Genetics Unit; IRCCS Casa Sollievo della Sofferenza; San Giovanni Rotondo Italy
| | - Massimo Trotta
- Institute for Chemical-Physical Processes; Italian National Research Council (CNR); Bari Italy
| | - Luigi R. Ceci
- Institute for Biomembranes and Bioenergetics; CNR; Bari Italy
| |
Collapse
|
12
|
Abstract
Genome walking is a method for determining the DNA sequence of unknown genomic regions flanking a region of known DNA sequence. The Genome walking has the potential to capture 6-7 kb of sequence in a single round. Ideal for identifying gene promoter regions where only the coding region. Genome walking also has significant utility for capturing homologous genes in new species when there are areas in the target gene with strong sequence conservation to the characterized species. The increasing use of next-generation sequencing technologies will see the principles of genome walking adapted to in silico methods. However, for smaller projects, PCR-based genome walking will remain an efficient method of characterizing unknown flanking sequence.
Collapse
Affiliation(s)
- Frances M Shapter
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | | |
Collapse
|
13
|
Liu T, Fang Y, Yao W, Guan Q, Bai G, Jing Z. A tailing genome walking method suitable for genomes with high local GC content. Anal Biochem 2013; 441:101-3. [PMID: 23831478 DOI: 10.1016/j.ab.2013.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/13/2013] [Accepted: 06/25/2013] [Indexed: 11/30/2022]
Abstract
The tailing genome walking strategies are simple and efficient. However, they sometimes can be restricted due to the low stringency of homo-oligomeric primers. Here we modified their conventional tailing step by adding polythymidine and polyguanine to the target single-stranded DNA (ssDNA). The tailed ssDNA was then amplified exponentially with a specific primer in the known region and a primer comprising 5' polycytosine and 3' polyadenosine. The successful application of this novel method for identifying integration sites mediated by φC31 integrase in goat genome indicates that the method is more suitable for genomes with high complexity and local GC content.
Collapse
Affiliation(s)
- Taian Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agricultural Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | | | | | | | | | | |
Collapse
|
14
|
Volpicella M, Leoni C, Fanizza I, Rius S, Gallerani R, Ceci LR. Genome walking by Klenow polymerase. Anal Biochem 2012; 430:200-2. [PMID: 22922302 DOI: 10.1016/j.ab.2012.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/10/2012] [Accepted: 08/11/2012] [Indexed: 11/26/2022]
Abstract
Genome walking procedures are all based on a final polymerase chain reaction amplification, regardless of the strategy employed for the synthesis of the substrate molecule. Here we report a modification of an already established genome walking strategy in which a single-strand DNA substrate is obtained by primer extension driven by Klenow polymerase and which results suitable for the direct sequencing of complex eukaryotic genomes. The efficacy of the method is demonstrated by the identification of nucleotide sequences in the case of two gene families (chiA and P1) in the genomes of several maize species.
Collapse
Affiliation(s)
- Mariateresa Volpicella
- Department of Biosciences, Biotechnologies, and Pharmacological Sciences, University of Bari, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Spalinskas R, Van den Bulcke M, Van den Eede G, Milcamps A. LT-RADE: An Efficient User-Friendly Genome Walking Method Applied to the Molecular Characterization of the Insertion Site of Genetically Modified Maize MON810 and Rice LLRICE62. FOOD ANAL METHOD 2012. [DOI: 10.1007/s12161-012-9438-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Thanh T, Chi VTQ, Abdullah MP, Omar H, Napis S. Efficiency of ligation-mediated PCR and TAIL-PCR methods for isolation of RbcS promoter sequences from green microalga Ankistrodesmus convolutus. Mol Biol 2012. [DOI: 10.1134/s0026893312010220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
A novel method to perform genomic walks using a combination of single strand DNA circularization and rolling circle amplification. J Microbiol Methods 2011; 87:38-43. [DOI: 10.1016/j.mimet.2011.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/04/2011] [Accepted: 07/05/2011] [Indexed: 11/20/2022]
|
18
|
Abstract
Genome walking is a molecular procedure for the direct identification of nucleotide sequences from purified genomes. The only requirement is the availability of a known nucleotide sequence from which to start. Several genome walking methods have been developed in the last 20 years, with continuous improvements added to the first basic strategies, including the recent coupling with next generation sequencing technologies. This review focuses on the use of genome walking strategies in several aspects of the study of eukaryotic genomes. In a first part, the analysis of the numerous strategies available is reported. The technical aspects involved in genome walking are particularly intriguing, also because they represent the synthesis of the talent, the fantasy and the intelligence of several scientists. Applications in which genome walking can be employed are systematically examined in the second part of the review, showing the large potentiality of this technique, including not only the simple identification of nucleotide sequences but also the analysis of large collections of mutants obtained from the insertion of DNA of viral origin, transposons and transfer DNA (T-DNA) constructs. The enormous amount of data obtained indicates that genome walking, with its large range of applicability, multiplicity of strategies and recent developments, will continue to have much to offer for the rapid identification of unknown sequences in several fields of genomic research.
Collapse
Affiliation(s)
- Claudia Leoni
- Department of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | | | | | | | | |
Collapse
|
19
|
Deng J, Wei M, Yu B, Chen Y. Efficient amplification of genes involved in microbial secondary metabolism by an improved genome walking method. Appl Microbiol Biotechnol 2010; 87:757-64. [PMID: 20376630 DOI: 10.1007/s00253-010-2569-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 03/15/2010] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
Abstract
Genome walking is a commonly used technique for the identification of DNA sequences adjacent to known regions. Despite the development of various genome walking methods, nonspecific products are often produced in certain circumstances, especially when GC-rich DNA sequences are dealt with. To effectively resolve such technical issues, a simple nested polymerase chain reaction-based genome walking method has been developed by implementing a progressively decreased annealing temperature from 70 degrees C to 47.5 degrees C in the first round of amplification and a high annealing temperature of 65 degrees C in the second round of amplification. During the entire process, a lower ramp rate of 1.5 degrees C s(-1) and cooling rate of 2.5 degrees C s(-1) are performed to reach the annealing temperature. Using this method, we successfully obtained the upstream and downstream sequences of three GC-rich genes involved in the biosynthetic pathways of secondary metabolites from two bacterial genomes. The efficient amplification of DNA target longer than 1.5 Kb with GC content up to 75.0% indicates that the present technique could be a valuable tool for the investigation of biosynthetic pathways of various secondary metabolites.
Collapse
Affiliation(s)
- Jing Deng
- Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia Street, Nanjing, Jiangsu Province, 210009, People's Republic of China
| | | | | | | |
Collapse
|
20
|
Leoni C, Volpicella M, Placido A, Gallerani R, Ceci LR. Application of a genome walking method for the study of the spinach Lhcb1 multigene family. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:138-143. [PMID: 19732990 DOI: 10.1016/j.jplph.2009.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/18/2009] [Accepted: 06/19/2009] [Indexed: 05/28/2023]
Abstract
We describe the application of a novel genome walking (GW) strategy for the one-shot identification of members of multigene families. The method was used to study the spinach Lhcb1 family (encoding the light harvesting complex protein Lhcb1), for which three cDNAs were known. Two additional genes and regulatory regions of the five members of the family were identified. For one of the newly detected genes, sequencing of full-length cDNA and analysis of regulatory regions by gel-shift are also reported. To our best knowledge, this is the first report on the use of a GW approach for the study of a multigene family.
Collapse
Affiliation(s)
- Claudia Leoni
- Department of Biochemistry and Molecular Biology, University of Bari, Via Amendola 165/A, 70126 Bari, Italy
| | | | | | | | | |
Collapse
|
21
|
Martin-Harris MH, Bartley PA, Morley AA. Gene walking using sequential hybrid primer polymerase chain reaction. Anal Biochem 2010; 399:308-10. [PMID: 20074545 DOI: 10.1016/j.ab.2010.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/04/2010] [Accepted: 01/06/2010] [Indexed: 10/20/2022]
Abstract
We developed a simple and robust method for removing nonspecific amplification produced during gene walking with a gene-specific primer and a degenerate primer. The primary walking polymerase chain reaction (PCR) was followed by two or three PCR rounds, each incorporating a low concentration of a reverse hybrid primer, where the 3' end was bound to a target sequence generated in the preceding PCR round and the 5' end was a new sequence that generated a target sequence for the next PCR round. The low concentration of the hybrid primer and the extent of amplicon stem-loop formation inhibited nonspecific amplification and enabled successful walking along three genes.
Collapse
Affiliation(s)
- Michael H Martin-Harris
- Department of Hematology and Genetic Pathology, Flinders University and Medical Centre, Bedford Park, South Australia 5042, Australia
| | | | | |
Collapse
|
22
|
Comparison and critical evaluation of PCR-mediated methods to walk along the sequence of genomic DNA. Appl Microbiol Biotechnol 2009; 85:37-43. [DOI: 10.1007/s00253-009-2211-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 08/17/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
|