1
|
Grabiński W, Karachitos A, Kicińska A. Backstage Heroes-Yeast in COVID-19 Research. Int J Mol Sci 2024; 25:12661. [PMID: 39684373 PMCID: PMC11640846 DOI: 10.3390/ijms252312661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The extremely rapid development of understanding and technology that led to the containment of the COVID-19 pandemic resulted from collaborative efforts in the fields of Betacoronavirus pandemicum (SARS-CoV-2) biology, pharmacology, vaccinology, and medicine. Perhaps surprisingly, much of the research was conducted using simple and efficient yeast models. In this manuscript, we describe how yeast, eukaryotic microorganisms, have been used to research this global challenge, focusing on the therapeutic potential of the studies discussed herein. Thus, we outline the role of yeast in studying viral protein interactions with the host cell proteome, including the binding of the SARS-CoV-2 virus spike protein to the human ACE2 receptor and its modulation. The production and exploration of viral antigens in yeast systems, which led to the development of two approved COVID-19 vaccines, are also detailed. Moreover, yeast platforms facilitating the discovery and production of single-domain antibodies (nanobodies) against SARS-CoV-2 are described. Methods guiding modern and efficient drug discovery are explained at length. In particular, we focus on studies designed to search for inhibitors of the main protease (Mpro), a unique target for anti-coronaviral therapies. We highlight the adaptability of the techniques used, providing opportunities for rapid modification and implementation alongside the evolution of the SARS-CoV-2 virus. Approaches introduced in yeast systems that may have universal potential application in studies of emerging viral diseases are also described.
Collapse
Affiliation(s)
| | | | - Anna Kicińska
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland; (W.G.); (A.K.)
| |
Collapse
|
2
|
García Morato J, Gloeckner CJ, Kahle PJ. Proteomics elucidating physiological and pathological functions of TDP-43. Proteomics 2023; 23:e2200410. [PMID: 37671599 DOI: 10.1002/pmic.202200410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023]
Abstract
Trans-activation response DNA binding protein of 43 kDa (TDP-43) regulates a great variety of cellular processes in the nucleus and cytosol. In addition, a defined subset of neurodegenerative diseases is characterized by nuclear depletion of TDP-43 as well as cytosolic mislocalization and aggregation. To perform its diverse functions TDP-43 can associate with different ribonucleoprotein complexes. Combined with transcriptomics, MS interactome studies have unveiled associations between TDP-43 and the spliceosome machinery, polysomes and RNA granules. Moreover, the highly dynamic, low-valency interactions regulated by its low-complexity domain calls for innovative proximity labeling methodologies. In addition to protein partners, the analysis of post-translational modifications showed that they may play a role in the nucleocytoplasmic shuttling, RNA binding, liquid-liquid phase separation and protein aggregation of TDP-43. Here we review the various TDP-43 ribonucleoprotein complexes characterized so far, how they contribute to the diverse functions of TDP-43, and roles of post-translational modifications. Further understanding of the fluid dynamic properties of TDP-43 in ribonucleoprotein complexes, RNA granules, and self-assemblies will advance the understanding of RNA processing in cells and perhaps help to develop novel therapeutic approaches for TDPopathies.
Collapse
Affiliation(s)
- Jorge García Morato
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, German Center of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Christian Johannes Gloeckner
- Research Group Functional Neuroproteomics, German Center of Neurodegenerative Diseases, Tübingen, Germany
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Philipp J Kahle
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, German Center of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Kook MG, Byun MR, Lee SM, Lee MH, Lee DH, Lee HB, Lee EJ, Baek K, Kim S, Kang KS, Choi JW. Anti-apoptotic Splicing Variant of AIMP2 Recover Mutant SOD1-Induced Neuronal Cell Death. Mol Neurobiol 2023; 60:145-159. [PMID: 36242734 DOI: 10.1007/s12035-022-03073-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/08/2022] [Indexed: 12/30/2022]
Abstract
Although a couple of studies have reported that mutant superoxide dismutase 1 (SOD1), one of the causative genes of familial amyotrophic lateral, interacts physically with lysyl-tRNA synthetase (KARS1) by a gain of function, there is limited evidence regarding the detailed mechanism about how the interaction leads to neuronal cell death. Our results indicated that the aminoacyl-tRNA synthetase-interacting multi-functional protein 2 (AIMP2) mediated cell death upon the interplay between mutant SOD1 and KARS1 in ALS. Binding of mutant SOD1 with KARS1 led to the release of AIMP2 from its original binding partner KARS1, and the free form of AIMP2 induced TRAF2 degradation followed by TNF-α-induced cell death. We also suggest a therapeutic application that overexpression of DX2, the exon 2-deleted antagonistic splicing variant of AIMP2 (AIMP2-DX2), reduced neuronal cell death in the ALS mouse model. Expression of DX2 suppressed TRAF2 degradation and TNF-α-induced cell death by competing mode of action against full-length AIMP2. Motor neuron differentiated form iPSC showed a resistance in neuronal cell death after DX2 administration. Further, intrathecal administration of DX2-coding adeno-associated virus (AAV) improved locomotive activity and survival in a mutant SOD1-induced ALS mouse model. Taken together, these results indicated that DX2 could prolong life span and delay the ALS symptoms through compensation in neuronal inflammation.
Collapse
Affiliation(s)
- Myung Geun Kook
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.,Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mi Ran Byun
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Biomedicinal and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Soo Min Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea
| | - Min Hak Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea
| | - Dae Hoon Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea
| | - Hyung Been Lee
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea
| | - Eui-Jin Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea
| | - Kyunghwa Baek
- Department of Biomedicinal and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.,Generoath Ltd, Seoul, 04168, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon, 21983, Republic of Korea
| | - Kyung-Sun Kang
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea. .,Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jin Woo Choi
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea. .,Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea.
| |
Collapse
|
4
|
Schoeters F, Munro CA, d'Enfert C, Van Dijck P. A High-Throughput Candida albicans Two-Hybrid System. mSphere 2018; 3:e00391-18. [PMID: 30135223 PMCID: PMC6106057 DOI: 10.1128/msphere.00391-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is a human fungal pathogen that does not follow the universal codon usage, as it translates the CUG codon into serine rather than leucine. This makes it difficult to study protein-protein interactions using the standard yeast two-hybrid (Y2H) system in the model organism Saccharomyces cerevisiae Due to the lack of adapted tools, only a small number of protein-protein interactions (PPIs) have been detected or studied using C. albicans-optimized tools despite the importance of PPIs to understand cell biology. However, with the sequencing of the whole genome of C. albicans, the availability of an ORFeome collection containing 5,099 open reading frames (ORFs) in Gateway-adapted donor vectors, and the creation of a Gateway-compatible C. albicans-specific two-hybrid (C2H) system, it became possible to study protein-protein interactions on a larger scale using C. albicans itself as the model organism. Erroneous translations are hereby eliminated compared to using the S. cerevisiae Y2H system. Here, we describe the technical adaptations and the first application of the C2H system for a high-throughput screen, thus making it possible to screen thousands of PPIs at once in C. albicans itself. This first, small-scale high-throughput screen, using Pho85 as a bait protein against 1,646 random prey proteins, yielded one interacting partner (Pcl5). The interaction found with the high-throughput setup was further confirmed with a low-throughput C2H experiment and with a coimmunoprecipitation (co-IP) experiment.IMPORTANCECandida albicans is a major fungal pathogen, and due to the rise of fungal infections and emerging resistance to the limited antifungals available, it is important to develop novel and more specific antifungals. Protein-protein interactions (PPIs) can be applied as very specific drug targets. However, because of the aberrant codon usage of C. albicans, the traditional yeast two-hybrid system in Saccharomyces cerevisiae is difficult to use, and only a limited number of PPIs have been described in C. albicans To overcome this, a C. albicans two-hybrid (C2H) system was developed in 2010. The current work describes, for the first time, the application of the C2H system in a high-throughput setup. We hereby show the usefulness of the C2H system to investigate and detect PPIs in C. albicans, making it possible to further elucidate protein networks in C. albicans, which has the potential to lead to the development of novel antifungals which specifically disrupt PPIs important for virulence.
Collapse
Affiliation(s)
- Floris Schoeters
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium
| | - Carol A Munro
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Christophe d'Enfert
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium
| |
Collapse
|
5
|
Shi J, Ren C, Liu H, Wang L, Zhu B, Huang W, Liu W, Liu J, Liu Y, Xia X, Xu R, Jiang X. An ESRG-interacting protein, COXII, is involved in pro-apoptosis of human embryonic stem cells. Biochem Biophys Res Commun 2015; 460:130-5. [PMID: 25748575 DOI: 10.1016/j.bbrc.2015.02.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 02/22/2015] [Indexed: 12/14/2022]
Abstract
Human embryonic stem cells(hESC) posses very promising application perspective in clinical transplant therapies for their characteristics of self-renewal and pluripotency. So efforts focusing on the mechanisms of the two characteristics are extremely important. ESRG, first identified by our group, is a candidate stemness gene of hESC for its much higher expression level in hESC comparing to that in 7-day embryoid bodies(EBs). Here, the proteins interacted with ESRG and its functions in hESC were explored. Yeast two-hybrid (Y2H) screening system was adopted to explore the interacting proteins of ESRG. Then Co-IP was performed to confirm the interactions between candidate proteins and ESRG. At last, the functions of validated interacting protein were explored by RNA interference(RNAi) and Western blot(WB). There were no autonomous activation and toxicity in the Y2H system, which verified its availability. Four candidate proteins, AAMP, DDT, GNB2L1 and COXII, were discovered, and the interaction between ESRG and COXII was ultimately confirmed. The expression of COXII in hESC was suppressed by siRNA, and the inhibited mitochondrial apoptosis was observed in hESC with downregulated COXII expression. Our work first validated the interaction between ESRG and COXII, and demonstrated that COXII serves as a pro-apoptotic protein in hESC. The results implied that ESRG may play an important role in regulating the apoptosis of hESC by interacting with COXII, and thus contribute a lot to the maintenance of hESC characteristics.
Collapse
Affiliation(s)
- Jia Shi
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Caiping Ren
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China.
| | - Hui Liu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Lei Wang
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Bin Zhu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Wei Huang
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Weidong Liu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Jie Liu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Yanyu Liu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Xiaomeng Xia
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, PR China
| | - Rong Xu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.
| |
Collapse
|
6
|
Bennett MA, Shern JF, Kahn RA. Reverse two-hybrid techniques in the yeast Saccharomyces cerevisiae. Methods Mol Biol 2015; 1278:433-446. [PMID: 25859967 DOI: 10.1007/978-1-4939-2425-7_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Use of the yeast two-hybrid system has provided definition to many previously uncharacterized pathways through the identification and characterization of novel protein-protein interactions. The two-hybrid system uses the bifunctional nature of transcription factors, such as the yeast enhancer Gal4, to allow protein-protein interactions to be monitored through changes in transcription of reporter genes. Once a positive interaction has been identified, either of the interacting proteins can be mutated by site-specific or randomly introduced changes, to produce proteins with a decreased ability to interact. Mutants generated using this strategy are very powerful reagents in tests of the biological significance of the interaction and in defining the residues involved in the interaction. Such techniques are termed reverse two-hybrid methods. We describe a reverse two-hybrid method that generates loss-of-interaction mutations of the catalytic subunit of the Escherichia coli heat-labile toxin (LTA1) with decreased binding to the active (GTP-bound) form of human ARF3, its protein cofactor. While newer methods are emerging for performing interaction screens in mammalian cells, instead of yeast, the use of reverse two-hybrid in yeast remains a robust and powerful means of identifying loss-of-interaction point mutants and compensating changes that remain among the most powerful tools of testing the biological significance of a protein-protein interaction.
Collapse
Affiliation(s)
- Matthew A Bennett
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA, 30322-3050, USA
| | | | | |
Collapse
|
7
|
Ngounou Wetie AG, Sokolowska I, Woods AG, Roy U, Loo JA, Darie CC. Investigation of stable and transient protein-protein interactions: Past, present, and future. Proteomics 2013. [PMID: 23193082 DOI: 10.1002/pmic.201200328] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This article presents an overview of the literature and a review of recent advances in the analysis of stable and transient protein-protein interactions (PPIs) with a focus on their function within cells, organs, and organisms. The significance of PTMs within the PPIs is also discussed. We focus on methods to study PPIs and methods of detecting PPIs, with particular emphasis on electrophoresis-based and MS-based investigation of PPIs, including specific examples. The validation of PPIs is emphasized and the limitations of the current methods for studying stable and transient PPIs are discussed. Perspectives regarding PPIs, with focus on bioinformatics and transient PPIs are also provided.
Collapse
Affiliation(s)
- Armand G Ngounou Wetie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA
| | | | | | | | | | | |
Collapse
|
8
|
Garcia-Garcia J, Bonet J, Guney E, Fornes O, Planas J, Oliva B. Networks of ProteinProtein Interactions: From Uncertainty to Molecular Details. Mol Inform 2012; 31:342-62. [PMID: 27477264 DOI: 10.1002/minf.201200005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/09/2012] [Indexed: 11/08/2022]
Abstract
Proteins are the bricks and mortar of cells. The work of proteins is structural and functional, as they are the principal element of the organization of the cell architecture, but they also play a relevant role in its metabolism and regulation. To perform all these functions, proteins need to interact with each other and with other bio-molecules, either to form complexes or to recognize precise targets of their action. For instance, a particular transcription factor may activate one gene or another depending on its interactions with other proteins and not only with DNA. Hence, the ability of a protein to interact with other bio-molecules, and the partners they have at each particular time and location can be crucial to characterize the role of a protein. Proteins rarely act alone; they rather constitute a mingled network of physical interactions or other types of relationships (such as metabolic and regulatory) or signaling cascades. In this context, understanding the function of a protein implies to recognize the members of its neighborhood and to grasp how they associate, both at the systemic and atomic level. The network of physical interactions between the proteins of a system, cell or organism, is defined as the interactome. The purpose of this review is to deepen the description of interactomes at different levels of detail: from the molecular structure of complexes to the global topology of the network of interactions. The approaches and techniques applied experimentally and computationally to attain each level are depicted. The limits of each technique and its integration into a model network, the challenges and actual problems of completeness of an interactome, and the reliability of the interactions are reviewed and summarized. Finally, the application of the current knowledge of protein-protein interactions on modern network medicine and protein function annotation is also explored.
Collapse
Affiliation(s)
- Javier Garcia-Garcia
- Structural Bioinformatics Group, GRIB-IMIM, Universitat Pompeu Fabra, Barcelona Research Park of Biomedicine (PRBB), Catalonia, Spain
| | - Jaume Bonet
- Structural Bioinformatics Group, GRIB-IMIM, Universitat Pompeu Fabra, Barcelona Research Park of Biomedicine (PRBB), Catalonia, Spain
| | - Emre Guney
- Structural Bioinformatics Group, GRIB-IMIM, Universitat Pompeu Fabra, Barcelona Research Park of Biomedicine (PRBB), Catalonia, Spain
| | - Oriol Fornes
- Structural Bioinformatics Group, GRIB-IMIM, Universitat Pompeu Fabra, Barcelona Research Park of Biomedicine (PRBB), Catalonia, Spain
| | - Joan Planas
- Structural Bioinformatics Group, GRIB-IMIM, Universitat Pompeu Fabra, Barcelona Research Park of Biomedicine (PRBB), Catalonia, Spain
| | - Baldo Oliva
- Structural Bioinformatics Group, GRIB-IMIM, Universitat Pompeu Fabra, Barcelona Research Park of Biomedicine (PRBB), Catalonia, Spain.
| |
Collapse
|
9
|
Rönnberg T, Jääskeläinen K, Blot G, Parviainen V, Vaheri A, Renkonen R, Bouloy M, Plyusnin A. Searching for cellular partners of hantaviral nonstructural protein NSs: Y2H screening of mouse cDNA library and analysis of cellular interactome. PLoS One 2012; 7:e34307. [PMID: 22506017 PMCID: PMC3323627 DOI: 10.1371/journal.pone.0034307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 02/27/2012] [Indexed: 12/29/2022] Open
Abstract
Hantaviruses (Bunyaviridae) are negative-strand RNA viruses with a tripartite genome. The small (S) segment encodes the nucleocapsid protein and, in some hantaviruses, also the nonstructural protein (NSs). The aim of this study was to find potential cellular partners for the hantaviral NSs protein. Toward this aim, yeast two-hybrid (Y2H) screening of mouse cDNA library was performed followed by a search for potential NSs protein counterparts via analyzing a cellular interactome. The resulting interaction network was shown to form logical, clustered structures. Furthermore, several potential binding partners for the NSs protein, for instance ACBD3, were identified and, to prove the principle, interaction between NSs and ACBD3 proteins was demonstrated biochemically.
Collapse
Affiliation(s)
- Tuomas Rönnberg
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Hamdi A, Colas P. Yeast two-hybrid methods and their applications in drug discovery. Trends Pharmacol Sci 2012; 33:109-18. [DOI: 10.1016/j.tips.2011.10.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 01/08/2023]
|
11
|
Dwane S, Kiely PA. Tools used to study how protein complexes are assembled in signaling cascades. Bioeng Bugs 2011; 2:247-59. [PMID: 22002082 PMCID: PMC3225741 DOI: 10.4161/bbug.2.5.17844] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 08/19/2011] [Accepted: 08/24/2011] [Indexed: 01/08/2023] Open
Abstract
Most proteins do not function on their own but as part of large signaling complexes that are arranged in every living cell in response to specific environmental cues. Proteins interact with each other either constitutively or transiently and do so with different affinity. When identifying the role played by a protein inside a cell, it is essential to define its particular cohort of binding partners so that the researcher can predict what signaling pathways the protein is engaged in. Once identified and confirmed, the information might allow the interaction to be manipulated by pharmacological inhibitors to help fight disease. In this review, we discuss protein-protein interactions and how they are essential to propagate signals in signaling pathways. We examine some of the high-throughput screening methods and focus on the methods used to confirm specific protein-protein interactions including; affinity tagging, co-immunoprecipitation, peptide array technology and fluorescence microscopy.
Collapse
Affiliation(s)
- Susan Dwane
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
| | | |
Collapse
|
12
|
Murine cytomegalovirus IE3 protein interacts with Ankrd17. ACTA ACUST UNITED AC 2011; 31:285-289. [PMID: 21671165 DOI: 10.1007/s11596-011-0368-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Indexed: 12/29/2022]
Abstract
Murine cytomegalovirus (MCMV) IE3 protein is a multifunctional viral protein that interacts with several target proteins of both viral and host cellular origin. To investigate the biological function of IE3 in the pathogenesis of the brain disorders caused by CMV, a screening for host cellular proteins that could interact with IE3 was performed. By yeast two-hybrid screening, ankyrin repeats domain 17 (Ankrd17, also known as Gtar) was identified as a host factor that could interact with IE3. This interaction was verified by yeast two-hybrid assay and chemiluminescent co-immunoprecipitaion. Mapping analysis suggested that the 1-148 residues of IE3 were responsible for the interaction. These results suggested that the interaction between Ankrd17 and IE3 may play a key role in the pathogenesis of MCMV-associated disease.
Collapse
|
13
|
Nirantar SR, Ghadessy FJ. Compartmentalized linkage of genes encoding interacting protein pairs. Proteomics 2011; 11:1335-9. [PMID: 21360673 DOI: 10.1002/pmic.201000643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/23/2010] [Accepted: 12/13/2010] [Indexed: 01/02/2023]
Abstract
Emulsion technology has been successfully applied to the fields of next-generation high-throughput sequencing, protein engineering and clinical diagnostics. Here, we extend its scope to proteomics research by developing and characterizing a method, termed iCLIP (in vitro compartmentalized linkage of interacting partners), which enables genes encoding interacting protein pairs to be linked in a single segment of DNA. This will facilitate archiving of the interactomes from library versus library two-hybrid screens as libraries of linked DNAs. We further demonstrate the ability to interrogate a model yeast two-hybrid iCLIP library for interactants by "PCR-pulldown," using a primer specific to a gene of interest along with a universal primer. iCLIP libraries may also be subjected to high-throughput sequencing to generate interactome information. The applicability of the technique is also demonstrated in the related context of the bacterial two-hybrid system.
Collapse
|
14
|
Chou CK, Jing N, Yamaguchi H, Tsou PH, Lee HH, Chen CT, Wang YN, Hong S, Su C, Kameoka J, Hung MC. High speed digital protein interaction analysis using microfluidic single molecule detection system. LAB ON A CHIP 2010; 10:1793-8. [PMID: 20498894 PMCID: PMC2919816 DOI: 10.1039/c002937h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The understanding of protein interaction dynamics is important for signal transduction research but current available techniques prove difficult in addressing this issue. Thus, using the microfluidic approach, we developed a digital protein analytical platform and methodology named MAPS (Microfluidic system Analyzing Protein in Single complex) that can measure the amount of target proteins and protein complexes at the digitally single molecule resolution. By counting protein events individually, this system can provide rough protein interaction ratios which will be critical for understanding signal transduction dynamics. In addition, this system only requires less than an hour to characterize the target protein sample, which is much quicker than conventional approaches. As a proof of concept, we have determined the interaction ratios of oncogenic signaling protein complexes EGFR/Src and EGFR/STAT3 before and after EGF ligand stimulation. To the best of our knowledge, this is the first time that the interaction ratio between EGFR and its downstream proteins has been characterized. The information from MAPS will be critical for the study of protein signal transduction quantitation and dynamics.
Collapse
Affiliation(s)
- Chao-Kai Chou
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
- Cancer Biology Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Texas, USA
| | - Nan Jing
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Hirohito Yamaguchi
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Pei-Hsiang Tsou
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
- Cancer Biology Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Texas, USA
| | - Chun-Te Chen
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
- Cancer Biology Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Texas, USA
| | - Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Sungmin Hong
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Chin Su
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Jun Kameoka
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
- Cancer Biology Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Texas, USA
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
15
|
Pierre S, Scholich K. Toponomics: studying protein-protein interactions and protein networks in intact tissue. MOLECULAR BIOSYSTEMS 2010; 6:641-7. [PMID: 20237641 DOI: 10.1039/b910653g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The function of a protein is determined on several levels including the genome, transcriptome, proteome, and the recently introduced toponome. The toponome describes the topology of all proteins, protein complexes and protein networks which constitute and influence the microenvironment of a given protein. It has long been known that cellular function or dysfunction of proteins strongly depends on their microenvironment and even small changes in protein arrangements can dramatically alter their activity/function. Thus, deciphering the topology of the multi-dimensional networks which control normal and disease-related pathways will give a better understanding of the mechanisms underlying disease development. While various powerful proteomic tools allow simultaneous quantification of proteins, only a limited number of techniques are available to visualize protein networks in intact cells and tissues. This review discusses a novel approach to map and decipher functional molecular networks of proteins in intact cells or tissues. Multi-epitope-ligand-cartography (MELC) is an imaging technology that identifies and quantifies protein networks at the subcellular level of morphologically-intact specimens. This immunohistochemistry-based method allows serial visualization and biomathematical analysis of up to 100 cellular components using fluorescence-labelled tags. The resulting toponome maps, simultaneously ranging from the subcellular to the supracellular scale, have the potential to provide the basis for a mathematical description of the dynamic topology of protein networks, and will complement current proteomic data to enhance the understanding of physiological and pathophysiological cell functions.
Collapse
Affiliation(s)
- Sandra Pierre
- Institut für Klinische Pharmakologie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | |
Collapse
|
16
|
Everett L, Hansen M, Hannenhalli S. Regulating the regulators: modulators of transcription factor activity. Methods Mol Biol 2010; 674:297-312. [PMID: 20827600 DOI: 10.1007/978-1-60761-854-6_19] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gene transcription is largely regulated by DNA-binding transcription factors (TFs). However, the TF activity itself is modulated via, among other things, post-translational modifications (PTMs) by specific modification enzymes in response to cellular stimuli. TF-PTMs thus serve as "molecular switchboards" that map upstream signaling events to the downstream transcriptional events. An important long-term goal is to obtain a genome-wide map of "regulatory triplets" consisting of a TF, target gene, and a modulator gene that specifically modulates the regulation of the target gene by the TF. A variety of genome-wide data sets can be exploited by computational methods to obtain a rough map of regulatory triplets, which can guide directed experiments. However, a prerequisite to developing such computational tools is a systematic catalog of known instances of regulatory triplets. We first describe PTM-Switchboard, a recent database that stores triplets of genes such that the ability of one gene (the TF) to regulate a target gene is dependent on one or more PTMs catalyzed by a third gene, the modifying enzyme. We also review current computational approaches to infer regulatory triplets from genome-wide data sets and conclude with a discussion of potential future research. PTM-Switchboard is accessible at http://cagr.pcbi.upenn.edu/PTMswitchboard /
Collapse
Affiliation(s)
- Logan Everett
- Department of Genetics, Penn Center for Bioinformatics, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | |
Collapse
|
17
|
Real-Chicharro A, Ruiz-Mostazo I, Navas-Delgado I, Kerzazi A, Chniber O, Sánchez-Jiménez F, Medina MA, Aldana-Montes JF. Protopia: a protein-protein interaction tool. BMC Bioinformatics 2009; 10 Suppl 12:S17. [PMID: 19828077 PMCID: PMC2762066 DOI: 10.1186/1471-2105-10-s12-s17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Protein-protein interactions can be considered the basic skeleton for living organism self-organization and homeostasis. Impressive quantities of experimental data are being obtained and computational tools are essential to integrate and to organize this information. This paper presents Protopia, a biological tool that offers a way of searching for proteins and their interactions in different Protein Interaction Web Databases, as a part of a multidisciplinary initiative of our institution for the integration of biological data http://asp.uma.es. RESULTS The tool accesses the different Databases (at present, the free version of Transfac, DIP, Hprd, Int-Act and iHop), and results are expressed with biological protein names or databases codes and can be depicted as a vector or a matrix. They can be represented and handled interactively as an organic graph. Comparison among databases is carried out using the Uniprot codes annotated for each protein. CONCLUSION The tool locates and integrates the current information stored in the aforementioned databases, and redundancies among them are detected. Results are compatible with the most important network analysers, so that they can be compared and analysed by other world-wide known tools and platforms. The visualization possibilities help to attain this goal and they are especially interesting for handling multiple-step or complex networks.
Collapse
Affiliation(s)
- Alejandro Real-Chicharro
- University of Malaga and CIBER de Enfermedades Raras, Department of Molecular Biology and Biochemistry, Faculty of Sciences, Instituto de Salud Carlos III, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
19
|
Hopper-Borge EA, Nasto RE, Ratushny V, Weiner LM, Golemis EA, Astsaturov I. Mechanisms of tumor resistance to EGFR-targeted therapies. Expert Opin Ther Targets 2009; 13:339-62. [PMID: 19236156 PMCID: PMC2670612 DOI: 10.1517/14712590902735795] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Much effort has been devoted to development of cancer therapies targeting EGFR, based on its role in regulating cell growth. Small-molecule and antibody EGFR inhibitors have clinical roles based on their efficacy in a subset of cancers, generally as components of combination therapies. Many cancers are either initially resistant to EGFR inhibitors or become resistant during treatment, limiting the efficacy of these reagents. OBJECTIVE/METHODS To review cellular resistance mechanisms to EGFR-targeted therapies. RESULTS/CONCLUSIONS The best validated of these mechanisms include activation of classic ATP-binding casette (ABC) multidrug transporters; activation or mutation of EGFR; and overexpression or activation of signaling proteins operating in relation to EGFR. We discuss current efforts and potential strategies to override these sources of resistance. We describe emerging systems-biology-based concepts of alternative resistance to EGFR-targeted therapies, and discuss their implications for use of EGFR-targeted and other targeted therapies.
Collapse
Affiliation(s)
- Elizabeth A Hopper-Borge
- Fox Chase Cancer Center, W462, 333 Cottman Ave., Philadelphia, PA 19111, USA, Tel: (215) 728-2500; Fax: -3616; E-mail:
| | - Rochelle E Nasto
- Fox Chase Cancer Center, W462, 333 Cottman Ave., Philadelphia, PA 19111, USA, Tel: (215) 728-2500; Fax: -3616; E-mail:
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Vladimir Ratushny
- Fox Chase Cancer Center, W462, 333 Cottman Ave., Philadelphia, PA 19111, USA, Tel: (215) 728-2500; Fax: -3616; E-mail:
- Department of Biochemistry, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Louis M Weiner
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057-1468, USA
| | - Erica A Golemis
- Fox Chase Cancer Center, W462, 333 Cottman Ave., Philadelphia, PA 19111, USA, Tel: (215) 728-2500; Fax: -3616; E-mail:
| | - Igor Astsaturov
- Fox Chase Cancer Center, W462, 333 Cottman Ave., Philadelphia, PA 19111, USA, Tel: (215) 728-2500; Fax: -3616; E-mail:
| |
Collapse
|